Skip to main content
Top
Published in: Tumor Biology 8/2015

01-08-2015 | Research Article

miR-124 inhibits cell proliferation in breast cancer through downregulation of CDK4

Authors: Tongbao Feng, Dongqin Xu, Chao Tu, Wenjing Li, Yongling Ning, Jun Ding, Shizhong Wang, Liudi Yuan, Ning Xu, Keqing Qian, Yong Wang, Chunjian Qi

Published in: Tumor Biology | Issue 8/2015

Login to get access

Abstract

Studies have shown that microRNAs (miRNAs) are involved in the malignant progression of human cancer. However, little is known about the potential role of miRNAs in breast carcinogenesis. miR-124 expression in breast cancer tissue was measured by quantitative real-time PCR (qRT-PCR). Target prediction algorithms and luciferase reporter gene assays were used to investigate the target of miR-124. Breast cancer cells growth was regulated by overexpression or knockdown miR-124. At the end of the study, tumor-bearing mice were tested to confirm the function of miR-124 in breast cancer. In this study, we demonstrated that the expression of miR-124 was significantly downregulated in breast cancer tissues compared with matched adjacent non-neoplastic tissues. We identified and confirmed that cyclin-dependent kinase 4 (CDK4) was a direct target of miR-124. Overexpression of miR-124 suppressed CDK4 protein expression and attenuated cell viability, proliferation, and cell cycle progression in MCF-7 and MDA-MB-435S breast cancer cells in vitro. Overexpression of CDK4 partially rescued the inhibitory effect of miR-124 in the breast cancer cells. Moreover, we found that miR-124 overexpression effectively repressed tumor growth in xenograft animal experiments. Our results demonstrate that miR-124 functions as a growth-suppressive miRNA and plays an important role in inhibiting tumorigenesis by targeting CDK4.
Appendix
Available only for authorised users
Literature
1.
go back to reference Desantis C, Ma J, Bryan L, Jemal A: Breast cancer statistics, 2013. CA Cancer J Clin 2013. Desantis C, Ma J, Bryan L, Jemal A: Breast cancer statistics, 2013. CA Cancer J Clin 2013.
2.
go back to reference Pagani O, Senkus E, Wood W, Colleoni M, Cufer T, Kyriakides S, et al. International guidelines for management of metastatic breast cancer: can metastatic breast cancer be cured? J Natl Cancer Inst. 2010;102:456–63.CrossRefPubMedPubMedCentral Pagani O, Senkus E, Wood W, Colleoni M, Cufer T, Kyriakides S, et al. International guidelines for management of metastatic breast cancer: can metastatic breast cancer be cured? J Natl Cancer Inst. 2010;102:456–63.CrossRefPubMedPubMedCentral
3.
go back to reference van den Hurk CJ, Eckel R, van de Poll-Franse LV, Coebergh JW, Nortier JW, Holzel D, et al. Unfavourable pattern of metastases in m0 breast cancer patients during 1978-2008: a population-based analysis of the Munich Cancer Registry. Breast Cancer Res Treat. 2011;128:795–805.CrossRefPubMed van den Hurk CJ, Eckel R, van de Poll-Franse LV, Coebergh JW, Nortier JW, Holzel D, et al. Unfavourable pattern of metastases in m0 breast cancer patients during 1978-2008: a population-based analysis of the Munich Cancer Registry. Breast Cancer Res Treat. 2011;128:795–805.CrossRefPubMed
5.
go back to reference Huang Q, Gumireddy K, Schrier M, le Sage C, Nagel R, Nair S, et al. The micrornas mir-373 and mir-520c promote tumour invasion and metastasis. Nat Cell Biol. 2008;10:202–10.CrossRefPubMed Huang Q, Gumireddy K, Schrier M, le Sage C, Nagel R, Nair S, et al. The micrornas mir-373 and mir-520c promote tumour invasion and metastasis. Nat Cell Biol. 2008;10:202–10.CrossRefPubMed
6.
go back to reference Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microrna-10b in breast cancer. Nature. 2007;449:682–8.CrossRefPubMed Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microrna-10b in breast cancer. Nature. 2007;449:682–8.CrossRefPubMed
7.
go back to reference Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. Microrna expression profiles classify human cancers. Nature. 2005;435:834–8.CrossRefPubMed Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. Microrna expression profiles classify human cancers. Nature. 2005;435:834–8.CrossRefPubMed
11.
go back to reference Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS. A microrna array reveals extensive regulation of micrornas during brain development. RNA. 2003;9:1274–81.CrossRefPubMedPubMedCentral Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS. A microrna array reveals extensive regulation of micrornas during brain development. RNA. 2003;9:1274–81.CrossRefPubMedPubMedCentral
12.
go back to reference Xia H, Cheung WK, Ng SS, Jiang X, Jiang S, Sze J, et al. Loss of brain-enriched mir-124 microrna enhances stem-like traits and invasiveness of glioma cells. J Biol Chem. 2012;287:9962–71.CrossRefPubMedPubMedCentral Xia H, Cheung WK, Ng SS, Jiang X, Jiang S, Sze J, et al. Loss of brain-enriched mir-124 microrna enhances stem-like traits and invasiveness of glioma cells. J Biol Chem. 2012;287:9962–71.CrossRefPubMedPubMedCentral
13.
go back to reference Hunt S, Jones AV, Hinsley EE, Whawell SA, Lambert DW. Microrna-124 suppresses oral squamous cell carcinoma motility by targeting itgb1. FEBS Lett. 2011;585:187–92.CrossRefPubMed Hunt S, Jones AV, Hinsley EE, Whawell SA, Lambert DW. Microrna-124 suppresses oral squamous cell carcinoma motility by targeting itgb1. FEBS Lett. 2011;585:187–92.CrossRefPubMed
14.
go back to reference Furuta M, Kozaki KI, Tanaka S, Arii S, Imoto I, Inazawa J. Mir-124 and mir-203 are epigenetically silenced tumor-suppressive micrornas in hepatocellular carcinoma. Carcinogenesis. 2010;31:766–76.CrossRefPubMed Furuta M, Kozaki KI, Tanaka S, Arii S, Imoto I, Inazawa J. Mir-124 and mir-203 are epigenetically silenced tumor-suppressive micrornas in hepatocellular carcinoma. Carcinogenesis. 2010;31:766–76.CrossRefPubMed
15.
go back to reference Zheng F, Liao YJ, Cai MY, Liu YH, Liu TH, Chen SP, et al. The putative tumour suppressor microrna-124 modulates hepatocellular carcinoma cell aggressiveness by repressing rock2 and ezh2. Gut. 2012;61:278–89.CrossRefPubMed Zheng F, Liao YJ, Cai MY, Liu YH, Liu TH, Chen SP, et al. The putative tumour suppressor microrna-124 modulates hepatocellular carcinoma cell aggressiveness by repressing rock2 and ezh2. Gut. 2012;61:278–89.CrossRefPubMed
16.
go back to reference Deng X, Ma L, Wu M, Zhang G, Jin C, Guo Y, et al. Mir-124 radiosensitizes human glioma cells by targeting cdk4. J Neurooncol. 2013;114:263–74.CrossRefPubMed Deng X, Ma L, Wu M, Zhang G, Jin C, Guo Y, et al. Mir-124 radiosensitizes human glioma cells by targeting cdk4. J Neurooncol. 2013;114:263–74.CrossRefPubMed
17.
go back to reference Zhang T, Wang J, Zhai X, Li H, Li C, Chang J. Mir-124 retards bladder cancer growth by directly targeting cdk4. Acta Biochim Biophys Sin (Shanghai). 2014;46:1072–9.CrossRef Zhang T, Wang J, Zhai X, Li H, Li C, Chang J. Mir-124 retards bladder cancer growth by directly targeting cdk4. Acta Biochim Biophys Sin (Shanghai). 2014;46:1072–9.CrossRef
18.
go back to reference Wolfel T, Hauer M, Schneider J, Serrano M, Wolfel C, Klehmann-Hieb E, et al. Meyer zum Buschenfelde KH, Beach D: a p16ink4a-insensitive cdk4 mutant targeted by cytolytic t lymphocytes in a human melanoma. Science. 1995;269:1281–4.CrossRefPubMed Wolfel T, Hauer M, Schneider J, Serrano M, Wolfel C, Klehmann-Hieb E, et al. Meyer zum Buschenfelde KH, Beach D: a p16ink4a-insensitive cdk4 mutant targeted by cytolytic t lymphocytes in a human melanoma. Science. 1995;269:1281–4.CrossRefPubMed
19.
go back to reference Schmidt EE, Ichimura K, Reifenberger G, Collins VP. Cdkn2 (p16/mts1) gene deletion or cdk4 amplification occurs in the majority of glioblastomas. Cancer Res. 1994;54:6321–4.PubMed Schmidt EE, Ichimura K, Reifenberger G, Collins VP. Cdkn2 (p16/mts1) gene deletion or cdk4 amplification occurs in the majority of glioblastomas. Cancer Res. 1994;54:6321–4.PubMed
20.
go back to reference He J, Allen JR, Collins VP, Allalunis-Turner MJ, Godbout R, Day 3rd RS, et al. Cdk4 amplification is an alternative mechanism to p16 gene homozygous deletion in glioma cell lines. Cancer Res. 1994;54:5804–7.PubMed He J, Allen JR, Collins VP, Allalunis-Turner MJ, Godbout R, Day 3rd RS, et al. Cdk4 amplification is an alternative mechanism to p16 gene homozygous deletion in glioma cell lines. Cancer Res. 1994;54:5804–7.PubMed
21.
go back to reference Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H, et al. Distinct sets of genetic alterations in melanoma. N Engl J Med. 2005;353:2135–47.CrossRefPubMed Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H, et al. Distinct sets of genetic alterations in melanoma. N Engl J Med. 2005;353:2135–47.CrossRefPubMed
22.
go back to reference Costello JF, Plass C, Arap W, Chapman VM, Held WA, Berger MS, et al. Cyclin-dependent kinase 6 (cdk6) amplification in human gliomas identified using two-dimensional separation of genomic DNA. Cancer Res. 1997;57:1250–4.PubMed Costello JF, Plass C, Arap W, Chapman VM, Held WA, Berger MS, et al. Cyclin-dependent kinase 6 (cdk6) amplification in human gliomas identified using two-dimensional separation of genomic DNA. Cancer Res. 1997;57:1250–4.PubMed
23.
go back to reference Yu Q, Sicinska E, Geng Y, Ahnstrom M, Zagozdzon A, Kong Y, et al. Requirement for cdk4 kinase function in breast cancer. Cancer Cell. 2006;9:23–32.CrossRefPubMed Yu Q, Sicinska E, Geng Y, Ahnstrom M, Zagozdzon A, Kong Y, et al. Requirement for cdk4 kinase function in breast cancer. Cancer Cell. 2006;9:23–32.CrossRefPubMed
24.
go back to reference Landis MW, Pawlyk BS, Li T, Sicinski P, Hinds PW. Cyclin d1-dependent kinase activity in murine development and mammary tumorigenesis. Cancer Cell. 2006;9:13–22.CrossRefPubMed Landis MW, Pawlyk BS, Li T, Sicinski P, Hinds PW. Cyclin d1-dependent kinase activity in murine development and mammary tumorigenesis. Cancer Cell. 2006;9:13–22.CrossRefPubMed
25.
go back to reference Puyol M, Martin A, Dubus P, Mulero F, Pizcueta P, Khan G, et al. A synthetic lethal interaction between k-ras oncogenes and cdk4 unveils a therapeutic strategy for non-small cell lung carcinoma. Cancer Cell. 2010;18:63–73.CrossRefPubMed Puyol M, Martin A, Dubus P, Mulero F, Pizcueta P, Khan G, et al. A synthetic lethal interaction between k-ras oncogenes and cdk4 unveils a therapeutic strategy for non-small cell lung carcinoma. Cancer Cell. 2010;18:63–73.CrossRefPubMed
26.
go back to reference Choi YJ, Li X, Hydbring P, Sanda T, Stefano J, Christie AL, et al. The requirement for cyclin d function in tumor maintenance. Cancer Cell. 2012;22:438–51.CrossRefPubMedPubMedCentral Choi YJ, Li X, Hydbring P, Sanda T, Stefano J, Christie AL, et al. The requirement for cyclin d function in tumor maintenance. Cancer Cell. 2012;22:438–51.CrossRefPubMedPubMedCentral
27.
go back to reference Anders L, Ke N, Hydbring P, Choi YJ, Widlund HR, Chick JM, et al. A systematic screen for cdk4/6 substrates links foxm1 phosphorylation to senescence suppression in cancer cells. Cancer Cell. 2011;20:620–34.CrossRefPubMedPubMedCentral Anders L, Ke N, Hydbring P, Choi YJ, Widlund HR, Chick JM, et al. A systematic screen for cdk4/6 substrates links foxm1 phosphorylation to senescence suppression in cancer cells. Cancer Cell. 2011;20:620–34.CrossRefPubMedPubMedCentral
28.
go back to reference Zou X, Ray D, Aziyu A, Christov K, Boiko AD, Gudkov AV, et al. Cdk4 disruption renders primary mouse cells resistant to oncogenic transformation, leading to arf/p53-independent senescence. Genes Dev. 2002;16:2923–34.CrossRefPubMedPubMedCentral Zou X, Ray D, Aziyu A, Christov K, Boiko AD, Gudkov AV, et al. Cdk4 disruption renders primary mouse cells resistant to oncogenic transformation, leading to arf/p53-independent senescence. Genes Dev. 2002;16:2923–34.CrossRefPubMedPubMedCentral
29.
go back to reference Ruas M, Gregory F, Jones R, Poolman R, Starborg M, Rowe J, et al. Cdk4 and cdk6 delay senescence by kinase-dependent and p16ink4a-independent mechanisms. Mol Cell Biol. 2007;27:4273–82.CrossRefPubMedPubMedCentral Ruas M, Gregory F, Jones R, Poolman R, Starborg M, Rowe J, et al. Cdk4 and cdk6 delay senescence by kinase-dependent and p16ink4a-independent mechanisms. Mol Cell Biol. 2007;27:4273–82.CrossRefPubMedPubMedCentral
30.
go back to reference Michaud K, Solomon DA, Oermann E, Kim JS, Zhong WZ, Prados MD, et al. Pharmacologic inhibition of cyclin-dependent kinases 4 and 6 arrests the growth of glioblastoma multiforme intracranial xenografts. Cancer Res. 2010;70:3228–38.CrossRefPubMedPubMedCentral Michaud K, Solomon DA, Oermann E, Kim JS, Zhong WZ, Prados MD, et al. Pharmacologic inhibition of cyclin-dependent kinases 4 and 6 arrests the growth of glioblastoma multiforme intracranial xenografts. Cancer Res. 2010;70:3228–38.CrossRefPubMedPubMedCentral
31.
go back to reference Rane SG, Cosenza SC, Mettus RV, Reddy EP. Germ line transmission of the cdk4(r24c) mutation facilitates tumorigenesis and escape from cellular senescence. Mol Cell Biol. 2002;22:644–56.CrossRefPubMedPubMedCentral Rane SG, Cosenza SC, Mettus RV, Reddy EP. Germ line transmission of the cdk4(r24c) mutation facilitates tumorigenesis and escape from cellular senescence. Mol Cell Biol. 2002;22:644–56.CrossRefPubMedPubMedCentral
32.
33.
34.
go back to reference Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY. Microrna-21 targets tumor suppressor genes in invasion and metastasis. Cell Res. 2008;18:350–9.CrossRefPubMed Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY. Microrna-21 targets tumor suppressor genes in invasion and metastasis. Cell Res. 2008;18:350–9.CrossRefPubMed
35.
go back to reference Makeyev EV, Zhang J, Carrasco MA, Maniatis T. The microrna mir-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mrna splicing. Mol Cell. 2007;27:435–48.CrossRefPubMedPubMedCentral Makeyev EV, Zhang J, Carrasco MA, Maniatis T. The microrna mir-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mrna splicing. Mol Cell. 2007;27:435–48.CrossRefPubMedPubMedCentral
37.
go back to reference Han ZB, Yang Z, Chi Y, Zhang L, Wang Y, Ji Y, et al. Microrna-124 suppresses breast cancer cell growth and motility by targeting cd151. Cell Physiol Biochem: Int J Exp Cell Physiol, Biochem Pharmacol. 2013;31:823–32.CrossRef Han ZB, Yang Z, Chi Y, Zhang L, Wang Y, Ji Y, et al. Microrna-124 suppresses breast cancer cell growth and motility by targeting cd151. Cell Physiol Biochem: Int J Exp Cell Physiol, Biochem Pharmacol. 2013;31:823–32.CrossRef
38.
go back to reference Li L, Luo J, Wang B, Wang D, Xie X, Yuan L, et al. Microrna-124 targets flotillin-1 to regulate proliferation and migration in breast cancer. Mol Cancer. 2013;12:163.CrossRefPubMedPubMedCentral Li L, Luo J, Wang B, Wang D, Xie X, Yuan L, et al. Microrna-124 targets flotillin-1 to regulate proliferation and migration in breast cancer. Mol Cancer. 2013;12:163.CrossRefPubMedPubMedCentral
39.
go back to reference Li W, Zang W, Liu P, Wang Y, Du Y, Chen X, et al. Microrna-124 inhibits cellular proliferation and invasion by targeting ets-1 in breast cancer. Tumour Biol: J Int Soc Oncodevelopmental Biol Med. 2014;35:10897–904.CrossRef Li W, Zang W, Liu P, Wang Y, Du Y, Chen X, et al. Microrna-124 inhibits cellular proliferation and invasion by targeting ets-1 in breast cancer. Tumour Biol: J Int Soc Oncodevelopmental Biol Med. 2014;35:10897–904.CrossRef
40.
go back to reference Liang YJ, Wang QY, Zhou CX, Yin QQ, He M, Yu XT, et al. Mir-124 targets slug to regulate epithelial-mesenchymal transition and metastasis of breast cancer. Carcinogenesis. 2013;34:713–22.CrossRefPubMed Liang YJ, Wang QY, Zhou CX, Yin QQ, He M, Yu XT, et al. Mir-124 targets slug to regulate epithelial-mesenchymal transition and metastasis of breast cancer. Carcinogenesis. 2013;34:713–22.CrossRefPubMed
41.
go back to reference Huang Z, Choi BK, Mujoo K, Fan X, Fa M, Mukherjee S, Owiti N, Zhang N, An Z: The e3 ubiquitin ligase nedd4 negatively regulates her3/erbb3 level and signaling. Oncogene 2014. Huang Z, Choi BK, Mujoo K, Fan X, Fa M, Mukherjee S, Owiti N, Zhang N, An Z: The e3 ubiquitin ligase nedd4 negatively regulates her3/erbb3 level and signaling. Oncogene 2014.
Metadata
Title
miR-124 inhibits cell proliferation in breast cancer through downregulation of CDK4
Authors
Tongbao Feng
Dongqin Xu
Chao Tu
Wenjing Li
Yongling Ning
Jun Ding
Shizhong Wang
Liudi Yuan
Ning Xu
Keqing Qian
Yong Wang
Chunjian Qi
Publication date
01-08-2015
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 8/2015
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-3275-8

Other articles of this Issue 8/2015

Tumor Biology 8/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine