Skip to main content
Top
Published in: Tumor Biology 2/2016

01-02-2016 | Original Article

miR-16 induction after CDK4 knockdown is mediated by c-Myc suppression and inhibits cell growth as well as sensitizes nasopharyngeal carcinoma cells to chemotherapy

Authors: Qingping Jiang, Yajie Zhang, Mengyang Zhao, Qiulian Li, Ruichao Chen, Xiaobing Long, Weiyi Fang, Zhen Liu

Published in: Tumor Biology | Issue 2/2016

Login to get access

Abstract

Cyclin-dependent kinase 4 (CDK4) is a member of cyclin-dependent kinase family which regulates G1 to S cell cycle transition. CDK4 activity is increased in many tumor types. Here, we report a negative automodulatory feedback loop between CDK4 and miR-16 that regulates cell cycle progression in nasopharyngeal carcinoma (NPC). By miRNA array and real-time PCR, we identified upregulation of tumor suppressor miR-16a, which inhibited cell cycle progression and sensitized NPC cells to chemotherapy. CDK4 knockdown reduced the expression of c-Myc, the latter of which directly suppresses the miR-16 expression by directly binding to the miR-16 promoter. Moreover, we found that miR-16 upregulation could reduce CDK4 expression by repressing CCND1 and thus forms a feedback loop via the CDK4/c-Myc/miR-16/CCND1 pathway. Finally, miR-16 was negatively correlated with CDK4 expression in NPC biopsies. In summary, our results define a double-negative feedback loop involving CDK4 and miR-16 mediated by c-Myc that modulates NPC cell growth and chemotherapy sensitivity.
Appendix
Available only for authorised users
Literature
1.
go back to reference Poomsawat S, Buajeeb W, Khovidhunkit SO, Punyasingh J. Alteration in the expression of cdk4 and cdk6 proteins in oral cancer and premalignant lesions. J Oral Pathol Med. 2010;39:793–9.CrossRefPubMed Poomsawat S, Buajeeb W, Khovidhunkit SO, Punyasingh J. Alteration in the expression of cdk4 and cdk6 proteins in oral cancer and premalignant lesions. J Oral Pathol Med. 2010;39:793–9.CrossRefPubMed
2.
go back to reference Lindberg D, Hessman O, Akerström G, Westin G. Cyclin-dependent kinase 4 (CDK4) expression in pancreatic endocrine tumors. Neuroendocrinology. 2007;86:112–8.CrossRefPubMed Lindberg D, Hessman O, Akerström G, Westin G. Cyclin-dependent kinase 4 (CDK4) expression in pancreatic endocrine tumors. Neuroendocrinology. 2007;86:112–8.CrossRefPubMed
3.
go back to reference Wikman H, Nymark P, Väyrynen A, Jarmalaite S, Kallioniemi A, Salmenkivi K, et al. CDK4 is a probable target gene in a novel amplicon at 12q13.3-q14.1 in lung cancer. Gene Chromosome Cancer. 2005;42:193–9.CrossRef Wikman H, Nymark P, Väyrynen A, Jarmalaite S, Kallioniemi A, Salmenkivi K, et al. CDK4 is a probable target gene in a novel amplicon at 12q13.3-q14.1 in lung cancer. Gene Chromosome Cancer. 2005;42:193–9.CrossRef
4.
go back to reference Dobashi Y, Goto A, Fukayama M, Abe A, Ooi A. Overexpression of cdk4/cyclin D1, a possible mediator of apoptosis and an indicator of prognosis in human primary lung carcinoma. Int J Cancer. 2004;110:532–41.CrossRefPubMed Dobashi Y, Goto A, Fukayama M, Abe A, Ooi A. Overexpression of cdk4/cyclin D1, a possible mediator of apoptosis and an indicator of prognosis in human primary lung carcinoma. Int J Cancer. 2004;110:532–41.CrossRefPubMed
5.
go back to reference Fang W, Li X, Jiang Q, Liu Z, Yang H, Wang S, et al. Transcriptional patterns, biomarkers and pathways characterizing nasopharyngeal carcinoma of Southern China. J Transl Med. 2008;6:32.CrossRefPubMedPubMedCentral Fang W, Li X, Jiang Q, Liu Z, Yang H, Wang S, et al. Transcriptional patterns, biomarkers and pathways characterizing nasopharyngeal carcinoma of Southern China. J Transl Med. 2008;6:32.CrossRefPubMedPubMedCentral
6.
go back to reference Jiang Q, Mai C, Yang H, Wu Q, Hua S, Yan C, et al. Nuclear expression of CDK4 correlates with disease progression and poor prognosis in human nasopharyngeal carcinoma. Histopathology. 2014;64(5):722–30.CrossRefPubMed Jiang Q, Mai C, Yang H, Wu Q, Hua S, Yan C, et al. Nuclear expression of CDK4 correlates with disease progression and poor prognosis in human nasopharyngeal carcinoma. Histopathology. 2014;64(5):722–30.CrossRefPubMed
7.
go back to reference Liu Z, Long X, Chao C, Yan C, Wu Q, Hua S, et al. Knocking down CDK4 mediates the elevation of let-7c suppressing cell growth in nasopharyngeal carcinoma. BMC Cancer. 2014;14:274.CrossRefPubMedPubMedCentral Liu Z, Long X, Chao C, Yan C, Wu Q, Hua S, et al. Knocking down CDK4 mediates the elevation of let-7c suppressing cell growth in nasopharyngeal carcinoma. BMC Cancer. 2014;14:274.CrossRefPubMedPubMedCentral
8.
go back to reference O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. c-Myc regulated microRNAs modulate E2F1 expression. Nature. 2005;435:839–43.CrossRefPubMed O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. c-Myc regulated microRNAs modulate E2F1 expression. Nature. 2005;435:839–43.CrossRefPubMed
9.
go back to reference Chang TC et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet. 2008;40:43–50.CrossRefPubMed Chang TC et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet. 2008;40:43–50.CrossRefPubMed
10.
go back to reference Yu X, Zhen Y, Yang H, Wang H, Zhou Y, Wang E, et al. Loss of connective tissue growth factor as an unfavorable prognosis factor activates miR-18b by PI3K/AKT/C-Jun and C-Myc and promotes cell growth in nasopharyngeal carcinoma. Cell Death Dis. 2013;4:e634.CrossRefPubMedPubMedCentral Yu X, Zhen Y, Yang H, Wang H, Zhou Y, Wang E, et al. Loss of connective tissue growth factor as an unfavorable prognosis factor activates miR-18b by PI3K/AKT/C-Jun and C-Myc and promotes cell growth in nasopharyngeal carcinoma. Cell Death Dis. 2013;4:e634.CrossRefPubMedPubMedCentral
11.
go back to reference Zhen Y, Liu Z, Yang H, Yu X, Wu Q, Hua S, et al. Tumor suppressor PDCD4 modulates miR-184-mediated direct suppression of C-MYC and BCL2 blocking cell growth and survival in nasopharyngeal carcinoma. Cell Death Dis. 2013;4:e872.CrossRefPubMedPubMedCentral Zhen Y, Liu Z, Yang H, Yu X, Wu Q, Hua S, et al. Tumor suppressor PDCD4 modulates miR-184-mediated direct suppression of C-MYC and BCL2 blocking cell growth and survival in nasopharyngeal carcinoma. Cell Death Dis. 2013;4:e872.CrossRefPubMedPubMedCentral
12.
go back to reference Zhang X, Chen X, Lin J, Lwin T, Wright G, Moscinski LC, et al. Myc represses miR-15a/miR-16-1 expression through recruitment of HDAC3 in mantle cell and other non-Hodgkin B-cell lymphomas. Oncogene. 2012;31(24):3002–8.CrossRefPubMed Zhang X, Chen X, Lin J, Lwin T, Wright G, Moscinski LC, et al. Myc represses miR-15a/miR-16-1 expression through recruitment of HDAC3 in mantle cell and other non-Hodgkin B-cell lymphomas. Oncogene. 2012;31(24):3002–8.CrossRefPubMed
14.
go back to reference Cai CK, Zhao GY, Tian LY, Liu L, Yan K, Ma YL, et al. miR-15 and miR-16-1 downregulate CCND1 and induce apoptosis and cell cycle arrest in osteosarcoma. Oncol Rep. 2012;28(5):1764–70.PubMed Cai CK, Zhao GY, Tian LY, Liu L, Yan K, Ma YL, et al. miR-15 and miR-16-1 downregulate CCND1 and induce apoptosis and cell cycle arrest in osteosarcoma. Oncol Rep. 2012;28(5):1764–70.PubMed
15.
go back to reference Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L, et al. The miR-15-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med. 2008;14(11):1271–7.CrossRefPubMed Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L, et al. The miR-15-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med. 2008;14(11):1271–7.CrossRefPubMed
16.
go back to reference Aqeilan RI, Calin GA, Croce CM. miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ. 2010;17:215–20.CrossRefPubMed Aqeilan RI, Calin GA, Croce CM. miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ. 2010;17:215–20.CrossRefPubMed
17.
go back to reference Klein U, Lia M, Crespo M, Siegel R, Shen Q, Mo T, et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell. 2010;17:28–40.CrossRefPubMed Klein U, Lia M, Crespo M, Siegel R, Shen Q, Mo T, et al. The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell. 2010;17:28–40.CrossRefPubMed
18.
go back to reference Chen F, Hou SK, Fan HJ, Liu YF. miR-15-16 represses Cripto and inhibits NSCLC cell progression. Mol Cell Biochem. 2014;391(1–2):11–9.CrossRefPubMed Chen F, Hou SK, Fan HJ, Liu YF. miR-15-16 represses Cripto and inhibits NSCLC cell progression. Mol Cell Biochem. 2014;391(1–2):11–9.CrossRefPubMed
19.
go back to reference Sun CY, She XM, Qin Y, Chu ZB, Chen L, Ai LS, et al. miR-15 and miR-16 affect the angiogenesis of multiple myeloma by targeting VEGF. Carcinogenesis. 2013;34(2):426–35.CrossRefPubMed Sun CY, She XM, Qin Y, Chu ZB, Chen L, Ai LS, et al. miR-15 and miR-16 affect the angiogenesis of multiple myeloma by targeting VEGF. Carcinogenesis. 2013;34(2):426–35.CrossRefPubMed
20.
go back to reference Cittelly DM, Das PM, Salvo VA, Fonseca JP, Burow ME, Jones FE. Oncogenic HER2{Delta}16 suppresses miR-15/16 and deregulates BCL-2 to promote endocrine resistance of breast tumors. Carcinogenesis. 2010;31(12):2049–57.CrossRefPubMedPubMedCentral Cittelly DM, Das PM, Salvo VA, Fonseca JP, Burow ME, Jones FE. Oncogenic HER2{Delta}16 suppresses miR-15/16 and deregulates BCL-2 to promote endocrine resistance of breast tumors. Carcinogenesis. 2010;31(12):2049–57.CrossRefPubMedPubMedCentral
21.
go back to reference Rissland OS, Hong SJ, Bartel DP. MicroRNA destabilization enables dynamic regulation of the miR-16 family in response to cell-cycle changes. Mol Cell. 2011;43:993–1004.CrossRefPubMedPubMedCentral Rissland OS, Hong SJ, Bartel DP. MicroRNA destabilization enables dynamic regulation of the miR-16 family in response to cell-cycle changes. Mol Cell. 2011;43:993–1004.CrossRefPubMedPubMedCentral
22.
go back to reference Lerner M, Harada M, Lovén J, Castro J, Davis Z, Oscier D, et al. DLEU2, frequently deleted in malignancy, functions as a critical host gene of the cell cycle inhibitory microRNAs miR-16 and miR-16-1. Exp Cell Res. 2009;315(17):2941–52.CrossRefPubMed Lerner M, Harada M, Lovén J, Castro J, Davis Z, Oscier D, et al. DLEU2, frequently deleted in malignancy, functions as a critical host gene of the cell cycle inhibitory microRNAs miR-16 and miR-16-1. Exp Cell Res. 2009;315(17):2941–52.CrossRefPubMed
23.
go back to reference Wang B, Hsu SH, Wang X, Kutay H, Bid HK, Yu J, et al. Reciprocal regulation of microRNA-122 and c-Myc in hepatocellular cancer: role of E2F1 and transcription factor dimerization partner 2. Hepatology. 2014;59(2):555–66.CrossRefPubMed Wang B, Hsu SH, Wang X, Kutay H, Bid HK, Yu J, et al. Reciprocal regulation of microRNA-122 and c-Myc in hepatocellular cancer: role of E2F1 and transcription factor dimerization partner 2. Hepatology. 2014;59(2):555–66.CrossRefPubMed
24.
go back to reference Kong FB, Wang XT, Xie YB, Xiao Q. Inhibitory effect of E2F-1-silencing lentivirus vector on chemoresistance of subcutaneous human gastric cancer in nude mice. Zhonghua Zhong Liu Za Zhi. 2013;35(9):655–9.PubMed Kong FB, Wang XT, Xie YB, Xiao Q. Inhibitory effect of E2F-1-silencing lentivirus vector on chemoresistance of subcutaneous human gastric cancer in nude mice. Zhonghua Zhong Liu Za Zhi. 2013;35(9):655–9.PubMed
25.
go back to reference Wu L, de Bruin A, Wang H, Simmons T, Cleghorn W, Goldenberg LE, et al. Selective roles of E2Fs for ErbB2- and Myc-mediated mammary tumorigenesis. Oncogene. 2015;34(1):119–28.CrossRefPubMed Wu L, de Bruin A, Wang H, Simmons T, Cleghorn W, Goldenberg LE, et al. Selective roles of E2Fs for ErbB2- and Myc-mediated mammary tumorigenesis. Oncogene. 2015;34(1):119–28.CrossRefPubMed
26.
go back to reference Yan LH, Wang XT, Yang J, Kong FB, Lian C, Wei WY, et al. Reversal of multidrug resistance in gastric cancer cells by E2F-1 downregulation in vitro and in vivo. J Cell Biochem. 2014;115(1):34–41.CrossRefPubMed Yan LH, Wang XT, Yang J, Kong FB, Lian C, Wei WY, et al. Reversal of multidrug resistance in gastric cancer cells by E2F-1 downregulation in vitro and in vivo. J Cell Biochem. 2014;115(1):34–41.CrossRefPubMed
27.
go back to reference Bar J, Gorn-Hondermann I, Moretto P, Perkins TJ, Niknejad N, Stewart DJ, Goss GD, Dimitroulakos J. miR profiling identifies cyclin-dependent kinase 6 downregulation as a potential mechanism of acquired cisplatin resistance in non-small-cell lung carcinoma. Clin Lung Cancer. 2015. Bar J, Gorn-Hondermann I, Moretto P, Perkins TJ, Niknejad N, Stewart DJ, Goss GD, Dimitroulakos J. miR profiling identifies cyclin-dependent kinase 6 downregulation as a potential mechanism of acquired cisplatin resistance in non-small-cell lung carcinoma. Clin Lung Cancer. 2015.
28.
go back to reference Cheng W, Liu T, Wan X, Gao Y, Wang H. MicroRNA-199a targets CD44 to suppress the tumorigenicity and multidrug resistance of ovarian cancer-initiating cells. FEBS J. 2012;279(11):2047–59.CrossRefPubMed Cheng W, Liu T, Wan X, Gao Y, Wang H. MicroRNA-199a targets CD44 to suppress the tumorigenicity and multidrug resistance of ovarian cancer-initiating cells. FEBS J. 2012;279(11):2047–59.CrossRefPubMed
29.
go back to reference Hu B, Jiang D, Chen Y, Wei L, Zhang S, Zhao F, et al. High CHMP4B expression is associated with accelerated cell proliferation and resistance to doxorubicin in hepatocellular carcinoma. Tumour Biol. 2015;36(4):2569–81.CrossRefPubMed Hu B, Jiang D, Chen Y, Wei L, Zhang S, Zhao F, et al. High CHMP4B expression is associated with accelerated cell proliferation and resistance to doxorubicin in hepatocellular carcinoma. Tumour Biol. 2015;36(4):2569–81.CrossRefPubMed
30.
go back to reference Liu J, Shen W, Tang Y, Zhou J, Li M, Zhu W, et al. Proteasome inhibitor MG132 enhances the antigrowth and antimetastasis effects of radiation in human nonsmall cell lung cancer cells. Tumour Biol. 2014;35(8):7531–9.CrossRefPubMed Liu J, Shen W, Tang Y, Zhou J, Li M, Zhu W, et al. Proteasome inhibitor MG132 enhances the antigrowth and antimetastasis effects of radiation in human nonsmall cell lung cancer cells. Tumour Biol. 2014;35(8):7531–9.CrossRefPubMed
Metadata
Title
miR-16 induction after CDK4 knockdown is mediated by c-Myc suppression and inhibits cell growth as well as sensitizes nasopharyngeal carcinoma cells to chemotherapy
Authors
Qingping Jiang
Yajie Zhang
Mengyang Zhao
Qiulian Li
Ruichao Chen
Xiaobing Long
Weiyi Fang
Zhen Liu
Publication date
01-02-2016
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 2/2016
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-3966-1

Other articles of this Issue 2/2016

Tumor Biology 2/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine