Skip to main content
Top
Published in: Tumor Biology 10/2014

01-10-2014 | Review

Caveolin-1 in oral squamous cell carcinoma microenvironment: an overview

Author: Samapika Routray

Published in: Tumor Biology | Issue 10/2014

Login to get access

Abstract

Caveolin-1 plays an important role in the pathogenesis of oncogenic cell transformation, tumorigenesis, and metastasis. Increased expression of caveolin-1 in an array of tumors has confirmed its value in prognosis. It has been established that oxidative stress is the main cause for loss of stromal caveolin-1 via autophagy in the tumor microenvironment. In this overview, we attempt to abridge the relationship between caveolin-1 and oral squamous cell carcinoma, taking all the established theories into consideration.
Literature
1.
go back to reference Bindra RS, Glazer PM. Genetic instability and the tumor microenvironment: towards the concept of microenvironment-induced mutagenesis. Mutat Res. 2005;569:75–85.CrossRefPubMed Bindra RS, Glazer PM. Genetic instability and the tumor microenvironment: towards the concept of microenvironment-induced mutagenesis. Mutat Res. 2005;569:75–85.CrossRefPubMed
2.
go back to reference Albini A, Sporn MB. The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer. 2007;7:139–47.CrossRefPubMed Albini A, Sporn MB. The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer. 2007;7:139–47.CrossRefPubMed
4.
go back to reference Patra SK. Dissecting lipid raft facilitated cell signalling pathways in cancer. Biochim Biophys Acta. 2008;1785(2):182–206.PubMed Patra SK. Dissecting lipid raft facilitated cell signalling pathways in cancer. Biochim Biophys Acta. 2008;1785(2):182–206.PubMed
5.
go back to reference Vallejo J, Hardin CD. Caveolin-1 functions as a scaffolding protein for phosphofructokinase in the metabolic organization of vascular smooth muscle. Biochemistry. 2004;43:16224–32.CrossRefPubMed Vallejo J, Hardin CD. Caveolin-1 functions as a scaffolding protein for phosphofructokinase in the metabolic organization of vascular smooth muscle. Biochemistry. 2004;43:16224–32.CrossRefPubMed
6.
go back to reference Vallejo J, Hardin CD. Expression of caveolin-1 in lymphocytes induces caveolae formation and recruitment of phosphofructokinase to the plasma membrane. FASEB J. 2005;19:586–7.PubMed Vallejo J, Hardin CD. Expression of caveolin-1 in lymphocytes induces caveolae formation and recruitment of phosphofructokinase to the plasma membrane. FASEB J. 2005;19:586–7.PubMed
9.
go back to reference Palade GE. Fine structure of blood capillaries. J Appl Phys. 1953;24:1424. Palade GE. Fine structure of blood capillaries. J Appl Phys. 1953;24:1424.
11.
12.
go back to reference Staubach S, Hanisch FG. Lipid rafts: signalling and sorting platforms of cells and their roles in cancer. Expert Rev Proteomics. 2011;8(2):263–77.CrossRefPubMed Staubach S, Hanisch FG. Lipid rafts: signalling and sorting platforms of cells and their roles in cancer. Expert Rev Proteomics. 2011;8(2):263–77.CrossRefPubMed
13.
go back to reference Razani B, Lisanti MP. Caveolins and caveolae: molecular and functional relationships. Exp Cell Res. 2001;271:36–44.CrossRefPubMed Razani B, Lisanti MP. Caveolins and caveolae: molecular and functional relationships. Exp Cell Res. 2001;271:36–44.CrossRefPubMed
14.
go back to reference Li WP, Liu P, Pilcher BK, Anderson RG. Cell-specific targeting of caveolin-1 to caveolae, secretory vesicles, cytoplasm or mitochondria. J Cell Sci. 2001;114:1397–408.PubMed Li WP, Liu P, Pilcher BK, Anderson RG. Cell-specific targeting of caveolin-1 to caveolae, secretory vesicles, cytoplasm or mitochondria. J Cell Sci. 2001;114:1397–408.PubMed
15.
go back to reference Uittenbogaard A, Ying Y, Smart EJ. Characterization of a cytosolic heat-shock protein–caveolin chaperone complex. Involvement in cholesterol trafficking. J Biol Chem. 1998;273:6525–32.CrossRefPubMed Uittenbogaard A, Ying Y, Smart EJ. Characterization of a cytosolic heat-shock protein–caveolin chaperone complex. Involvement in cholesterol trafficking. J Biol Chem. 1998;273:6525–32.CrossRefPubMed
16.
go back to reference Liu P, Li WP, Machleidt T, Anderson RG. Identification of caveolin-1 in lipoprotein particles secreted by exocrine cells. Nat Cell Biol. 1999;1:369–75.CrossRefPubMed Liu P, Li WP, Machleidt T, Anderson RG. Identification of caveolin-1 in lipoprotein particles secreted by exocrine cells. Nat Cell Biol. 1999;1:369–75.CrossRefPubMed
17.
go back to reference Hansen CG, Nichols BJ. Exploring the caves: cavins, caveolins and caveolae. Trends Cell Biol. 2010;20:177–86.CrossRefPubMed Hansen CG, Nichols BJ. Exploring the caves: cavins, caveolins and caveolae. Trends Cell Biol. 2010;20:177–86.CrossRefPubMed
18.
go back to reference Drab M, Verkade P, Elger M, et al. Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science. 2001;293:2449–52.CrossRefPubMed Drab M, Verkade P, Elger M, et al. Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science. 2001;293:2449–52.CrossRefPubMed
19.
go back to reference Aoki MN, Amarante MK, Oda JM, Watanabe MA. Caveolin involvement and modulation in breast cancer. Mini Rev Med Chem. 2011;11(13):1143–52.CrossRefPubMed Aoki MN, Amarante MK, Oda JM, Watanabe MA. Caveolin involvement and modulation in breast cancer. Mini Rev Med Chem. 2011;11(13):1143–52.CrossRefPubMed
20.
go back to reference Razani B, Woodman SE, Lisanti MP. Caveolae: from cell biology to animal physiology. Pharmacol Rev. 2002;54(3):431–67.CrossRefPubMed Razani B, Woodman SE, Lisanti MP. Caveolae: from cell biology to animal physiology. Pharmacol Rev. 2002;54(3):431–67.CrossRefPubMed
21.
go back to reference Zhang Y, Iwabuchi K, Nunomura S, Hakomori S. Effect of synthetic sialyl 2-1 sphingosine and other glycosylsphingosines on the structure and function of the “glycosphingolipid signaling domain (GSD)” in mouse melanoma B16 cells. Biochemistry. 2000;39(10):2459–68.CrossRefPubMed Zhang Y, Iwabuchi K, Nunomura S, Hakomori S. Effect of synthetic sialyl 2-1 sphingosine and other glycosylsphingosines on the structure and function of the “glycosphingolipid signaling domain (GSD)” in mouse melanoma B16 cells. Biochemistry. 2000;39(10):2459–68.CrossRefPubMed
23.
go back to reference Frank PG, Cheung MW-C, Pavlides S, Llaverias G, Park DS, Lisanti MP. Caveolin-1 and regulation of cellular cholesterol homeostasis. Am J Physiol Heart Circ Physiol. 2006;291:H677–86.CrossRefPubMed Frank PG, Cheung MW-C, Pavlides S, Llaverias G, Park DS, Lisanti MP. Caveolin-1 and regulation of cellular cholesterol homeostasis. Am J Physiol Heart Circ Physiol. 2006;291:H677–86.CrossRefPubMed
24.
go back to reference Frank PG, Pavlides S, Cheung MW-C, Daumer K, Lisanti MP. Role of caveolin-1 in the regulation of lipoprotein metabolism. Am J Physiol Cell Physiol. 2008;295:C242–8.PubMedCentralCrossRefPubMed Frank PG, Pavlides S, Cheung MW-C, Daumer K, Lisanti MP. Role of caveolin-1 in the regulation of lipoprotein metabolism. Am J Physiol Cell Physiol. 2008;295:C242–8.PubMedCentralCrossRefPubMed
25.
go back to reference Williams TM, Lisanti MP. Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am J Physiol Cell Physiol. 2005;288:494–506.CrossRef Williams TM, Lisanti MP. Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am J Physiol Cell Physiol. 2005;288:494–506.CrossRef
26.
go back to reference Sotgia F, Martinez-Outschoorn UE, Howell A, Pestell RG, Pavlides S, Lisanti MP. Caveolin-1 and cancer metabolism in the tumor microenvironment: markers, models, and mechanisms. Annu Rev Pathol. 2012;7:423–67.CrossRefPubMed Sotgia F, Martinez-Outschoorn UE, Howell A, Pestell RG, Pavlides S, Lisanti MP. Caveolin-1 and cancer metabolism in the tumor microenvironment: markers, models, and mechanisms. Annu Rev Pathol. 2012;7:423–67.CrossRefPubMed
27.
go back to reference Razani B, Altschuler Y, Zhu L, Pestell RG, Mostov KE, Lisanti MP. Caveolin-1 expression is down regulated in cells transformed by the human papilloma virus in a p53-dependent manner. Replacement of caveolin-1 expression suppresses HPV-mediated cell transformation. Biochemistry. 2000;39:13916–24.CrossRefPubMed Razani B, Altschuler Y, Zhu L, Pestell RG, Mostov KE, Lisanti MP. Caveolin-1 expression is down regulated in cells transformed by the human papilloma virus in a p53-dependent manner. Replacement of caveolin-1 expression suppresses HPV-mediated cell transformation. Biochemistry. 2000;39:13916–24.CrossRefPubMed
28.
go back to reference Lee SW, Reimer CL, Oh P, Campbell DB, Schnitzer JE. Tumor cell growth inhibition by caveolin re-expression in human breast cancer cells. Oncogene. 1998;16:1391–7.CrossRefPubMed Lee SW, Reimer CL, Oh P, Campbell DB, Schnitzer JE. Tumor cell growth inhibition by caveolin re-expression in human breast cancer cells. Oncogene. 1998;16:1391–7.CrossRefPubMed
29.
go back to reference Razani B, Zhang XL, Bitzer M, von Gersdorff G, Bottinger EP, Lisanti MP. Caveolin-1 regulates transforming growth factor (TGF)beta/SMAD signalling through an interaction with the TGFbeta type I receptor. J Biol Chem. 2001;276:6727–38.CrossRefPubMed Razani B, Zhang XL, Bitzer M, von Gersdorff G, Bottinger EP, Lisanti MP. Caveolin-1 regulates transforming growth factor (TGF)beta/SMAD signalling through an interaction with the TGFbeta type I receptor. J Biol Chem. 2001;276:6727–38.CrossRefPubMed
30.
go back to reference Pavlides S, Whitaker-Menezes D, Castello-Cros R, et al. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle. 2009;8(23):3984–4001.CrossRefPubMed Pavlides S, Whitaker-Menezes D, Castello-Cros R, et al. The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle. 2009;8(23):3984–4001.CrossRefPubMed
31.
go back to reference Br E, Xiangbin X, Christoph R, et al. Differential expression and function of caveolin-1 in human gastric cancer progression. Cancer Res. 2007;67:8519–26.CrossRef Br E, Xiangbin X, Christoph R, et al. Differential expression and function of caveolin-1 in human gastric cancer progression. Cancer Res. 2007;67:8519–26.CrossRef
32.
go back to reference Alshenawy HA, Ali MA. Differential caveolin-1 expression in colon carcinoma and its relation to E-cadherin-β-catenin complex. Ann Diagn Pathol. 2013;17(6):476–82.CrossRefPubMed Alshenawy HA, Ali MA. Differential caveolin-1 expression in colon carcinoma and its relation to E-cadherin-β-catenin complex. Ann Diagn Pathol. 2013;17(6):476–82.CrossRefPubMed
33.
go back to reference Garcı’a AG, del Pozo MA. Caveolin-1 in cell polarization and directional migration. Eur J Cell Biol. 2008;87:641–7.CrossRef Garcı’a AG, del Pozo MA. Caveolin-1 in cell polarization and directional migration. Eur J Cell Biol. 2008;87:641–7.CrossRef
34.
go back to reference Glenney Jr JR. Tyrosine phosphorylation of a 22-kDa protein is correlated with transformation by Rous sarcoma virus. J Biol Chem. 1989;264(34):20163–6.PubMed Glenney Jr JR. Tyrosine phosphorylation of a 22-kDa protein is correlated with transformation by Rous sarcoma virus. J Biol Chem. 1989;264(34):20163–6.PubMed
35.
go back to reference Tekpli X, Holme JA, Sergent O, Lagadic-Gossmann D. Role for membrane remodelling in cell death: implication for health and disease. Toxicology. 2013;304(8):141–57.CrossRefPubMed Tekpli X, Holme JA, Sergent O, Lagadic-Gossmann D. Role for membrane remodelling in cell death: implication for health and disease. Toxicology. 2013;304(8):141–57.CrossRefPubMed
36.
go back to reference Lu Z, Ghosh S, Wang Z, Hunter T. Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell. 2003;4:499–515.CrossRefPubMed Lu Z, Ghosh S, Wang Z, Hunter T. Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell. 2003;4:499–515.CrossRefPubMed
37.
go back to reference Liscovitch M, Burgermeister E, Jain N, Ravid D, Shatz M, Tencer L. Caveolin and cancer: a complex relationship. In: Mattson MP, editor. Membrane microdomain signaling lipid rafts in biology and medicine. Totowa: Humana Press; 2005. p. 161–90.CrossRef Liscovitch M, Burgermeister E, Jain N, Ravid D, Shatz M, Tencer L. Caveolin and cancer: a complex relationship. In: Mattson MP, editor. Membrane microdomain signaling lipid rafts in biology and medicine. Totowa: Humana Press; 2005. p. 161–90.CrossRef
38.
go back to reference Li S, Okamoto T, Chun M, et al. Evidence for a regulated interaction between heterotrimeric G proteins and caveolin. J Biol Chem. 1995;270:15693–701.CrossRefPubMed Li S, Okamoto T, Chun M, et al. Evidence for a regulated interaction between heterotrimeric G proteins and caveolin. J Biol Chem. 1995;270:15693–701.CrossRefPubMed
39.
go back to reference Lee H, Volonte D, Galbiati F, et al. Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: identification of a c-Src/Cav-1/Grb7 signaling cassette. Mol Endocrinol. 2000;14:1750–75.CrossRefPubMed Lee H, Volonte D, Galbiati F, et al. Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: identification of a c-Src/Cav-1/Grb7 signaling cassette. Mol Endocrinol. 2000;14:1750–75.CrossRefPubMed
40.
go back to reference Podar K, Tai YT, Cole CE, et al. Essential role of caveolae in interleukin-6-and insulin-like growth factor I-triggered Akt-1-mediated survival of multiple myeloma cells. J Biol Chem. 2003;278:5794–801.CrossRefPubMed Podar K, Tai YT, Cole CE, et al. Essential role of caveolae in interleukin-6-and insulin-like growth factor I-triggered Akt-1-mediated survival of multiple myeloma cells. J Biol Chem. 2003;278:5794–801.CrossRefPubMed
41.
go back to reference Schlege A, Arvan P, Lisanti MP. Caveolin-1 binding to endoplasmic reticulum membranes and entry into the regulated secretory pathway are regulated by serine phosphorylation. Protein sorting at the level of the endoplasmic reticulum. J Biol Chem. 2001;276:4398–408.CrossRef Schlege A, Arvan P, Lisanti MP. Caveolin-1 binding to endoplasmic reticulum membranes and entry into the regulated secretory pathway are regulated by serine phosphorylation. Protein sorting at the level of the endoplasmic reticulum. J Biol Chem. 2001;276:4398–408.CrossRef
42.
go back to reference Fielding CJ, Bist A, Fielding PE. Caveolin mRNA levels are up-regulated by free cholesterol and down-regulated by oxysterols in fibroblast monolayers. Proc Natl Acad Sci U S A. 1997;94:3753–8.PubMedCentralCrossRefPubMed Fielding CJ, Bist A, Fielding PE. Caveolin mRNA levels are up-regulated by free cholesterol and down-regulated by oxysterols in fibroblast monolayers. Proc Natl Acad Sci U S A. 1997;94:3753–8.PubMedCentralCrossRefPubMed
43.
go back to reference Goetz JG, Lajoie P, Wiseman SM, Nabi IR. Caveolin-1 in tumor progression: the good, the bad and the ugly. Cancer Metastasis Rev. 2008;27:715–35.CrossRefPubMed Goetz JG, Lajoie P, Wiseman SM, Nabi IR. Caveolin-1 in tumor progression: the good, the bad and the ugly. Cancer Metastasis Rev. 2008;27:715–35.CrossRefPubMed
44.
go back to reference Cerezo A, Guadamillas MC, Goetz JG, et al. The absence of caveolin-1 increases proliferation and anchorage-independent growth by a Rac-dependent, Erkin dependent mechanism. Mol Cell Biol. 2009;29:5046–59.PubMedCentralCrossRefPubMed Cerezo A, Guadamillas MC, Goetz JG, et al. The absence of caveolin-1 increases proliferation and anchorage-independent growth by a Rac-dependent, Erkin dependent mechanism. Mol Cell Biol. 2009;29:5046–59.PubMedCentralCrossRefPubMed
45.
go back to reference Sun J, Gao J, Hu JB, et al. Expression of Cav-1 in tumour cells, rather than in stromal tissue, may promote cervical squamous cell carcinoma proliferation, and correlates with high-risk HPV infection. Oncol Rep. 2012;27(6):1733–40.PubMed Sun J, Gao J, Hu JB, et al. Expression of Cav-1 in tumour cells, rather than in stromal tissue, may promote cervical squamous cell carcinoma proliferation, and correlates with high-risk HPV infection. Oncol Rep. 2012;27(6):1733–40.PubMed
46.
go back to reference Miotti ESS, Mazzi M, De Santis G, Canevari S, Tomassetti A. Binding of nuclear caveolin-1 to promoter elements of growth-associated genes in ovarian carcinoma cells. Exp Cell Res. 2007;313:1307–17.CrossRefPubMed Miotti ESS, Mazzi M, De Santis G, Canevari S, Tomassetti A. Binding of nuclear caveolin-1 to promoter elements of growth-associated genes in ovarian carcinoma cells. Exp Cell Res. 2007;313:1307–17.CrossRefPubMed
47.
go back to reference Di Vizio D, Morello M, Sotgia F, Pestell RG, Freeman MR, Lisanti MP. An absence of stromal caveolin-1 is associated with advanced prostate cancer, metastatic disease and epithelial Akt activation. Cell Cycle. 2009;8:2420–4.PubMedCentralCrossRefPubMed Di Vizio D, Morello M, Sotgia F, Pestell RG, Freeman MR, Lisanti MP. An absence of stromal caveolin-1 is associated with advanced prostate cancer, metastatic disease and epithelial Akt activation. Cell Cycle. 2009;8:2420–4.PubMedCentralCrossRefPubMed
48.
go back to reference Witkiewicz AK, Dasgupta A, Nguyen KH, et al. Stromal caveolin-1 levels predict early DCIS progression to invasive breast cancer. Cancer Biol Ther. 2009;8:1167–75.CrossRef Witkiewicz AK, Dasgupta A, Nguyen KH, et al. Stromal caveolin-1 levels predict early DCIS progression to invasive breast cancer. Cancer Biol Ther. 2009;8:1167–75.CrossRef
49.
go back to reference Witkiewicz AK, Dasgupta A, Sotgia F, et al. An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers. Am J Pathol. 2009;174:2023–34.PubMedCentralCrossRefPubMed Witkiewicz AK, Dasgupta A, Sotgia F, et al. An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers. Am J Pathol. 2009;174:2023–34.PubMedCentralCrossRefPubMed
50.
go back to reference Ma X, Liu L, Nie W, et al. Prognostic role of caveolin in breast cancer: a meta analysis. Breast. 2013;22(4):462–9.CrossRefPubMed Ma X, Liu L, Nie W, et al. Prognostic role of caveolin in breast cancer: a meta analysis. Breast. 2013;22(4):462–9.CrossRefPubMed
51.
go back to reference Kannan A, Krishnan A, Ali M, Subramaniam S, Halagowder D, Sivasithamparam ND. Caveolin-1 promotes gastric cancer progression by up-regulating epithelial to mesenchymal transition by crosstalk of signalling mechanisms under hypoxic condition. Eur J Cancer. 2014;50(1):204–15.CrossRefPubMed Kannan A, Krishnan A, Ali M, Subramaniam S, Halagowder D, Sivasithamparam ND. Caveolin-1 promotes gastric cancer progression by up-regulating epithelial to mesenchymal transition by crosstalk of signalling mechanisms under hypoxic condition. Eur J Cancer. 2014;50(1):204–15.CrossRefPubMed
52.
go back to reference Taira J, Higashimoto Y. Caveolin-1 interacts with protein phosphatase 5 and modulates its activity in prostate cancer cells. Biochem Biophys Res Commun. 2013;431(4):724–8.CrossRefPubMed Taira J, Higashimoto Y. Caveolin-1 interacts with protein phosphatase 5 and modulates its activity in prostate cancer cells. Biochem Biophys Res Commun. 2013;431(4):724–8.CrossRefPubMed
55.
go back to reference Lavie Y, Fiucci G, Liscovitch M. Up-regulation of caveolae and caveolar constituents in multidrug-resistant cancer cells. J Biol Chem. 1998;273:32380–3.CrossRefPubMed Lavie Y, Fiucci G, Liscovitch M. Up-regulation of caveolae and caveolar constituents in multidrug-resistant cancer cells. J Biol Chem. 1998;273:32380–3.CrossRefPubMed
56.
go back to reference Sainz-Jaspeado M, Martin-Liberal J, Lagares-Tena L, Mateo-Lozano S, del GX M, Tirado OM. Caveolin-1 in sarcomas: friend or foe? Oncotarget. 2011;2(4):305–12.PubMedCentralPubMed Sainz-Jaspeado M, Martin-Liberal J, Lagares-Tena L, Mateo-Lozano S, del GX M, Tirado OM. Caveolin-1 in sarcomas: friend or foe? Oncotarget. 2011;2(4):305–12.PubMedCentralPubMed
57.
go back to reference Lisanti MP, Martinez-Outschoorn UE, Chiavarina B, et al. Understanding the “lethal” drivers of tumor-stroma co-evolution. Emerging role(s) for hypoxia, oxidative stress and autophagy/mitophagy in the tumor microenvironment. Can Biol Ther. 2010;10(6):537–42.CrossRef Lisanti MP, Martinez-Outschoorn UE, Chiavarina B, et al. Understanding the “lethal” drivers of tumor-stroma co-evolution. Emerging role(s) for hypoxia, oxidative stress and autophagy/mitophagy in the tumor microenvironment. Can Biol Ther. 2010;10(6):537–42.CrossRef
58.
go back to reference Martinez-Outschoorn UE, Trimmer C, Lin Z, et al. Autophagy in cancer associated fibroblasts promotes tumor cell survival. Role of hypoxia, HIF1 induction and NFκB activation in the tumor stromal microenvironment. Cell Cycle. 2010;9(17):3515–33.PubMedCentralCrossRefPubMed Martinez-Outschoorn UE, Trimmer C, Lin Z, et al. Autophagy in cancer associated fibroblasts promotes tumor cell survival. Role of hypoxia, HIF1 induction and NFκB activation in the tumor stromal microenvironment. Cell Cycle. 2010;9(17):3515–33.PubMedCentralCrossRefPubMed
59.
go back to reference Bakhshi FR, Shinin V, Mao M, et al. Role of oxidative stress-induced caveolin-1 S nitrosylation, ubiquitination, and degradation in endothelial cell dedifferentiation and idiopathic pulmonary arterial hypertension. Nitric Oxide. 2013;31(1):S42.CrossRef Bakhshi FR, Shinin V, Mao M, et al. Role of oxidative stress-induced caveolin-1 S nitrosylation, ubiquitination, and degradation in endothelial cell dedifferentiation and idiopathic pulmonary arterial hypertension. Nitric Oxide. 2013;31(1):S42.CrossRef
60.
go back to reference Sanguinetti AR, Mastick CC. c-Abl is required for oxidative stress-induced phosphorylation of caveolin-1 on tyrosine 14. Cell Signal. 2003;15(3):289–98.CrossRefPubMed Sanguinetti AR, Mastick CC. c-Abl is required for oxidative stress-induced phosphorylation of caveolin-1 on tyrosine 14. Cell Signal. 2003;15(3):289–98.CrossRefPubMed
61.
go back to reference Rungtabnapa P, Nimmannit U, Halim H, Rojanasakul Y, Chanvorachote P. Hydrogen peroxide inhibits non-small cell lung cancer cell anoikis through the inhibition of caveolin-1 degradation. Am J Physiol Cell Physiol. 2011;300:C235–45.PubMedCentralCrossRefPubMed Rungtabnapa P, Nimmannit U, Halim H, Rojanasakul Y, Chanvorachote P. Hydrogen peroxide inhibits non-small cell lung cancer cell anoikis through the inhibition of caveolin-1 degradation. Am J Physiol Cell Physiol. 2011;300:C235–45.PubMedCentralCrossRefPubMed
62.
go back to reference Hung KF, Lin SC, Liu CJ, Chang CS, Chang KW, Kao SY. The biphasic differential expression of the cellular membrane protein, caveolin-1, in oral carcinogenesis. J Oral Pathol Med. 2003;32(8):461–7.CrossRefPubMed Hung KF, Lin SC, Liu CJ, Chang CS, Chang KW, Kao SY. The biphasic differential expression of the cellular membrane protein, caveolin-1, in oral carcinogenesis. J Oral Pathol Med. 2003;32(8):461–7.CrossRefPubMed
63.
go back to reference Han SE, Park KH, Lee G, Huh YJ, Min BM. Mutation and aberrant expression of caveolin-1 in human oral squamous cell carcinomas and oral cancer cell lines. Int J Oncol. 2004;24(2):435–40.PubMed Han SE, Park KH, Lee G, Huh YJ, Min BM. Mutation and aberrant expression of caveolin-1 in human oral squamous cell carcinomas and oral cancer cell lines. Int J Oncol. 2004;24(2):435–40.PubMed
64.
65.
go back to reference Bau DT, Tsai MH, Tsou YA, et al. The association of caveolin-1 genotypes with oral cancer susceptibility in Taiwan. Ann Surg Oncol. 2011;18(5):1431–8.CrossRefPubMed Bau DT, Tsai MH, Tsou YA, et al. The association of caveolin-1 genotypes with oral cancer susceptibility in Taiwan. Ann Surg Oncol. 2011;18(5):1431–8.CrossRefPubMed
66.
go back to reference Nakatani K, Wada T, Nakamura M, Uzawa K, Tanzawa H, Fujita S. Expression of caveolin-1 and its correlation with cisplatin sensitivity in oral squamous cell carcinoma. J Cancer Res Clin Oncol. 2005;131(7):445–52.CrossRefPubMed Nakatani K, Wada T, Nakamura M, Uzawa K, Tanzawa H, Fujita S. Expression of caveolin-1 and its correlation with cisplatin sensitivity in oral squamous cell carcinoma. J Cancer Res Clin Oncol. 2005;131(7):445–52.CrossRefPubMed
67.
go back to reference Zhang H, Su L, Müller S, et al. Restoration of caveolin-1 expression suppresses growth and metastasis of head and neck squamous cell carcinoma. Br J Cancer. 2008;99(10):1684–94.PubMedCentralCrossRefPubMed Zhang H, Su L, Müller S, et al. Restoration of caveolin-1 expression suppresses growth and metastasis of head and neck squamous cell carcinoma. Br J Cancer. 2008;99(10):1684–94.PubMedCentralCrossRefPubMed
68.
go back to reference Masuelli L, Budillon A, Marzocchella L, et al. Caveolin-1 overexpression is associated with simultaneous abnormal expression of the E-cadherin/α-β catenins complex and multiple ErbB receptors and with lymph nodes metastasis in head and neck squamous cell carcinomas. J Cell Physiol. 2012;227(9):3344–53.CrossRefPubMed Masuelli L, Budillon A, Marzocchella L, et al. Caveolin-1 overexpression is associated with simultaneous abnormal expression of the E-cadherin/α-β catenins complex and multiple ErbB receptors and with lymph nodes metastasis in head and neck squamous cell carcinomas. J Cell Physiol. 2012;227(9):3344–53.CrossRefPubMed
69.
go back to reference Masood R, Hochstim C, Cervenka B, et al. A novel orthotopic mouse model of head and neck cancer and lymph node metastasis. Oncogenesis. 2013;9:2:e68. Masood R, Hochstim C, Cervenka B, et al. A novel orthotopic mouse model of head and neck cancer and lymph node metastasis. Oncogenesis. 2013;9:2:e68.
70.
go back to reference Nohata N, Hanazawa T, Kikkawa N, et al. Caveolin-1 mediates tumor cell migration and invasion and its regulation by miR-133a in head and neck squamous cell carcinoma. Int J Oncol. 2011;38:209–17.PubMed Nohata N, Hanazawa T, Kikkawa N, et al. Caveolin-1 mediates tumor cell migration and invasion and its regulation by miR-133a in head and neck squamous cell carcinoma. Int J Oncol. 2011;38:209–17.PubMed
72.
go back to reference Bonuccelli G, Whitaker-Menezes D, Castello-Cros R, et al. The reverse Warburg effect: glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle. 2010;9(10):1960–71.CrossRefPubMed Bonuccelli G, Whitaker-Menezes D, Castello-Cros R, et al. The reverse Warburg effect: glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle. 2010;9(10):1960–71.CrossRefPubMed
73.
go back to reference Perkins ND, Gilmore TD. Good cop, bad cop: the different faces of NFkappaB. Cell Death Differ. 2006;13:759–72.CrossRefPubMed Perkins ND, Gilmore TD. Good cop, bad cop: the different faces of NFkappaB. Cell Death Differ. 2006;13:759–72.CrossRefPubMed
74.
go back to reference Schofield CJ, Ratcliffe PJ. Signalling hypoxia by HIF hydroxylases. Biochem Biophys Res Commun. 2005;338:617–26.CrossRefPubMed Schofield CJ, Ratcliffe PJ. Signalling hypoxia by HIF hydroxylases. Biochem Biophys Res Commun. 2005;338:617–26.CrossRefPubMed
75.
go back to reference Bellot G, Garcia-Medina R, Gounon P, et al. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol. 2009;29:2570–81.PubMedCentralCrossRefPubMed Bellot G, Garcia-Medina R, Gounon P, et al. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol. 2009;29:2570–81.PubMedCentralCrossRefPubMed
76.
go back to reference Martinez-Outschoorn UE, Pavlides S, Whitaker-Menezes D, et al. Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degradation: implications for breast cancer and DCIS therapy with autophagy inhibitors. Cell Cycle. 2010;9:2423–33.CrossRefPubMed Martinez-Outschoorn UE, Pavlides S, Whitaker-Menezes D, et al. Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degradation: implications for breast cancer and DCIS therapy with autophagy inhibitors. Cell Cycle. 2010;9:2423–33.CrossRefPubMed
77.
go back to reference Bensaad K, Tsuruta A, Selak MA, et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell. 2006;126:107–20.CrossRefPubMed Bensaad K, Tsuruta A, Selak MA, et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell. 2006;126:107–20.CrossRefPubMed
79.
go back to reference Podar K, Tai YT, Cole CE, et al. Caveolin-1 is required for vascular endothelial growth factor-triggered multiple myeloma cell migration and is targeted by bortezomib. Cancer Res. 2004;64:7500–6.CrossRefPubMed Podar K, Tai YT, Cole CE, et al. Caveolin-1 is required for vascular endothelial growth factor-triggered multiple myeloma cell migration and is targeted by bortezomib. Cancer Res. 2004;64:7500–6.CrossRefPubMed
80.
go back to reference Sáinz-Jaspeado M, Lagares-Tena L, Lasheras J, et al. Caveolin-1 modulates the ability of Ewing’s sarcoma to metastasize. Mol Cancer Res. 2010;8:1489–500.PubMedCentralCrossRefPubMed Sáinz-Jaspeado M, Lagares-Tena L, Lasheras J, et al. Caveolin-1 modulates the ability of Ewing’s sarcoma to metastasize. Mol Cancer Res. 2010;8:1489–500.PubMedCentralCrossRefPubMed
81.
go back to reference Gratton JP, Lin MI, Yu J, et al. Selective inhibition of tumor microvascular permeability by cavtratin blocks tumor progression in mice. Cancer Cell. 2003;4:31–9.CrossRefPubMed Gratton JP, Lin MI, Yu J, et al. Selective inhibition of tumor microvascular permeability by cavtratin blocks tumor progression in mice. Cancer Cell. 2003;4:31–9.CrossRefPubMed
82.
go back to reference Liscovitch M, Lavie Y. Multidrug resistance: a role for cholesterol efflux pathways? Trends Biochem Sci. 2000;25:530–4.CrossRefPubMed Liscovitch M, Lavie Y. Multidrug resistance: a role for cholesterol efflux pathways? Trends Biochem Sci. 2000;25:530–4.CrossRefPubMed
Metadata
Title
Caveolin-1 in oral squamous cell carcinoma microenvironment: an overview
Author
Samapika Routray
Publication date
01-10-2014
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 10/2014
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-014-2482-z

Other articles of this Issue 10/2014

Tumor Biology 10/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine