Skip to main content
Top
Published in: Tumor Biology 9/2014

01-09-2014 | Research Article

Epigenetic alteration of p16 and retinoic acid receptor beta genes in the development of epithelial ovarian carcinoma

Authors: Rahul Bhagat, Sandeep Sriram Kumar, Shilpa Vaderhobli, Chennagiri S. Premalata, Venkateshaiah Reddihalli Pallavi, Gawari Ramesh, Lakshmi Krishnamoorthy

Published in: Tumor Biology | Issue 9/2014

Login to get access

Abstract

Silencing of tumor suppressor and tumor-related genes by promoter hypermethylation is one of the major events in ovarian carcinogenesis. In this study, we analyzed aberrant promoter methylation of p16 and RAR-β genes in 134 epithelial ovarian carcinomas (EOCs), 23 low malignant potential (LMP) tumors, 26 benign cystadenomas, and 15 normal ovarian tissues. Methylation was investigated by methylation-specific PCR (MSP), and the results were confirmed by bisulfite DNA sequencing. Relative gene expression of p16 and RAR-β was done using quantitative reverse transcriptase PCR (qRT-PCR) on 51 EOC cases, 9 LMP tumors, and 7 benign cystadenomas with 5 normal ovarian tissues. Aberrant methylation for p16 and RAR-β was present in 43 % (58/134) and 31 % (41/134) in carcinoma cases, 22 % (05/23) and 52 % (12/23) in LMP tumors, and 42 % (11/26) and 69 % (18/26) in benign cystadenomas. No methylation was observed in any of the normal ovarian tissues. The mRNA expression level of p16 and RAR-β was significantly downregulated in EOC and LMP tumors than the corresponding normal tissues whereas the expression level was normal in benign cystadenomas for p16 and slightly reduced for RAR-β. A significant correlation of p16 promoter methylation was observed with reduced gene expression in EOC. For RAR-β, no significant correlation was observed between promoter methylation and gene expression. Our results suggest that epigenetic alterations of p16 and RAR-β have an important role in ovarian carcinogenesis and that mechanism along with methylation plays a significant role in downregulation of RAR-β gene in ovarian cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics, 1998. CA Cancer J Clin. 2005;55:74–108.CrossRefPubMed Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics, 1998. CA Cancer J Clin. 2005;55:74–108.CrossRefPubMed
2.
go back to reference Three-year report of population based cancer registries 2009–11: National Cancer Registry Programme (ICMR), Bangalore 2013. Three-year report of population based cancer registries 2009–11: National Cancer Registry Programme (ICMR), Bangalore 2013.
4.
go back to reference Wei SH, Balch C, Paik HH, Kim YS, Baldwin RL, Liyanarachchi S, et al. Prognostic DNA methylation biomarkers in ovarian cancer. Clin Cancer Res. 2006;12:2788–94.CrossRefPubMed Wei SH, Balch C, Paik HH, Kim YS, Baldwin RL, Liyanarachchi S, et al. Prognostic DNA methylation biomarkers in ovarian cancer. Clin Cancer Res. 2006;12:2788–94.CrossRefPubMed
6.
7.
go back to reference Baylin SB, Herman JG. DNA Hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet. 2000;16:168–74.CrossRefPubMed Baylin SB, Herman JG. DNA Hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet. 2000;16:168–74.CrossRefPubMed
8.
go back to reference Liggett Jr WH, Sidransky D. Role of the p16 tumor suppressor gene in cancer. J Clin Oncol. 1998;16:197–206. Liggett Jr WH, Sidransky D. Role of the p16 tumor suppressor gene in cancer. J Clin Oncol. 1998;16:197–206.
9.
go back to reference Kamb A, Gruis NA, Weaver-Feldhaus J, Liu Q, Harshman K, Tavtigian SV, et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science. 1994;264:436–40.CrossRefPubMed Kamb A, Gruis NA, Weaver-Feldhaus J, Liu Q, Harshman K, Tavtigian SV, et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science. 1994;264:436–40.CrossRefPubMed
10.
go back to reference Nobori T, Miura K, Wu DJ, Lois A, Takabayashi K, Carson DA. Deletions of the cyclin-dependent kinase- 4 inhibitor gene in multiple human cancers. Nature. 1994;368:753–6.CrossRefPubMed Nobori T, Miura K, Wu DJ, Lois A, Takabayashi K, Carson DA. Deletions of the cyclin-dependent kinase- 4 inhibitor gene in multiple human cancers. Nature. 1994;368:753–6.CrossRefPubMed
11.
go back to reference Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature. 1993;366:704–7.CrossRefPubMed Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature. 1993;366:704–7.CrossRefPubMed
12.
go back to reference Cobrinik D, Dowdy SF, Hinds PW, Mittnacht S, Weinberg RA. The retinoblastoma protein and the regulation of cell cycling. Trends Biochem Sci. 1992;17:312–5.CrossRefPubMed Cobrinik D, Dowdy SF, Hinds PW, Mittnacht S, Weinberg RA. The retinoblastoma protein and the regulation of cell cycling. Trends Biochem Sci. 1992;17:312–5.CrossRefPubMed
13.
go back to reference Sherr CJ, Roberts JM. Cdk inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999;13:1501–12.CrossRefPubMed Sherr CJ, Roberts JM. Cdk inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 1999;13:1501–12.CrossRefPubMed
14.
go back to reference Zhang HS, Postigo AA, Dean DC. Active transcriptional repression by the Rb-E2F complex mediates G1 arrest triggered by p16INK4a, TGFbeta, and contact inhibition. Cell. 1999;97:53–61.CrossRefPubMed Zhang HS, Postigo AA, Dean DC. Active transcriptional repression by the Rb-E2F complex mediates G1 arrest triggered by p16INK4a, TGFbeta, and contact inhibition. Cell. 1999;97:53–61.CrossRefPubMed
15.
go back to reference Rocco JW, Sidransky D. p16 (MTS-1/CDKN2/INK4a) in cancer progression. Exp Cell Res. 2001;264:42–55.CrossRefPubMed Rocco JW, Sidransky D. p16 (MTS-1/CDKN2/INK4a) in cancer progression. Exp Cell Res. 2001;264:42–55.CrossRefPubMed
16.
go back to reference Grummer MA, Thet LA, Zachman RD. Expression of retinoic acid receptor genes in fetal and newborn rat lung. Pediatr Pulmonol. 1994;17:234–8.CrossRefPubMed Grummer MA, Thet LA, Zachman RD. Expression of retinoic acid receptor genes in fetal and newborn rat lung. Pediatr Pulmonol. 1994;17:234–8.CrossRefPubMed
17.
go back to reference Mendelsohn C, Lohnes D, Decrimo D, Lufkin T, LeMeur M, Chambon P, et al. Function of the retinoic acid receptors (RARs) during development (II). Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development. 1994;120:2749–71.PubMed Mendelsohn C, Lohnes D, Decrimo D, Lufkin T, LeMeur M, Chambon P, et al. Function of the retinoic acid receptors (RARs) during development (II). Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development. 1994;120:2749–71.PubMed
18.
go back to reference Chambon P. A decade of molecular biology of retinoic acid receptors. FASEB J. 1996;10:940–54.PubMed Chambon P. A decade of molecular biology of retinoic acid receptors. FASEB J. 1996;10:940–54.PubMed
19.
go back to reference Yang Q, Mori I, Shan L, Nakamura M, Nakamura Y, Utsunomiya H, et al. Biallelic inactivation of retinoic acid receptor 2 gene by epigenetic change in breast cancer. Am J Pathol. 2001;158:299–303.PubMedCentralCrossRefPubMed Yang Q, Mori I, Shan L, Nakamura M, Nakamura Y, Utsunomiya H, et al. Biallelic inactivation of retinoic acid receptor 2 gene by epigenetic change in breast cancer. Am J Pathol. 2001;158:299–303.PubMedCentralCrossRefPubMed
20.
go back to reference Ivanova T, Petrenko A, Gritsko T, Vinokourova S, Eshilev E, Kobzeva V, et al. Methylation and silencing of the retinoic acid receptor-beta 2 gene in cervical cancer. BMC Cancer. 2002;2:4 (e1).PubMedCentralCrossRefPubMed Ivanova T, Petrenko A, Gritsko T, Vinokourova S, Eshilev E, Kobzeva V, et al. Methylation and silencing of the retinoic acid receptor-beta 2 gene in cervical cancer. BMC Cancer. 2002;2:4 (e1).PubMedCentralCrossRefPubMed
21.
go back to reference Yang Q, Yoshimura G, Mori I, Sakurai T, Kakudo K. Chromosome 3p and breast cancer. J Hum Genet. 2002;47:453–9.CrossRefPubMed Yang Q, Yoshimura G, Mori I, Sakurai T, Kakudo K. Chromosome 3p and breast cancer. J Hum Genet. 2002;47:453–9.CrossRefPubMed
22.
go back to reference Nakayama T, Watanabe M, Yamanaka M, Hirokawa Y, Suzuki H, Ito H, et al. The role of epigenetic modifications in retinoic acid receptor Beta2 gene expression in human prostate cancers. Lab Investig. 2001;81:1049–57.CrossRefPubMed Nakayama T, Watanabe M, Yamanaka M, Hirokawa Y, Suzuki H, Ito H, et al. The role of epigenetic modifications in retinoic acid receptor Beta2 gene expression in human prostate cancers. Lab Investig. 2001;81:1049–57.CrossRefPubMed
23.
go back to reference Fackler MJ, McVeigh M, Evron E, Garrett E, Mehrotra J, Polyak K, et al. DNA methylation of RASSF1A, HIN-1, RAR-beta, Cyclin D2 and twist in in situ and invasive lobular breast carcinoma. Int J Cancer. 2003;107:970–5.CrossRefPubMed Fackler MJ, McVeigh M, Evron E, Garrett E, Mehrotra J, Polyak K, et al. DNA methylation of RASSF1A, HIN-1, RAR-beta, Cyclin D2 and twist in in situ and invasive lobular breast carcinoma. Int J Cancer. 2003;107:970–5.CrossRefPubMed
24.
go back to reference Jerónimo C, Henrique R, Hoque MO, Ribeiro FR, Oliveira J, Fonseca D, et al. Quantitative RARbeta2 hypermethylation: a promising prostate cancer marker. Clin Cancer Res. 2004;10:4010–4.CrossRefPubMed Jerónimo C, Henrique R, Hoque MO, Ribeiro FR, Oliveira J, Fonseca D, et al. Quantitative RARbeta2 hypermethylation: a promising prostate cancer marker. Clin Cancer Res. 2004;10:4010–4.CrossRefPubMed
25.
go back to reference Fischer JR, Ohnmacht U, Rieger N, Zemaitis M, Stoffregen C, Kostrzewa M, et al. Promoter methylation of RASSF1A, RARbeta and DAPK predict poor prognosis of patients with malignant mesothelioma. Lung Cancer. 2006;54:109–16.CrossRefPubMed Fischer JR, Ohnmacht U, Rieger N, Zemaitis M, Stoffregen C, Kostrzewa M, et al. Promoter methylation of RASSF1A, RARbeta and DAPK predict poor prognosis of patients with malignant mesothelioma. Lung Cancer. 2006;54:109–16.CrossRefPubMed
26.
go back to reference He M, Vanaja DK, Karnes RJ, Young CY. Epigenetic regulation of Myc on retinoic acid receptor beta and PDLIM4 in RWPE1 cells. Prostate. 2009;69:1643–50.CrossRefPubMed He M, Vanaja DK, Karnes RJ, Young CY. Epigenetic regulation of Myc on retinoic acid receptor beta and PDLIM4 in RWPE1 cells. Prostate. 2009;69:1643–50.CrossRefPubMed
27.
go back to reference Björklund P, Akerström G, Westin G. Accumulation of nonphosphorylated beta-catenin and c-myc in primary and uremic secondary hyperparathyroid tumors. J Clin Endocrinol Metab. 2007;92:338–44.CrossRefPubMed Björklund P, Akerström G, Westin G. Accumulation of nonphosphorylated beta-catenin and c-myc in primary and uremic secondary hyperparathyroid tumors. J Clin Endocrinol Metab. 2007;92:338–44.CrossRefPubMed
28.
go back to reference Bhagat R, Shilpa V, Premalata CS, Ramesh G, Ramesh C, Pallavi VR, et al. Aberrant promoter methylation of the RASSF1A and APC genes in epithelial ovarian carcinoma development. Cell Oncol. 2012;35:473–9.CrossRef Bhagat R, Shilpa V, Premalata CS, Ramesh G, Ramesh C, Pallavi VR, et al. Aberrant promoter methylation of the RASSF1A and APC genes in epithelial ovarian carcinoma development. Cell Oncol. 2012;35:473–9.CrossRef
29.
go back to reference Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A. 1996;93:9821–6.PubMedCentralCrossRefPubMed Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A. 1996;93:9821–6.PubMedCentralCrossRefPubMed
30.
go back to reference Ogino S, Kawasaki T, Brahmandam M, Cantor M, Kirkner GJ, Spiegelman D, et al. Precision and performance characteristics of bisulfite conversion and real-time PCR (MethyLight) for quantitative DNA methylation analysis. J Mol Diagn. 2006;8:209–17.PubMedCentralCrossRefPubMed Ogino S, Kawasaki T, Brahmandam M, Cantor M, Kirkner GJ, Spiegelman D, et al. Precision and performance characteristics of bisulfite conversion and real-time PCR (MethyLight) for quantitative DNA methylation analysis. J Mol Diagn. 2006;8:209–17.PubMedCentralCrossRefPubMed
31.
go back to reference Parrish RR, Day JJ, Lubin FD. Direct bisulfite sequencing for examination of DNA methylation with gene and nucleotide resolution from brain tissues. Curr Protoc Neurosci. 2012 July; CHAPTER: Unit 7.24. doi:10.1002/0471142301.ns0724s60. Parrish RR, Day JJ, Lubin FD. Direct bisulfite sequencing for examination of DNA methylation with gene and nucleotide resolution from brain tissues. Curr Protoc Neurosci. 2012 July; CHAPTER: Unit 7.24. doi:10.​1002/​0471142301.​ns0724s60.
32.
go back to reference Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. New Engl J Med. 2003;349:2042–54.CrossRefPubMed Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. New Engl J Med. 2003;349:2042–54.CrossRefPubMed
33.
go back to reference Milde-Langosch K, Ocon E, Becker G, Loning T. p16/MTS1 inactivation in ovarian carcinomas: high frequency of reduced protein expression associated with hypermethylation or mutation in endometrioid and mucinous tumors. Int J Cancer. 1998;79:61–5.CrossRefPubMed Milde-Langosch K, Ocon E, Becker G, Loning T. p16/MTS1 inactivation in ovarian carcinomas: high frequency of reduced protein expression associated with hypermethylation or mutation in endometrioid and mucinous tumors. Int J Cancer. 1998;79:61–5.CrossRefPubMed
34.
go back to reference McCluskey LL, Chen C, Delgadillo E, Felix JC, Muderspach LI, Debeau L. Differences in p16 gene methylation and expression in benign and malignant ovarian tumors. Gynecol Oncol. 1999;72:87–92.CrossRefPubMed McCluskey LL, Chen C, Delgadillo E, Felix JC, Muderspach LI, Debeau L. Differences in p16 gene methylation and expression in benign and malignant ovarian tumors. Gynecol Oncol. 1999;72:87–92.CrossRefPubMed
35.
go back to reference Wong YF, Chung TK, Cheung TH, Nobori T, Yu AL, Yu J, et al. Methylation of p16INK4A in primary gynecologic malignancy. Cancer Lett. 1999;136:231–5.CrossRefPubMed Wong YF, Chung TK, Cheung TH, Nobori T, Yu AL, Yu J, et al. Methylation of p16INK4A in primary gynecologic malignancy. Cancer Lett. 1999;136:231–5.CrossRefPubMed
36.
go back to reference Furlan D, Carnevali I, Marcomini B, Cerutti R, Dainese E, Capella C, et al. The high frequency of de novo promoter methylation in synchronous primary endometrial and ovarian carcinomas. Clin Cancer Res. 2006;12:3329–36.CrossRefPubMed Furlan D, Carnevali I, Marcomini B, Cerutti R, Dainese E, Capella C, et al. The high frequency of de novo promoter methylation in synchronous primary endometrial and ovarian carcinomas. Clin Cancer Res. 2006;12:3329–36.CrossRefPubMed
37.
go back to reference Li M, Huang ZJ, Dong WH, Li XY, Wang XY, He XH, et al. Disfigurement of p16INK4A gene expression in development of ovarian cancer and the mechanism. Zhonghua Fu Chan Ke Za Zhi. 2006;41:408–12.PubMed Li M, Huang ZJ, Dong WH, Li XY, Wang XY, He XH, et al. Disfigurement of p16INK4A gene expression in development of ovarian cancer and the mechanism. Zhonghua Fu Chan Ke Za Zhi. 2006;41:408–12.PubMed
38.
go back to reference Wiley A, Katsaros D, Chen H, Rigault de la Longrais IA, Beeghly A, Puopolo M, et al. Aberrant promoter methylation of multiple genes in malignant ovarian tumors and in ovarian tumors with low malignant potential. Cancer. 2006;107:299–308.CrossRefPubMed Wiley A, Katsaros D, Chen H, Rigault de la Longrais IA, Beeghly A, Puopolo M, et al. Aberrant promoter methylation of multiple genes in malignant ovarian tumors and in ovarian tumors with low malignant potential. Cancer. 2006;107:299–308.CrossRefPubMed
39.
go back to reference Leal Rojas P, Anabalón Rodríguez L, García Muñoz P, Tapia Escalona O, Guzmán González P, Araya Orostica JC, et al. Promoter hypermethylation gene patterns in gynecological tumors. Med Clin (Barc). 2009;132:371–6.CrossRef Leal Rojas P, Anabalón Rodríguez L, García Muñoz P, Tapia Escalona O, Guzmán González P, Araya Orostica JC, et al. Promoter hypermethylation gene patterns in gynecological tumors. Med Clin (Barc). 2009;132:371–6.CrossRef
40.
go back to reference Makarla PB, Saboorian MH, Ashfaq R, Toyooka KO, Toyooka S, Minna JD, et al. Promoter hypermethylation profile of ovarian epithelial neoplasms. Clin Cancer Res. 2005;11:5365–9.CrossRefPubMed Makarla PB, Saboorian MH, Ashfaq R, Toyooka KO, Toyooka S, Minna JD, et al. Promoter hypermethylation profile of ovarian epithelial neoplasms. Clin Cancer Res. 2005;11:5365–9.CrossRefPubMed
41.
go back to reference Bammidi LS, Neerukonda GN, Murthy S, Kanapuram RD. p16 gene alterations in human ovarian cancer: comparison between tissue and blood samples. Int J Gynecol Cancer. 2012;22(4):553–60.CrossRefPubMed Bammidi LS, Neerukonda GN, Murthy S, Kanapuram RD. p16 gene alterations in human ovarian cancer: comparison between tissue and blood samples. Int J Gynecol Cancer. 2012;22(4):553–60.CrossRefPubMed
42.
go back to reference Widschwendter M, Berger J, Hermann M, Müller HM, Amberger A, Zeschnigk M, et al. Methylation and silencing of retinoic acid receptor-beta 2 gene in breast cancer. J Natl Cancer Inst. 2000;92(10):826–32.CrossRefPubMed Widschwendter M, Berger J, Hermann M, Müller HM, Amberger A, Zeschnigk M, et al. Methylation and silencing of retinoic acid receptor-beta 2 gene in breast cancer. J Natl Cancer Inst. 2000;92(10):826–32.CrossRefPubMed
43.
go back to reference Gao YP, Li M, Zhang YY, Wang H, He XH, Wang ZH. Relationship between RAR-beta gene expression defect and its methylation. Zhonghua Fu Chan Ke Za Zhi. 2007;42(7):472–6.PubMed Gao YP, Li M, Zhang YY, Wang H, He XH, Wang ZH. Relationship between RAR-beta gene expression defect and its methylation. Zhonghua Fu Chan Ke Za Zhi. 2007;42(7):472–6.PubMed
44.
go back to reference Tang D, Kryvenko ON, Mitrache N, Do KC, Jankowski M, Chitale DA, et al. Methylation of RAR-β gene increases prostate cancer risk in black Americans. J Urol. 2013;190(1):317–24.PubMedCentralCrossRefPubMed Tang D, Kryvenko ON, Mitrache N, Do KC, Jankowski M, Chitale DA, et al. Methylation of RAR-β gene increases prostate cancer risk in black Americans. J Urol. 2013;190(1):317–24.PubMedCentralCrossRefPubMed
45.
go back to reference Chmelarova M, Krepinska E, Spacek J, Laco J, Nekvindova J, Palicka V. Methylation analysis of tumour suppressor genes in ovarian cancer using MS-MLPA. Folia Biol (Praha). 2012;58:246–50. Chmelarova M, Krepinska E, Spacek J, Laco J, Nekvindova J, Palicka V. Methylation analysis of tumour suppressor genes in ovarian cancer using MS-MLPA. Folia Biol (Praha). 2012;58:246–50.
46.
go back to reference Ozdemir F, Altinisik J, Karateke A, Coksuer H, Buyru N. Methylation of tumor suppressor genes in ovarian cancer. Exp Ther Med. 2012;4(6):1092–6.PubMedCentralPubMed Ozdemir F, Altinisik J, Karateke A, Coksuer H, Buyru N. Methylation of tumor suppressor genes in ovarian cancer. Exp Ther Med. 2012;4(6):1092–6.PubMedCentralPubMed
47.
go back to reference Khodyrev DS, Loginov VI, Pronina IV, Kazubskaya TP, Garkavtsera RF, Braga EA. Methylation of promoter region of RAR-β2 gene in renal cell, breast and ovarian carcinomas. Russ J Genet. 2008;44(8):983–8.CrossRef Khodyrev DS, Loginov VI, Pronina IV, Kazubskaya TP, Garkavtsera RF, Braga EA. Methylation of promoter region of RAR-β2 gene in renal cell, breast and ovarian carcinomas. Russ J Genet. 2008;44(8):983–8.CrossRef
48.
go back to reference Katsaros D, Cho W, Singal R, Fracchioli S, Rigault De La Longrais IA, Arisio R, et al. Methylation of tumor suppressor gene p16 and prognosis of epithelial ovarian cancer. Gynecol Oncol. 2004;94:685–92.CrossRefPubMed Katsaros D, Cho W, Singal R, Fracchioli S, Rigault De La Longrais IA, Arisio R, et al. Methylation of tumor suppressor gene p16 and prognosis of epithelial ovarian cancer. Gynecol Oncol. 2004;94:685–92.CrossRefPubMed
49.
go back to reference Leu YW, Rahmatpanah F, Shi H, Wei SH, Liu JC, Yan PS, et al. Double RNA interference of DNMT3b and DNMT1 enhances DNA demethylation and gene reactivation. Cancer Res. 2003;63:6110–5.PubMed Leu YW, Rahmatpanah F, Shi H, Wei SH, Liu JC, Yan PS, et al. Double RNA interference of DNMT3b and DNMT1 enhances DNA demethylation and gene reactivation. Cancer Res. 2003;63:6110–5.PubMed
50.
go back to reference Marchini S, Codegoni AM, Bonazzi C, Chiari S, Broggini M. Absence of deletions but frequent loss of expression of p16INK4 in human ovarian tumours. Br J Cancer. 1997;76:146–9.PubMedCentralCrossRefPubMed Marchini S, Codegoni AM, Bonazzi C, Chiari S, Broggini M. Absence of deletions but frequent loss of expression of p16INK4 in human ovarian tumours. Br J Cancer. 1997;76:146–9.PubMedCentralCrossRefPubMed
51.
go back to reference Fujita M, Enomoto T, Haba T, Nakashima R, Sasaki M, Yoshino K, et al. Alteration of p16 and p15 genes in common epithelial ovarian tumors. Int J Cancer. 1997;74:148–55.CrossRefPubMed Fujita M, Enomoto T, Haba T, Nakashima R, Sasaki M, Yoshino K, et al. Alteration of p16 and p15 genes in common epithelial ovarian tumors. Int J Cancer. 1997;74:148–55.CrossRefPubMed
52.
53.
go back to reference Kaiser PC, Körner M, Kappeler A, Aebi S. Retinoid receptors in ovarian cancer: expression and prognosis. Ann Oncol. 2005;16(9):1477–87.CrossRefPubMed Kaiser PC, Körner M, Kappeler A, Aebi S. Retinoid receptors in ovarian cancer: expression and prognosis. Ann Oncol. 2005;16(9):1477–87.CrossRefPubMed
Metadata
Title
Epigenetic alteration of p16 and retinoic acid receptor beta genes in the development of epithelial ovarian carcinoma
Authors
Rahul Bhagat
Sandeep Sriram Kumar
Shilpa Vaderhobli
Chennagiri S. Premalata
Venkateshaiah Reddihalli Pallavi
Gawari Ramesh
Lakshmi Krishnamoorthy
Publication date
01-09-2014
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 9/2014
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-014-2136-1

Other articles of this Issue 9/2014

Tumor Biology 9/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine