Skip to main content

Advertisement

Log in

Ginsenoside Rh2-mediated G1 Phase Cell Cycle Arrest in Human Breast Cancer Cells Is Caused by p15Ink4B and p27Kip1-dependent Inhibition of Cyclin-dependent Kinases

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Present study was undertaken to gain insights into the mechanism of cell cycle arrest by ginseng saponin ginsenoside Rh2 (Rh2) using MCF-7 and MDA-MB-231 breast cancer cells.

Methods

Cell viability and cell cycle distribution were determined by trypan blue dye exclusion assay and flow cytometry, respectively. Immunoblotting was performed to determine changes in protein levels. Knockdown of desired protein was achieved by transfection with small interfering RNA (siRNA).

Results

Rh2 treatment significantly inhibited viability of both cells in a concentration-dependent manner, which correlated with G0/G1 phase cell cycle arrest. Rh2-mediated cell cycle arrest was accompanied by down-regulation of cyclin-dependent kinases (Cdk) and cyclins leading to decreased interaction between cyclin D1 and Cdk4/Cdk6 and increased recruitment of p15Ink4B and p27Kip1 to cyclin D1/Cdk4 and cyclin D1/Cdk6 complexes. In addition, Rh2 treatment markedly reduced the levels of phosphorylated retinoblastoma protein (P-Rb) and decreased transcriptional activity of E2F1 in luciferase reporter assay. Rh2-induced cell cycle arrest was significantly attenuated by knockdown of p15Ink4B and/or p27Kip1 proteins.

Conclusions

Rh2-mediated cell cycle arrest in human breast cancer cells is caused by p15Ink4B and p27Kip1-dependent inhibition of kinase activities of G1-S specific Cdks/cyclin complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2006. CA Cancer J Clin. 2006;56:106–30.

    Article  PubMed  Google Scholar 

  2. Kelsey JL, Gammon MD, John EM. Reproductive factors and breast cancer. Epidemiol Rev. 1993;15:36–47.

    PubMed  CAS  Google Scholar 

  3. Hulka BS, Stark AT. Breast cancer: cause and prevention. Lancet. 1995;346:883–7.

    Article  PubMed  CAS  Google Scholar 

  4. Kelsey JL, Bernstein L. Epidemiology and prevention of breast cancer. Annu Rev Pub Health. 1996;17:47–67.

    Article  CAS  Google Scholar 

  5. Fisher B, Costantino JP, Wickerham DL, et al. Tamoxifen for prevention of breast cancer: report of the national surgical adjuvant breast and bowel project P-1 study. J Natl Cancer Inst. 1998;90:1371–88.

    Article  PubMed  CAS  Google Scholar 

  6. Cuzick J, Forbes J, Edwards R, et al. First results from the International Breast Cancer Intervention study (IBIS-I): a randomized prevention trial. Lancet. 2002;360:817–24.

    Article  PubMed  CAS  Google Scholar 

  7. Newman DJ, Cragg GM, Snader KM. Natural products as sources of new drugs over the period 1981–2002. J Nat Prod. 2003;66:1022–37.

    Article  PubMed  CAS  Google Scholar 

  8. Yun TK, Meyer CA. Brief introduction of Panax ginseng. J Korean Med Sci. 2001;16(suppl):S3.

    PubMed  Google Scholar 

  9. Abe H, Arichi S, Hayashi T, Odashima S. Ultrastructural studies of Morris hepatoma cells reversely transformed by ginsenosides. Experientia. 1979;35:1647–8.

    Article  PubMed  CAS  Google Scholar 

  10. Odashima S, Ohta T, Kohno H, et al. Control of phenotypic expression of cultured B16 melanoma cells by plant glycosides. Cancer Res. 1985;45:2781–4.

    PubMed  CAS  Google Scholar 

  11. Lee KY, Park JA, Chung E, Lee YH, Kim SI, Lee SK. Ginsenoside-Rh2 blocks the cell cycle of SK-HEP-1 cells at the G1/S boundary by selectively inducing the protein expression of p27kip1. Cancer Lett. 1996;110:193–200.

    Article  PubMed  CAS  Google Scholar 

  12. Oh M, Choi YH, Choi SH, et al. Anti-proliferating effects of ginsenoside Rh2 on MCF-7 human breast cancer cells. Int J Oncol. 1999;14:869–75.

    PubMed  CAS  Google Scholar 

  13. Kim YS, Jin SH. Ginsenoside Rh2 induces apoptosis via activation of caspase-1 and -3 and up-regulation of Bax in human neuroblastoma. Arch Pharm Res. 2004;27:834–9.

    Article  PubMed  CAS  Google Scholar 

  14. Kim SH, Lee EH, Ko SR, Choi KJ, Park JH, Im DS. Effects of ginsenosides Rg3 and Rh2 on the proliferation of prostate cancer cells. Arch Pharm Res. 2004;27:429–35.

    Article  PubMed  CAS  Google Scholar 

  15. Cheng CC, Yang SM, Huang CY, Chen JC, Chang WM, Hsu SL. Molecular mechanisms of ginsenoside Rh2-mediated G1 growth arrest and apoptosis in human lung adenocarcinoma A549 cells. Cancer Chemother Pharmacol. 2005;55:531–40.

    Article  PubMed  CAS  Google Scholar 

  16. Kitts DD, Popovich DG, Hu C. Characterizing the mechanism for ginsenoside-induced cytotoxicity in cultured leukemia (THP-1) cells. Can J Physiol Pharmacol. 2007;85:1173–83.

    Article  PubMed  CAS  Google Scholar 

  17. Huang J, Tang XH, Ikejima T, et al. A new triterpenoid from Panax ginseng exhibits cytotoxicity through p53 and the caspase signaling pathway in the HepG2 cell line. Arch Pharm Res. 2008;31:323–9.

    Article  PubMed  CAS  Google Scholar 

  18. Kim SY, Kim DH, Han SJ, Hyun JW, Kim HS. Repression of matrix metalloproteinase gene expression by ginsenoside Rh2 in human astroglioma cells. Biochem Pharmacol. 2007;74:1642–51.

    Article  PubMed  CAS  Google Scholar 

  19. Xie X, Eberding A, Madera C, et al. Rh2 synergistically enhances paclitaxel or mitoxantrone in prostate cancer models. J Urol. 2006;175:1926–31.

    Article  PubMed  CAS  Google Scholar 

  20. Wang Z, Zheng Q, Liu K, Li G, Zheng R. Ginsenoside Rh2 enhances antitumor activity and decreases genotoxic effect of cyclophosphamide. Basic Clin Pharmacol Toxicol. 2006;98:411–5.

    Article  PubMed  CAS  Google Scholar 

  21. Xiao D, Choi S, Johnson DE, et al. Diallyl trisulfide-induced apoptosis in human prostate cancer cells involves c-Jun N-terminal kinase and extracellular-signal regulated kinase-mediated phosphorylation of Bcl-2. Oncogene. 2004;23:5594–606.

    Article  PubMed  CAS  Google Scholar 

  22. Herman-Antosiewicz A, Singh SV. Checkpoint kinase 1 regulates diallyl trisulfide-induced mitotic arrest in human prostate cancer cells. J Biol Chem. 2005;280:28519–28.

    Article  PubMed  CAS  Google Scholar 

  23. Xiao D, Srivastava SK, Lew KL, et al. Allyl isothiocyanate, a constituent of cruciferous vegetables, inhibits proliferation of human prostate cancer cells by causing G2/M arrest and inducing apoptosis. Carcinogenesis. 2003;24:891–7.

    Article  PubMed  CAS  Google Scholar 

  24. Deep G, Singh RP, Agarwal C, Kroll DJ, Agarwal R. Silymarin and silibinin cause G1 and G2-M cell cycle arrest via distinct circuitries in human prostate cancer PC3 cells: a comparison of flavanone silibinin with flavanolignan mixture silymarin. Oncogene. 2006;25:1053–69.

    Article  PubMed  CAS  Google Scholar 

  25. Hahm ER, Singh SV. Honokiol causes G0–G1 phase cell cycle arrest in human prostate cancer cells in association with suppression of retinoblastoma protein level/phosphorylation and inhibition of E2F1 transcriptional activity. Mol Cancer Ther. 2007;6:2686–95.

    Article  PubMed  CAS  Google Scholar 

  26. Kim WY, Sharpless NE. The regulation of INK4/ARF in cancer and aging. Cell. 2006;127:265–75.

    Article  PubMed  CAS  Google Scholar 

  27. Brown L, Boswell S, Raj L, Lee SW. Transcriptional targets of p53 that regulate cellular proliferation. Crit Rev Eukaryot Gene Expr. 2007;17:73–85.

    PubMed  CAS  Google Scholar 

  28. Molinari M. Cell cycle checkpoints and their inactivation in human cancer. Cell Prolif. 2000;33:261–74.

    Article  PubMed  CAS  Google Scholar 

  29. Schafer KA. The cell cycle: a review. Vet Pathol. 1998;35:461–78.

    Article  PubMed  CAS  Google Scholar 

  30. Taylor WR, Stark GR. Regulation of the G2/M transition by p53. Oncogene. 2001;20:1803–15.

    Article  PubMed  CAS  Google Scholar 

  31. Harper JW, Elledge SJ, Keyomarsi K, et al. Inhibition of cyclin-dependent kinases by p21. Mol Biol Cell. 1995;6:387–400.

    PubMed  CAS  Google Scholar 

  32. Kato J, Matsushime H, Hiebert SW, Ewen ME, Sherr CJ. Direct binding of cyclin-D to the retinoblastoma gene product (pRB) and pRb phosphorylation by the cyclin D-dependent kinase cdk4. Genes Dev. 1993;7:331–42.

    Article  PubMed  CAS  Google Scholar 

  33. Arroyo M, Raychaudhuri P. Retinoblastoma-repression of E2F-dependent transcription depends on the ability of the retinoblastoma protein to interact with E2F and is abrogated by the adenovirus E1A oncoprotein. Nucleic Acids Res. 1992;20:5947–54.

    Article  PubMed  CAS  Google Scholar 

  34. Weinberg RA. The retinoblastoma protein and cell cycle control. Cell. 1995;81:323–30.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sunga Choi or Shivendra V. Singh.

Additional information

Grant Support: This investigation was supported in part by the Kangwon Bio-Nuri grant, Korea Research Foundation, Korea, and US PHS grant CA129347, awarded by the National Cancer Institute.

Requests for reprints: S. Choi, Ph.D., Dept. of Life Science, Hallym University, 39 Hallymdaehak-gil, Chuncheon, Gangwon-do, 200-702, Korea. Phone: 82-33-248-2097; E-mail: sachoi@hallym.ac.kr or Shivendra V. Singh, 2.32A Hillman Cancer Center Research Pavilion, 5117 Centre Avenue, Pittsburgh, PA 15213. Phone: 412-623-3263; Fax: 412-623-7828. Email: singhs@upmc.edu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, S., Kim, T. & Singh, S.V. Ginsenoside Rh2-mediated G1 Phase Cell Cycle Arrest in Human Breast Cancer Cells Is Caused by p15Ink4B and p27Kip1-dependent Inhibition of Cyclin-dependent Kinases. Pharm Res 26, 2280–2288 (2009). https://doi.org/10.1007/s11095-009-9944-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-9944-9

KEY WORDS

Navigation