Skip to main content
Top
Published in: Tumor Biology 6/2016

01-06-2016 | Original Article

miR-204 regulates the EMT by targeting snai1 to suppress the invasion and migration of gastric cancer

Authors: Zhe Liu, Jin Long, Ruixia Du, Chunlin Ge, Kejian Guo, Yuanhong Xu

Published in: Tumor Biology | Issue 6/2016

Login to get access

Abstract

miR-204 was found to be downregulated in gastric cancer (GC) tissues, and the effect of miR-204 function on gastric cancer remains as a mystery. Therefore, this study was aimed at investigating the potential role of miR-204 involved in GC progression. Tissues collected from 60 gastric cancer patients were selected as the case group, while the matched normal paracancer tissues as controls. miR-204 expression levels in tissues and GC cells were detected using real-time fluorescent quantitative PCR. Luciferase assay was adopted to validate the interaction between potential gene targets and miR-204. Transwell assay was performed to evaluate the metastasis of GC cells. By building the epithelial-mesenchymal transition (EMT) model in vitro through the addition of transforming growth factor beta 1 (TGF-β1), expressions of miR-204 and snai1 in the EMT model together with their respective effects on EMT were evaluated. miR-204 was significantly downregulated in GC tissues and invasive GC cells (P < 0.05). The over-expression of miR-204 or downregulation of snai1 could significantly inhibit the metastasis and invasion of GC cells both in vitro and in vivo. The upregulated miR-204 expression or inhibited snai1 expression could suppress the EMT process in EMT in vitro models. Our study provided evidence that miR-204 may suppress the metastasis and invasion of GC cells through the regulation of the EMT process by targeting snai1.
Literature
1.
go back to reference Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA: Cancer J Clin. 2014;64:9–29.CrossRef Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA: Cancer J Clin. 2014;64:9–29.CrossRef
2.
go back to reference Lin X, Zhao Y, Song WM, Zhang B. Molecular classification and prediction in gastric cancer. Computat Structural Biotechnol J. 2015;13:448–58.CrossRef Lin X, Zhao Y, Song WM, Zhang B. Molecular classification and prediction in gastric cancer. Computat Structural Biotechnol J. 2015;13:448–58.CrossRef
4.
go back to reference Pecqueux M, Fritzmann J, Adamu M, Thorlund K, Kahlert C, Reissfelder C, et al. Free intraperitoneal tumor cells and outcome in gastric cancer patients: a systematic review and meta-analysis. Oncotarget 2015 Pecqueux M, Fritzmann J, Adamu M, Thorlund K, Kahlert C, Reissfelder C, et al. Free intraperitoneal tumor cells and outcome in gastric cancer patients: a systematic review and meta-analysis. Oncotarget 2015
5.
go back to reference Kosaka T, Davydova J, Ono HA, Akiyama H, Hirai S, Ohno S, et al. Imaging and antitumoral effect of a cyclo-oxygenase 2-specific replicative adenovirus for small metastatic gastric cancer lesions. Anticancer Res. 2015;35:5201–10.PubMed Kosaka T, Davydova J, Ono HA, Akiyama H, Hirai S, Ohno S, et al. Imaging and antitumoral effect of a cyclo-oxygenase 2-specific replicative adenovirus for small metastatic gastric cancer lesions. Anticancer Res. 2015;35:5201–10.PubMed
6.
go back to reference Du C, Zhang C, Hassan S, Biswas MH, Balaji KC. Protein kinase d1 suppresses epithelial-to-mesenchymal transition through phosphorylation of snail. Cancer Res. 2010;70:7810–9.CrossRefPubMed Du C, Zhang C, Hassan S, Biswas MH, Balaji KC. Protein kinase d1 suppresses epithelial-to-mesenchymal transition through phosphorylation of snail. Cancer Res. 2010;70:7810–9.CrossRefPubMed
7.
go back to reference Choi YJ, Kim N, Chang H, Lee HS, Park SM, Park JH, et al. Helicobacter pylori-induced epithelial-mesenchymal transition, a potential role of gastric cancer initiation and an emergence of stem cells. Carcinogenesis. 2015;36:553–63.CrossRefPubMed Choi YJ, Kim N, Chang H, Lee HS, Park SM, Park JH, et al. Helicobacter pylori-induced epithelial-mesenchymal transition, a potential role of gastric cancer initiation and an emergence of stem cells. Carcinogenesis. 2015;36:553–63.CrossRefPubMed
8.
go back to reference Liu Z, Li Q, Li K, Chen L, Li W, Hou M, et al. Telomerase reverse transcriptase promotes epithelial-mesenchymal transition and stem cell-like traits in cancer cells. Oncogene. 2013;32:4203–13.CrossRefPubMed Liu Z, Li Q, Li K, Chen L, Li W, Hou M, et al. Telomerase reverse transcriptase promotes epithelial-mesenchymal transition and stem cell-like traits in cancer cells. Oncogene. 2013;32:4203–13.CrossRefPubMed
9.
go back to reference Huang J, Xiao D, Li G, Ma J, Chen P, Yuan W, et al. Epha2 promotes epithelial-mesenchymal transition through the wnt/beta-catenin pathway in gastric cancer cells. Oncogene. 2014;33:2737–47.CrossRefPubMed Huang J, Xiao D, Li G, Ma J, Chen P, Yuan W, et al. Epha2 promotes epithelial-mesenchymal transition through the wnt/beta-catenin pathway in gastric cancer cells. Oncogene. 2014;33:2737–47.CrossRefPubMed
10.
go back to reference Kang MH, Kim JS, Seo JE, Oh SC, Yoo YA. Bmp2 accelerates the motility and invasiveness of gastric cancer cells via activation of the phosphatidylinositol 3-kinase (pi3k)/akt pathway. Exp Cell Res. 2010;316:24–37.CrossRefPubMed Kang MH, Kim JS, Seo JE, Oh SC, Yoo YA. Bmp2 accelerates the motility and invasiveness of gastric cancer cells via activation of the phosphatidylinositol 3-kinase (pi3k)/akt pathway. Exp Cell Res. 2010;316:24–37.CrossRefPubMed
11.
go back to reference Guo HM, Zhang XQ, Xu CH, Zou XP. Inhibition of invasion and metastasis of gastric cancer cells through snail targeting artificial microRNA interference. Asian Pacific J Cancer Prevent : APJCP. 2011;12:3433–8. Guo HM, Zhang XQ, Xu CH, Zou XP. Inhibition of invasion and metastasis of gastric cancer cells through snail targeting artificial microRNA interference. Asian Pacific J Cancer Prevent : APJCP. 2011;12:3433–8.
12.
go back to reference Masuda R, Semba S, Mizuuchi E, Yanagihara K, Yokozaki H. Negative regulation of the tight junction protein tricellulin by snail-induced epithelial-mesenchymal transition in gastric carcinoma cells. Pathobiol : J Immunopathol, Molec Cell Biol. 2010;77:106–13.CrossRef Masuda R, Semba S, Mizuuchi E, Yanagihara K, Yokozaki H. Negative regulation of the tight junction protein tricellulin by snail-induced epithelial-mesenchymal transition in gastric carcinoma cells. Pathobiol : J Immunopathol, Molec Cell Biol. 2010;77:106–13.CrossRef
13.
go back to reference Shin NR, Jeong EH, Choi CI, Moon HJ, Kwon CH, Chu IS, et al. Overexpression of snail is associated with lymph node metastasis and poor prognosis in patients with gastric cancer. BMC Cancer. 2012;12:521.CrossRefPubMedPubMedCentral Shin NR, Jeong EH, Choi CI, Moon HJ, Kwon CH, Chu IS, et al. Overexpression of snail is associated with lymph node metastasis and poor prognosis in patients with gastric cancer. BMC Cancer. 2012;12:521.CrossRefPubMedPubMedCentral
14.
go back to reference Ryu HS, Park do J, Kim HH, Kim WH, Lee HS. Combination of epithelial-mesenchymal transition and cancer stem cell-like phenotypes has independent prognostic value in gastric cancer. Hum Pathol. 2012;43:520–8.CrossRefPubMed Ryu HS, Park do J, Kim HH, Kim WH, Lee HS. Combination of epithelial-mesenchymal transition and cancer stem cell-like phenotypes has independent prognostic value in gastric cancer. Hum Pathol. 2012;43:520–8.CrossRefPubMed
15.
go back to reference Huang YK, Yu JC. Circulating microRNAs and long non-coding RNAs in gastric cancer diagnosis: an update and review. World J Gastroenterol : WJG. 2015;21:9863–86.CrossRefPubMedPubMedCentral Huang YK, Yu JC. Circulating microRNAs and long non-coding RNAs in gastric cancer diagnosis: an update and review. World J Gastroenterol : WJG. 2015;21:9863–86.CrossRefPubMedPubMedCentral
16.
go back to reference Zhang Z, Liu S, Shi R, Zhao G. Mir-27 promotes human gastric cancer cell metastasis by inducing epithelial-to-mesenchymal transition. Cancer Genet. 2011;204:486–91.CrossRefPubMed Zhang Z, Liu S, Shi R, Zhao G. Mir-27 promotes human gastric cancer cell metastasis by inducing epithelial-to-mesenchymal transition. Cancer Genet. 2011;204:486–91.CrossRefPubMed
17.
go back to reference Zhang L, Wang X, Chen P. Mir-204 down regulates sirt1 and reverts sirt1-induced epithelial-mesenchymal transition, anoikis resistance and invasion in gastric cancer cells. BMC Cancer. 2013;13:290.CrossRefPubMedPubMedCentral Zhang L, Wang X, Chen P. Mir-204 down regulates sirt1 and reverts sirt1-induced epithelial-mesenchymal transition, anoikis resistance and invasion in gastric cancer cells. BMC Cancer. 2013;13:290.CrossRefPubMedPubMedCentral
18.
go back to reference Edge SB, Compton CC. The american joint committee on cancer: the 7th edition of the ajcc cancer staging manual and the future of tnm. Ann Surg Oncol. 2010;17:1471–4.CrossRefPubMed Edge SB, Compton CC. The american joint committee on cancer: the 7th edition of the ajcc cancer staging manual and the future of tnm. Ann Surg Oncol. 2010;17:1471–4.CrossRefPubMed
19.
go back to reference Tie J, Pan Y, Zhao L, Wu K, Liu J, Sun S, et al. Mir-218 inhibits invasion and metastasis of gastric cancer by targeting the robo1 receptor. PLoS Genet. 2010;6:e1000879.CrossRefPubMedPubMedCentral Tie J, Pan Y, Zhao L, Wu K, Liu J, Sun S, et al. Mir-218 inhibits invasion and metastasis of gastric cancer by targeting the robo1 receptor. PLoS Genet. 2010;6:e1000879.CrossRefPubMedPubMedCentral
20.
go back to reference Wang FE, Zhang C, Maminishkis A, Dong L, Zhi C, Li R, et al. MicroRNA-204/211 alters epithelial physiology. FASEB J : Off Public Fed Am Soc Experiment Biol. 2010;24:1552–71.CrossRef Wang FE, Zhang C, Maminishkis A, Dong L, Zhi C, Li R, et al. MicroRNA-204/211 alters epithelial physiology. FASEB J : Off Public Fed Am Soc Experiment Biol. 2010;24:1552–71.CrossRef
21.
go back to reference Shi Y, Huang J, Zhou J, Liu Y, Fu X, Li Y, et al. MicroRNA-204 inhibits proliferation, migration, invasion and epithelial-mesenchymal transition in osteosarcoma cells via targeting sirtuin 1. Oncol Rep. 2015;34:399–406.PubMed Shi Y, Huang J, Zhou J, Liu Y, Fu X, Li Y, et al. MicroRNA-204 inhibits proliferation, migration, invasion and epithelial-mesenchymal transition in osteosarcoma cells via targeting sirtuin 1. Oncol Rep. 2015;34:399–406.PubMed
22.
go back to reference Qiu YH, Wei YP, Shen NJ, Wang ZC, Kan T, Yu WL, et al. Mir-204 inhibits epithelial to mesenchymal transition by targeting slug in intrahepatic cholangiocarcinoma cells. Cell Physiol Biochem : Int J Experiment Cell Physiol, Biochem, Pharmacol. 2013;32:1331–41.CrossRef Qiu YH, Wei YP, Shen NJ, Wang ZC, Kan T, Yu WL, et al. Mir-204 inhibits epithelial to mesenchymal transition by targeting slug in intrahepatic cholangiocarcinoma cells. Cell Physiol Biochem : Int J Experiment Cell Physiol, Biochem, Pharmacol. 2013;32:1331–41.CrossRef
23.
go back to reference Sacconi A, Biagioni F, Canu V, Mori F, Di Benedetto A, Lorenzon L, et al. Mir-204 targets bcl-2 expression and enhances responsiveness of gastric cancer. Cell Death Dis. 2012;3:e423.CrossRefPubMedPubMedCentral Sacconi A, Biagioni F, Canu V, Mori F, Di Benedetto A, Lorenzon L, et al. Mir-204 targets bcl-2 expression and enhances responsiveness of gastric cancer. Cell Death Dis. 2012;3:e423.CrossRefPubMedPubMedCentral
24.
go back to reference Wu D, Pan H, Zhou Y, Zhang Z, Qu P, Zhou J, et al. Upregulation of microRNA-204 inhibits cell proliferation, migration and invasion in human renal cell carcinoma cells by downregulating sox4. Molec Med Rep 2015. Wu D, Pan H, Zhou Y, Zhang Z, Qu P, Zhou J, et al. Upregulation of microRNA-204 inhibits cell proliferation, migration and invasion in human renal cell carcinoma cells by downregulating sox4. Molec Med Rep 2015.
25.
go back to reference Shi L, Zhang B, Sun X, Lu S, Liu Z, Liu Y, et al. Mir-204 inhibits human nsclc metastasis through suppression of nuak1. Br J Cancer. 2014;111:2316–27.CrossRefPubMedPubMedCentral Shi L, Zhang B, Sun X, Lu S, Liu Z, Liu Y, et al. Mir-204 inhibits human nsclc metastasis through suppression of nuak1. Br J Cancer. 2014;111:2316–27.CrossRefPubMedPubMedCentral
26.
go back to reference Yin Y, Zhang B, Wang W, Fei B, Quan C, Zhang J, et al. Mir-204-5p inhibits proliferation and invasion and enhances chemotherapeutic sensitivity of colorectal cancer cells by downregulating rab22a. Clin Cancer Res : Off J Am Assoc Cancer Res. 2014;20:6187–99.CrossRef Yin Y, Zhang B, Wang W, Fei B, Quan C, Zhang J, et al. Mir-204-5p inhibits proliferation and invasion and enhances chemotherapeutic sensitivity of colorectal cancer cells by downregulating rab22a. Clin Cancer Res : Off J Am Assoc Cancer Res. 2014;20:6187–99.CrossRef
27.
go back to reference Chung TK, Lau TS, Cheung TH, Yim SF, Lo KW, Siu NS, et al. Dysregulation of microRNA-204 mediates migration and invasion of endometrial cancer by regulating foxc1. Int J Cancer J Int du Cancer. 2012;130:1036–45.CrossRef Chung TK, Lau TS, Cheung TH, Yim SF, Lo KW, Siu NS, et al. Dysregulation of microRNA-204 mediates migration and invasion of endometrial cancer by regulating foxc1. Int J Cancer J Int du Cancer. 2012;130:1036–45.CrossRef
28.
go back to reference Lee Y, Yang X, Huang Y, Fan H, Zhang Q, Wu Y, et al. Network modeling identifies molecular functions targeted by mir-204 to suppress head and neck tumor metastasis. PLoS Comput Biol. 2010;6:e1000730.CrossRefPubMedPubMedCentral Lee Y, Yang X, Huang Y, Fan H, Zhang Q, Wu Y, et al. Network modeling identifies molecular functions targeted by mir-204 to suppress head and neck tumor metastasis. PLoS Comput Biol. 2010;6:e1000730.CrossRefPubMedPubMedCentral
29.
go back to reference Katoh M. Identification and characterization of human snail3 (snai3) gene in silico. Int J Molec Med. 2003;11:383–8.PubMed Katoh M. Identification and characterization of human snail3 (snai3) gene in silico. Int J Molec Med. 2003;11:383–8.PubMed
30.
go back to reference Kaufhold S, Bonavida B. Central role of snail1 in the regulation of emt and resistance in cancer: a target for therapeutic intervention. J Experiment Clin Cancer Res : CR. 2014;33:62.CrossRef Kaufhold S, Bonavida B. Central role of snail1 in the regulation of emt and resistance in cancer: a target for therapeutic intervention. J Experiment Clin Cancer Res : CR. 2014;33:62.CrossRef
31.
go back to reference Zhao F, Wang M, Li S, Bai X, Bi H, Liu Y, et al. Dach1 inhibits snai1-mediated epithelial-mesenchymal transition and represses breast carcinoma metastasis. Oncogenesis. 2015;4:e143.CrossRefPubMed Zhao F, Wang M, Li S, Bai X, Bi H, Liu Y, et al. Dach1 inhibits snai1-mediated epithelial-mesenchymal transition and represses breast carcinoma metastasis. Oncogenesis. 2015;4:e143.CrossRefPubMed
32.
go back to reference Wu W, Ding H, Cao J, Zhang W. Fbxl5 inhibits metastasis of gastric cancer through suppressing snail1. Cell Physiol Biochem : Int J Experiment Cell Physiol, Biochem, Pharmacol. 2015;35:1764–72.CrossRef Wu W, Ding H, Cao J, Zhang W. Fbxl5 inhibits metastasis of gastric cancer through suppressing snail1. Cell Physiol Biochem : Int J Experiment Cell Physiol, Biochem, Pharmacol. 2015;35:1764–72.CrossRef
33.
go back to reference Grande MT, Sanchez-Laorden B, Lopez-Blau C, De Frutos CA, Boutet A, Arevalo M, et al. Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat Med. 2015;21:989–97.CrossRefPubMed Grande MT, Sanchez-Laorden B, Lopez-Blau C, De Frutos CA, Boutet A, Arevalo M, et al. Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat Med. 2015;21:989–97.CrossRefPubMed
34.
go back to reference Li J, Yu H, Xi M, Ma D, Lu X. The snai1 3′utr functions as a sponge for multiple migration-/invasion-related microRNAs. Tumour Biol : J Int Soc Oncodevelop Biol Med. 2015;36:1067–72.CrossRef Li J, Yu H, Xi M, Ma D, Lu X. The snai1 3′utr functions as a sponge for multiple migration-/invasion-related microRNAs. Tumour Biol : J Int Soc Oncodevelop Biol Med. 2015;36:1067–72.CrossRef
35.
go back to reference Horvay K, Jarde T, Casagranda F, Perreau VM, Haigh K, Nefzger CM, et al. Snai1 regulates cell lineage allocation and stem cell maintenance in the mouse intestinal epithelium. EMBO J. 2015;34:1319–35.CrossRefPubMedPubMedCentral Horvay K, Jarde T, Casagranda F, Perreau VM, Haigh K, Nefzger CM, et al. Snai1 regulates cell lineage allocation and stem cell maintenance in the mouse intestinal epithelium. EMBO J. 2015;34:1319–35.CrossRefPubMedPubMedCentral
36.
go back to reference Huang N, Wu Z, Lin L, Zhou M, Wang L, Ma H, et al. Mir-338-3p inhibits epithelial-mesenchymal transition in gastric cancer cells by targeting zeb2 and macc1/met/akt signaling. Oncotarget. 2015;6:15222–34.CrossRefPubMedPubMedCentral Huang N, Wu Z, Lin L, Zhou M, Wang L, Ma H, et al. Mir-338-3p inhibits epithelial-mesenchymal transition in gastric cancer cells by targeting zeb2 and macc1/met/akt signaling. Oncotarget. 2015;6:15222–34.CrossRefPubMedPubMedCentral
37.
go back to reference Yi EY, Park SY, Jung SY, Jang WJ, Kim YJ. Mitochondrial dysfunction induces emt through the tgf-beta/smad/snail signaling pathway in hep3b hepatocellular carcinoma cells. Int J Oncol 2015. Yi EY, Park SY, Jung SY, Jang WJ, Kim YJ. Mitochondrial dysfunction induces emt through the tgf-beta/smad/snail signaling pathway in hep3b hepatocellular carcinoma cells. Int J Oncol 2015.
Metadata
Title
miR-204 regulates the EMT by targeting snai1 to suppress the invasion and migration of gastric cancer
Authors
Zhe Liu
Jin Long
Ruixia Du
Chunlin Ge
Kejian Guo
Yuanhong Xu
Publication date
01-06-2016
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 6/2016
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-4627-0

Other articles of this Issue 6/2016

Tumor Biology 6/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine