Skip to main content
Top
Published in: Tumor Biology 4/2015

01-04-2015 | Research Article

Ginsenoside Rh2 inhibits growth of glioblastoma multiforme through mTor

Authors: Shaoyi Li, Wenchang Guo, Yun Gao, Yunhui Liu

Published in: Tumor Biology | Issue 4/2015

Login to get access

Abstract

Being the most malignant primary brain tumor in humans, glioblastoma multiforme (GBM) has a fairly poor patient survival after current combined treatment with chemotherapy, radiation, and surgery. Ginsenoside Rh2 (GRh2) has been reported to have a therapeutic effect on some tumors, and we recently reported its inhibitory effect on GBM growth in vitro and in vivo, possibly through an epidermal growth factor receptor (EGFR) signaling pathway. Here, using specific inhibitors, we found that the activation of EGFR signaling promoted GBM growth through PI3k/Akt/mTor signaling pathways. Moreover, GRh2 efficiently inhibited activation of this pathway at the receptor level. Together with our previous findings, these data suggest that GRh2 may suppress GBM growth through its competition with EGFR ligands for binding to the EGFR, and binding to EGFR by GRh2 does not lead to receptor phosphorylation. Thus, our data highlight a previous unappreciated role for GRh2 to inhibit EGFR signaling. GRh2 thus appears to be a promising therapy for cancers that require EGFR signaling to growth.
Literature
1.
go back to reference Chen J, Huang Q, Wang F. Inhibition of FoxO1 nuclear exclusion prevents metastasis of glioblastoma. Tumour Biol. 2014;35:7195–200.CrossRefPubMed Chen J, Huang Q, Wang F. Inhibition of FoxO1 nuclear exclusion prevents metastasis of glioblastoma. Tumour Biol. 2014;35:7195–200.CrossRefPubMed
2.
go back to reference Wang F, Xiao W, Sun J, Han D, Zhu Y. Mirna-181c inhibits EGFR-signaling-dependent MMP9 activation via suppressing Akt phosphorylation in glioblastoma. Tumour Biol. 2014;35:8653–8.CrossRefPubMed Wang F, Xiao W, Sun J, Han D, Zhu Y. Mirna-181c inhibits EGFR-signaling-dependent MMP9 activation via suppressing Akt phosphorylation in glioblastoma. Tumour Biol. 2014;35:8653–8.CrossRefPubMed
4.
go back to reference Tian XX, Chan JY, Pang JC, Chen J, He JH, To TS, et al. Altered expression of the suppressors PML and p53 in glioblastoma cells with the antisense-EGF-receptor. Br J Cancer. 1999;81:994–1001.CrossRefPubMedPubMedCentral Tian XX, Chan JY, Pang JC, Chen J, He JH, To TS, et al. Altered expression of the suppressors PML and p53 in glioblastoma cells with the antisense-EGF-receptor. Br J Cancer. 1999;81:994–1001.CrossRefPubMedPubMedCentral
5.
go back to reference Tsatas D, Kanagasundaram V, Kaye A, Novak U. EGF receptor modifies cellular responses to hyaluronan in glioblastoma cell lines. J Clin Neurosci. 2002;9:282–8.CrossRefPubMed Tsatas D, Kanagasundaram V, Kaye A, Novak U. EGF receptor modifies cellular responses to hyaluronan in glioblastoma cell lines. J Clin Neurosci. 2002;9:282–8.CrossRefPubMed
6.
go back to reference Stea B, Falsey R, Kislin K, Patel J, Glanzberg H, Carey S, et al. Time and dose-dependent radiosensitization of the glioblastoma multiforme U251 cells by the EGF receptor tyrosine kinase inhibitor ZD1839 (‘iressa’). Cancer Lett. 2003;202:43–51.CrossRefPubMed Stea B, Falsey R, Kislin K, Patel J, Glanzberg H, Carey S, et al. Time and dose-dependent radiosensitization of the glioblastoma multiforme U251 cells by the EGF receptor tyrosine kinase inhibitor ZD1839 (‘iressa’). Cancer Lett. 2003;202:43–51.CrossRefPubMed
7.
go back to reference Carpentier C, Laigle-Donadey F, Marie Y, Auger N, Benouaich-Amiel A, Lejeune J, et al. Polymorphism in Sp1 recognition site of the EGF receptor gene promoter and risk of glioblastoma. Neurology. 2006;67:872–4.CrossRefPubMed Carpentier C, Laigle-Donadey F, Marie Y, Auger N, Benouaich-Amiel A, Lejeune J, et al. Polymorphism in Sp1 recognition site of the EGF receptor gene promoter and risk of glioblastoma. Neurology. 2006;67:872–4.CrossRefPubMed
8.
go back to reference Shir A, Ogris M, Wagner E, Levitzki A. EGF receptor-targeted synthetic double-stranded RNA eliminates glioblastoma, breast cancer, and adenocarcinoma tumors in mice. PLoS Med. 2006;3:e6.CrossRefPubMed Shir A, Ogris M, Wagner E, Levitzki A. EGF receptor-targeted synthetic double-stranded RNA eliminates glioblastoma, breast cancer, and adenocarcinoma tumors in mice. PLoS Med. 2006;3:e6.CrossRefPubMed
9.
go back to reference Vauleon E, Auger N, Benouaich-Amiel A, Laigle-Donadey F, Kaloshi G, Lejeune J, et al. The 61 a/g EGF polymorphism is functional but is neither a prognostic marker nor a risk factor for glioblastoma. Cancer Genet Cytogenet. 2007;172:33–7.CrossRefPubMed Vauleon E, Auger N, Benouaich-Amiel A, Laigle-Donadey F, Kaloshi G, Lejeune J, et al. The 61 a/g EGF polymorphism is functional but is neither a prognostic marker nor a risk factor for glioblastoma. Cancer Genet Cytogenet. 2007;172:33–7.CrossRefPubMed
10.
go back to reference Stish BJ, Oh S, Vallera DA. Anti-glioblastoma effect of a recombinant bispecific cytotoxin cotargeting human il-13 and EGF receptors in a mouse xenograft model. J Neurooncol. 2008;87:51–61.CrossRefPubMed Stish BJ, Oh S, Vallera DA. Anti-glioblastoma effect of a recombinant bispecific cytotoxin cotargeting human il-13 and EGF receptors in a mouse xenograft model. J Neurooncol. 2008;87:51–61.CrossRefPubMed
11.
go back to reference Gadji M, Crous AM, Fortin D, Krcek J, Torchia M, Mai S, et al. EGF receptor inhibitors in the treatment of glioblastoma multiform: old clinical allies and newly emerging therapeutic concepts. Eur J Pharmacol. 2009;625:23–30.CrossRefPubMed Gadji M, Crous AM, Fortin D, Krcek J, Torchia M, Mai S, et al. EGF receptor inhibitors in the treatment of glioblastoma multiform: old clinical allies and newly emerging therapeutic concepts. Eur J Pharmacol. 2009;625:23–30.CrossRefPubMed
12.
go back to reference Ozer BH, Wiepz GJ, Bertics PJ. Activity and cellular localization of an oncogenic glioblastoma multiforme-associated EGF receptor mutant possessing a duplicated kinase domain. Oncogene. 2010;29:855–64.CrossRefPubMed Ozer BH, Wiepz GJ, Bertics PJ. Activity and cellular localization of an oncogenic glioblastoma multiforme-associated EGF receptor mutant possessing a duplicated kinase domain. Oncogene. 2010;29:855–64.CrossRefPubMed
13.
go back to reference Sjostrom S, Andersson U, Liu Y, Brannstrom T, Broholm H, Johansen C, et al. Genetic variations in EGF and EGFR and glioblastoma outcome. Neuro Oncol. 2010;12:815–21.CrossRefPubMedPubMedCentral Sjostrom S, Andersson U, Liu Y, Brannstrom T, Broholm H, Johansen C, et al. Genetic variations in EGF and EGFR and glioblastoma outcome. Neuro Oncol. 2010;12:815–21.CrossRefPubMedPubMedCentral
14.
go back to reference Hu J, Jo M, Cavenee WK, Furnari F, VandenBerg SR, Gonias SL. Crosstalk between the urokinase-type plasminogen activator receptor and EGF receptor variant iii supports survival and growth of glioblastoma cells. Proc Natl Acad Sci U S A. 2011;108:15984–9.CrossRefPubMedPubMedCentral Hu J, Jo M, Cavenee WK, Furnari F, VandenBerg SR, Gonias SL. Crosstalk between the urokinase-type plasminogen activator receptor and EGF receptor variant iii supports survival and growth of glioblastoma cells. Proc Natl Acad Sci U S A. 2011;108:15984–9.CrossRefPubMedPubMedCentral
15.
go back to reference Fenton TR, Nathanson D, Ponte De Albuquerque C, Kuga D, Iwanami A, Dang J, et al. Resistance to EGF receptor inhibitors in glioblastoma mediated by phosphorylation of the pten tumor suppressor at tyrosine 240. Proc Natl Acad Sci U S A. 2012;109:14164–9.CrossRefPubMedPubMedCentral Fenton TR, Nathanson D, Ponte De Albuquerque C, Kuga D, Iwanami A, Dang J, et al. Resistance to EGF receptor inhibitors in glioblastoma mediated by phosphorylation of the pten tumor suppressor at tyrosine 240. Proc Natl Acad Sci U S A. 2012;109:14164–9.CrossRefPubMedPubMedCentral
16.
go back to reference Prabhu A, Sarcar B, Kahali S, Shan Y, Chinnaiyan P. Targeting the unfolded protein response in glioblastoma cells with the fusion protein EGF-suba. PLoS One. 2012;7:e52265.CrossRefPubMedPubMedCentral Prabhu A, Sarcar B, Kahali S, Shan Y, Chinnaiyan P. Targeting the unfolded protein response in glioblastoma cells with the fusion protein EGF-suba. PLoS One. 2012;7:e52265.CrossRefPubMedPubMedCentral
17.
go back to reference Cornez I, Joel M, Tasken K, Langmoen IA, Glover JC, Berge T. EGF signalling and rapamycin-mediated mtor inhibition in glioblastoma multiforme evaluated by phospho-specific flow cytometry. J Neurooncol. 2013;112:49–57.CrossRefPubMed Cornez I, Joel M, Tasken K, Langmoen IA, Glover JC, Berge T. EGF signalling and rapamycin-mediated mtor inhibition in glioblastoma multiforme evaluated by phospho-specific flow cytometry. J Neurooncol. 2013;112:49–57.CrossRefPubMed
18.
go back to reference Zheng Y, Yang W, Aldape K, He J, Lu Z. Epidermal growth factor (EGF)-enhanced vascular cell adhesion molecule-1 (vcam-1) expression promotes macrophage and glioblastoma cell interaction and tumor cell invasion. J Biol Chem. 2013;288:31488–95.CrossRefPubMedPubMedCentral Zheng Y, Yang W, Aldape K, He J, Lu Z. Epidermal growth factor (EGF)-enhanced vascular cell adhesion molecule-1 (vcam-1) expression promotes macrophage and glioblastoma cell interaction and tumor cell invasion. J Biol Chem. 2013;288:31488–95.CrossRefPubMedPubMedCentral
19.
go back to reference Li S, Gao Y, Ma W, Guo W, Zhou G, Cheng T, et al. EGFR signaling-dependent inhibition of glioblastoma growth by ginsenoside rh2. Tumour Biol. 2014;35:5593–8.CrossRefPubMed Li S, Gao Y, Ma W, Guo W, Zhou G, Cheng T, et al. EGFR signaling-dependent inhibition of glioblastoma growth by ginsenoside rh2. Tumour Biol. 2014;35:5593–8.CrossRefPubMed
20.
go back to reference Emlet DR, Gupta P, Holgado-Madruga M, Del Vecchio CA, Mitra SS, Han SY, et al. Targeting a glioblastoma cancer stem-cell population defined by EGF receptor variant iii. Cancer Res. 2014;74:1238–49.CrossRefPubMed Emlet DR, Gupta P, Holgado-Madruga M, Del Vecchio CA, Mitra SS, Han SY, et al. Targeting a glioblastoma cancer stem-cell population defined by EGF receptor variant iii. Cancer Res. 2014;74:1238–49.CrossRefPubMed
21.
go back to reference Xiao X, Guo P, Chen Z, El-Gohary Y, Wiersch J, Gaffar I, et al. Hypoglycemia reduces vascular endothelial growth factor a production by pancreatic beta cells as a regulator of beta cell mass. J Biol Chem. 2013;288:8636–46.CrossRefPubMedPubMedCentral Xiao X, Guo P, Chen Z, El-Gohary Y, Wiersch J, Gaffar I, et al. Hypoglycemia reduces vascular endothelial growth factor a production by pancreatic beta cells as a regulator of beta cell mass. J Biol Chem. 2013;288:8636–46.CrossRefPubMedPubMedCentral
22.
go back to reference Ye H, Wu Q, Zhu Y, Guo C, Zheng X. Ginsenoside rh2 alleviates dextran sulfate sodium-induced colitis via augmenting tgfbeta signaling. Mol Biol Rep. 2014;41:5485–90.CrossRefPubMed Ye H, Wu Q, Zhu Y, Guo C, Zheng X. Ginsenoside rh2 alleviates dextran sulfate sodium-induced colitis via augmenting tgfbeta signaling. Mol Biol Rep. 2014;41:5485–90.CrossRefPubMed
23.
go back to reference Kikuchi Y, Sasa H, Kita T, Hirata J, Tode T, Nagata I. Inhibition of human ovarian cancer cell proliferation in vitro by ginsenoside rh2 and adjuvant effects to cisplatin in vivo. Anticancer Drugs. 1991;2:63–7.CrossRefPubMed Kikuchi Y, Sasa H, Kita T, Hirata J, Tode T, Nagata I. Inhibition of human ovarian cancer cell proliferation in vitro by ginsenoside rh2 and adjuvant effects to cisplatin in vivo. Anticancer Drugs. 1991;2:63–7.CrossRefPubMed
24.
go back to reference Tode T, Kikuchi Y, Hirata J, Kita T, Imaizumi E. Nagata I: [inhibitory effects of oral administration of ginsenoside rh2 on tumor growth in nude mice bearing serous cyst adenocarcinoma of the human ovary]. Nihon Sanka Fujinka Gakkai Zasshi. 1993;45:1275–82.PubMed Tode T, Kikuchi Y, Hirata J, Kita T, Imaizumi E. Nagata I: [inhibitory effects of oral administration of ginsenoside rh2 on tumor growth in nude mice bearing serous cyst adenocarcinoma of the human ovary]. Nihon Sanka Fujinka Gakkai Zasshi. 1993;45:1275–82.PubMed
25.
go back to reference Tode T, Kikuchi Y, Kita T, Hirata J, Imaizumi E, Nagata I. Inhibitory effects by oral administration of ginsenoside rh2 on the growth of human ovarian cancer cells in nude mice. J Cancer Res Clin Oncol. 1993;120:24–6.CrossRefPubMed Tode T, Kikuchi Y, Kita T, Hirata J, Imaizumi E, Nagata I. Inhibitory effects by oral administration of ginsenoside rh2 on the growth of human ovarian cancer cells in nude mice. J Cancer Res Clin Oncol. 1993;120:24–6.CrossRefPubMed
26.
go back to reference Nakata H, Kikuchi Y, Tode T, Hirata J, Kita T, Ishii K, et al. Inhibitory effects of ginsenoside rh2 on tumor growth in nude mice bearing human ovarian cancer cells. Jpn J Cancer Res. 1998;89:733–40.CrossRefPubMed Nakata H, Kikuchi Y, Tode T, Hirata J, Kita T, Ishii K, et al. Inhibitory effects of ginsenoside rh2 on tumor growth in nude mice bearing human ovarian cancer cells. Jpn J Cancer Res. 1998;89:733–40.CrossRefPubMed
27.
go back to reference Tang XP, Tang GD, Fang CY, Liang ZH, Zhang LY. Effects of ginsenoside rh2 on growth and migration of pancreatic cancer cells. World J Gastroenterol. 2013;19:1582–92.CrossRefPubMedPubMedCentral Tang XP, Tang GD, Fang CY, Liang ZH, Zhang LY. Effects of ginsenoside rh2 on growth and migration of pancreatic cancer cells. World J Gastroenterol. 2013;19:1582–92.CrossRefPubMedPubMedCentral
28.
go back to reference Liu J, Shimizu K, Yu H, Zhang C, Jin F, Kondo R. Stereospecificity of hydroxyl group at c-20 in antiproliferative action of ginsenoside rh2 on prostate cancer cells. Fitoterapia. 2010;81:902–5.CrossRefPubMed Liu J, Shimizu K, Yu H, Zhang C, Jin F, Kondo R. Stereospecificity of hydroxyl group at c-20 in antiproliferative action of ginsenoside rh2 on prostate cancer cells. Fitoterapia. 2010;81:902–5.CrossRefPubMed
29.
go back to reference Li B, Zhao J, Wang CZ, Searle J, He TC, Yuan CS, et al. Ginsenoside rh2 induces apoptosis and paraptosis-like cell death in colorectal cancer cells through activation of p53. Cancer Lett. 2011;301:185–92.CrossRefPubMed Li B, Zhao J, Wang CZ, Searle J, He TC, Yuan CS, et al. Ginsenoside rh2 induces apoptosis and paraptosis-like cell death in colorectal cancer cells through activation of p53. Cancer Lett. 2011;301:185–92.CrossRefPubMed
30.
go back to reference Oh M, Choi YH, Choi S, Chung H, Kim K, Kim SI, et al. Anti-proliferating effects of ginsenoside rh2 on mcf-7 human breast cancer cells. Int J Oncol. 1999;14:869–75.PubMed Oh M, Choi YH, Choi S, Chung H, Kim K, Kim SI, et al. Anti-proliferating effects of ginsenoside rh2 on mcf-7 human breast cancer cells. Int J Oncol. 1999;14:869–75.PubMed
31.
go back to reference Choi S, Kim TW, Singh SV. Ginsenoside rh2-mediated g1 phase cell cycle arrest in human breast cancer cells is caused by p15 ink4b and p27 kip1-dependent inhibition of cyclin-dependent kinases. Pharm Res. 2009;26:2280–8.CrossRefPubMedPubMedCentral Choi S, Kim TW, Singh SV. Ginsenoside rh2-mediated g1 phase cell cycle arrest in human breast cancer cells is caused by p15 ink4b and p27 kip1-dependent inhibition of cyclin-dependent kinases. Pharm Res. 2009;26:2280–8.CrossRefPubMedPubMedCentral
32.
go back to reference Giard DJ, Aaronson SA, Todaro GJ, Arnstein P, Kersey JH, Dosik H, et al. In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst. 1973;51:1417–23.CrossRefPubMed Giard DJ, Aaronson SA, Todaro GJ, Arnstein P, Kersey JH, Dosik H, et al. In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst. 1973;51:1417–23.CrossRefPubMed
33.
go back to reference Schlegel J, Merdes A, Stumm G, Albert FK, Forsting M, Hynes N, et al. Amplification of the epidermal-growth-factor-receptor gene correlates with different growth behaviour in human glioblastoma. Int J Cancer. 1994;56:72–7.CrossRefPubMed Schlegel J, Merdes A, Stumm G, Albert FK, Forsting M, Hynes N, et al. Amplification of the epidermal-growth-factor-receptor gene correlates with different growth behaviour in human glioblastoma. Int J Cancer. 1994;56:72–7.CrossRefPubMed
Metadata
Title
Ginsenoside Rh2 inhibits growth of glioblastoma multiforme through mTor
Authors
Shaoyi Li
Wenchang Guo
Yun Gao
Yunhui Liu
Publication date
01-04-2015
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 4/2015
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-014-2880-2

Other articles of this Issue 4/2015

Tumor Biology 4/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine