Skip to main content
Top
Published in: Tumor Biology 5/2014

01-05-2014 | Research Article

A genetic variant in microRNA target site of TGF-β signaling pathway increases the risk of colorectal cancer in a Chinese population

Authors: Jing Gong, Na Shen, Hong-Mei Zhang, Rong Zhong, Wei Chen, Xiaoping Miao, An-Yuan Guo

Published in: Tumor Biology | Issue 5/2014

Login to get access

Abstract

Evidence shows that single-nucleotide polymorphisms in microRNA (miRNA) target sites can create, destroy, or modify the miRNA/mRNA binding, therefore modulating gene expression and affecting cancer susceptibility. The transforming growth factor-β (TGF-β) signaling pathway plays a pivotal role in tumor initiation and progression. Intriguingly, recent advances of genome-wide association studies have identified multiple risk loci in this pathway to be associated with risk of colorectal cancer (CRC). To test the hypothesis that genetic variants in miRNA target sites in genes of the TGF-β signaling pathway may also be associated with CRC risk, we first systematically scanned the single-nucleotide polymorphisms (SNPs) in genes of TGF-β signaling pathway which potentially affect the miRNA/mRNA bindings. Through a series of filters, we narrowed down these candidates to four SNPs. Then, we conducted a case–control study with 600 CRC patients and 638 controls in Han Chinese population. We observed that compared with A carriers (AA + AG), the GG genotype of rs12997:ACVR1 is associated with a significantly higher risk of CRC (OR = 1.52, 95 % confidence interval (95 % CI) = 1.04–2.21, P = 0.031), particularly in nonsmokers with a higher OR of 1.63 (95 % CI = 1.04–2.55, P = 0.032). Our study suggested that SNPs in miRNA target sites could contribute to the likelihood of CRC susceptibility and emphasized the important role of polymorphisms at miRNA-regulatory elements in carcinogenesis.
Literature
1.
go back to reference Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMed Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMed
2.
go back to reference Chen W, Zheng R, Zhang S, Zhao P, Li G, Wu L, et al. Report of incidence and mortality in China cancer registries, 2009. Chin J Cancer Res. 2013;25:10–21.PubMedPubMedCentral Chen W, Zheng R, Zhang S, Zhao P, Li G, Wu L, et al. Report of incidence and mortality in China cancer registries, 2009. Chin J Cancer Res. 2013;25:10–21.PubMedPubMedCentral
3.
go back to reference Le Marchand L, Wilkens LR, Kolonel LN, Hankin JH, Lyu LC. Associations of sedentary lifestyle, obesity, smoking, alcohol use, and diabetes with the risk of colorectal cancer. Cancer Res. 1997;57:4787–94.PubMed Le Marchand L, Wilkens LR, Kolonel LN, Hankin JH, Lyu LC. Associations of sedentary lifestyle, obesity, smoking, alcohol use, and diabetes with the risk of colorectal cancer. Cancer Res. 1997;57:4787–94.PubMed
4.
go back to reference Limsui D, Limburg PJ. Cigarette smoking and colorectal cancer risk: a burning issue. Gastroenterology. 2008;135:704–5.CrossRefPubMed Limsui D, Limburg PJ. Cigarette smoking and colorectal cancer risk: a burning issue. Gastroenterology. 2008;135:704–5.CrossRefPubMed
5.
go back to reference Peng XE, Jiang YY, Shi XS, Hu ZJ. Nqo1 609C > T polymorphism interaction with tobacco smoking and alcohol drinking increases colorectal cancer risk in a Chinese population. Gene. 2013;521:105–10.CrossRefPubMed Peng XE, Jiang YY, Shi XS, Hu ZJ. Nqo1 609C > T polymorphism interaction with tobacco smoking and alcohol drinking increases colorectal cancer risk in a Chinese population. Gene. 2013;521:105–10.CrossRefPubMed
6.
go back to reference Zhong R, Liu L, Zou L, Sheng W, Zhu B, Xiang H, et al. Genetic variations in the tgfbeta signaling pathway, smoking and risk of colorectal cancer in a chinese population. Carcinogenesis. 2013;34:936–42.CrossRefPubMed Zhong R, Liu L, Zou L, Sheng W, Zhu B, Xiang H, et al. Genetic variations in the tgfbeta signaling pathway, smoking and risk of colorectal cancer in a chinese population. Carcinogenesis. 2013;34:936–42.CrossRefPubMed
7.
go back to reference Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, et al. Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. New Engl J Med. 2000;343:78–85.CrossRefPubMed Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, et al. Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. New Engl J Med. 2000;343:78–85.CrossRefPubMed
8.
go back to reference Tenesa A, Dunlop MG. New insights into the aetiology of colorectal cancer from genome-wide association studies. Nature Rev Genet. 2009;10:353–8.CrossRefPubMed Tenesa A, Dunlop MG. New insights into the aetiology of colorectal cancer from genome-wide association studies. Nature Rev Genet. 2009;10:353–8.CrossRefPubMed
9.
go back to reference Yang Y, Wang F, Shi C, Zou Y, Qin H, Ma Y. Cyclin d1 g870a polymorphism contributes to colorectal cancer susceptibility: evidence from a systematic review of 22 case–control studies. PloS One. 2012;7:e36813.CrossRefPubMedPubMedCentral Yang Y, Wang F, Shi C, Zou Y, Qin H, Ma Y. Cyclin d1 g870a polymorphism contributes to colorectal cancer susceptibility: evidence from a systematic review of 22 case–control studies. PloS One. 2012;7:e36813.CrossRefPubMedPubMedCentral
10.
go back to reference Crea F, Fornaro L, Paolicchi E, Masi G, Frumento P, Loupakis F, et al. An EZH2 polymorphism is associated with clinical outcome in metastatic colorectal cancer patients. Annals Oncol. 2012;23:1207–13.CrossRef Crea F, Fornaro L, Paolicchi E, Masi G, Frumento P, Loupakis F, et al. An EZH2 polymorphism is associated with clinical outcome in metastatic colorectal cancer patients. Annals Oncol. 2012;23:1207–13.CrossRef
11.
go back to reference Castro FA, Forsti A, Buch S, Kalthoff H, Krauss C, Bauer M, et al. Tlr-3 polymorphism is an independent prognostic marker for stage II colorectal cancer. Eur J Cancer. 2011;47:1203–10.CrossRefPubMed Castro FA, Forsti A, Buch S, Kalthoff H, Krauss C, Bauer M, et al. Tlr-3 polymorphism is an independent prognostic marker for stage II colorectal cancer. Eur J Cancer. 2011;47:1203–10.CrossRefPubMed
12.
go back to reference Houlston RS, Webb E, Broderick P, Pittman AM, Di Bernardo MC, Lubbe S, et al. Meta-analysis of genome-wide association data identifies four new susceptibility loci for colorectal cancer. Nature Genet. 2008;40:1426–35.CrossRefPubMed Houlston RS, Webb E, Broderick P, Pittman AM, Di Bernardo MC, Lubbe S, et al. Meta-analysis of genome-wide association data identifies four new susceptibility loci for colorectal cancer. Nature Genet. 2008;40:1426–35.CrossRefPubMed
14.
go back to reference Elliott RL, Blobe GC. Role of transforming growth factor beta in human cancer. J Clin Oncol. 2005;23:2078–93.CrossRefPubMed Elliott RL, Blobe GC. Role of transforming growth factor beta in human cancer. J Clin Oncol. 2005;23:2078–93.CrossRefPubMed
16.
go back to reference Bierie B, Moses HL. Tumour microenvironment: TGF beta: the molecular Jekyll and Hyde of cancer. Nature Rev Cancer. 2006;6:506–20.CrossRefPubMed Bierie B, Moses HL. Tumour microenvironment: TGF beta: the molecular Jekyll and Hyde of cancer. Nature Rev Cancer. 2006;6:506–20.CrossRefPubMed
17.
go back to reference Ku JL, Park SH, Yoon KA, Shin YK, Kim KH, Choi JS, et al. Genetic alterations of the TGF-beta signaling pathway in colorectal cancer cell lines: a novel mutation in SMAD3 associated with the inactivation of TGF-beta-induced transcriptional activation. Cancer Lett. 2007;247:283–92.CrossRefPubMed Ku JL, Park SH, Yoon KA, Shin YK, Kim KH, Choi JS, et al. Genetic alterations of the TGF-beta signaling pathway in colorectal cancer cell lines: a novel mutation in SMAD3 associated with the inactivation of TGF-beta-induced transcriptional activation. Cancer Lett. 2007;247:283–92.CrossRefPubMed
18.
go back to reference Xu Y, Pasche B. Tgf-beta signaling alterations and susceptibility to colorectal cancer. Human molecular genetics 2007;16 Spec No 1:R14-20 Xu Y, Pasche B. Tgf-beta signaling alterations and susceptibility to colorectal cancer. Human molecular genetics 2007;16 Spec No 1:R14-20
19.
go back to reference Fukushima T, Mashiko M, Takita K, Otake T, Endo Y, Sekikawa K, et al. Mutational analysis of tgf-beta type ii receptor, smad2, smad3, smad4, smad6 and smad7 genes in colorectal cancer. J Exp Clin Cancer Res. 2003;22:315–20.PubMed Fukushima T, Mashiko M, Takita K, Otake T, Endo Y, Sekikawa K, et al. Mutational analysis of tgf-beta type ii receptor, smad2, smad3, smad4, smad6 and smad7 genes in colorectal cancer. J Exp Clin Cancer Res. 2003;22:315–20.PubMed
20.
22.
go back to reference Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20.CrossRefPubMed Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20.CrossRefPubMed
23.
go back to reference Wang G, van der Walt JM, Mayhew G, Li YJ, Zuchner S, Scott WK, et al. Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Human Genet. 2008;82:283–9.CrossRef Wang G, van der Walt JM, Mayhew G, Li YJ, Zuchner S, Scott WK, et al. Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Human Genet. 2008;82:283–9.CrossRef
24.
go back to reference Smits KM, Paranjape T, Nallur S, Wouters KA, Weijenberg MP, Schouten LJ, et al. A let-7 microRNA SNP in the KRAS 3′UTR is prognostic in early-stage colorectal cancer. Clinical Cancer Res. 2011;17:7723–31.CrossRef Smits KM, Paranjape T, Nallur S, Wouters KA, Weijenberg MP, Schouten LJ, et al. A let-7 microRNA SNP in the KRAS 3′UTR is prognostic in early-stage colorectal cancer. Clinical Cancer Res. 2011;17:7723–31.CrossRef
25.
go back to reference Sethupathy P, Borel C, Gagnebin M, Grant GR, Deutsch S, Elton TS, et al. Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3′ untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am J Human Genet. 2007;81:405–13.CrossRef Sethupathy P, Borel C, Gagnebin M, Grant GR, Deutsch S, Elton TS, et al. Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3′ untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am J Human Genet. 2007;81:405–13.CrossRef
26.
go back to reference Gong J, Tong Y, Zhang HM, Wang K, Hu T, Shan G, et al. Genome-wide identification of SNPs in microRNA genes and the SNP effects on microRNA target binding and biogenesis. Hum Mutat. 2012;33:254–63.CrossRefPubMed Gong J, Tong Y, Zhang HM, Wang K, Hu T, Shan G, et al. Genome-wide identification of SNPs in microRNA genes and the SNP effects on microRNA target binding and biogenesis. Hum Mutat. 2012;33:254–63.CrossRefPubMed
27.
go back to reference Renlund N, O’Neill FH, Zhang L, Sidis Y, Teixeira J. Activin receptor-like kinase-2 inhibits activin signaling by blocking the binding of activin to its type II receptor. J Endocrinol. 2007;195:95–103.CrossRefPubMed Renlund N, O’Neill FH, Zhang L, Sidis Y, Teixeira J. Activin receptor-like kinase-2 inhibits activin signaling by blocking the binding of activin to its type II receptor. J Endocrinol. 2007;195:95–103.CrossRefPubMed
28.
go back to reference Wu TC, Jih MH, Wang L, Wan YJ. Expression of activin receptor II and IIB mRNA isoforms in mouse reproductive organs and oocytes. Mol Reprod Dev. 1994;38:9–15.CrossRefPubMed Wu TC, Jih MH, Wang L, Wan YJ. Expression of activin receptor II and IIB mRNA isoforms in mouse reproductive organs and oocytes. Mol Reprod Dev. 1994;38:9–15.CrossRefPubMed
29.
go back to reference Donaldson CJ, Mathews LS, Vale WW. Molecular cloning and binding properties of the human type II activin receptor. Biochem Biophys Res Comm. 1992;184:310–6.CrossRefPubMed Donaldson CJ, Mathews LS, Vale WW. Molecular cloning and binding properties of the human type II activin receptor. Biochem Biophys Res Comm. 1992;184:310–6.CrossRefPubMed
30.
go back to reference Eresen Yazicioglu C, Karatosun V, Kizildag S, Ozsoylu D, Kavukcu S. Acvr1 Gene mutations in four Turkish patients diagnosed as fibrodysplasia ossificans progressiva. Gene. 2013;515:444–6.CrossRefPubMed Eresen Yazicioglu C, Karatosun V, Kizildag S, Ozsoylu D, Kavukcu S. Acvr1 Gene mutations in four Turkish patients diagnosed as fibrodysplasia ossificans progressiva. Gene. 2013;515:444–6.CrossRefPubMed
31.
go back to reference Shore EM, Xu M, Feldman GJ, Fenstermacher DA, Cho TJ, Choi IH, et al. A recurrent mutation in the bmp type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nature Genet. 2006;38:525–7.CrossRefPubMed Shore EM, Xu M, Feldman GJ, Fenstermacher DA, Cho TJ, Choi IH, et al. A recurrent mutation in the bmp type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nature Genet. 2006;38:525–7.CrossRefPubMed
32.
go back to reference Ambrosio EP, Drigo SA, Bergamo NA, Rosa FE, Bertonha FB, de Abreu FB, et al. Recurrent copy number gains of ACVR1 and corresponding transcript overexpression are associated with survival in head and neck squamous cell carcinomas. Histopathology. 2011;59:81–9.CrossRefPubMed Ambrosio EP, Drigo SA, Bergamo NA, Rosa FE, Bertonha FB, de Abreu FB, et al. Recurrent copy number gains of ACVR1 and corresponding transcript overexpression are associated with survival in head and neck squamous cell carcinomas. Histopathology. 2011;59:81–9.CrossRefPubMed
33.
go back to reference Wiley LA, Rajagopal R, Dattilo LK, Beebe DC. The tumor suppressor gene TRP53 protects the mouse lens against posterior subcapsular cataracts and the bmp receptor ACVR1 acts as a tumor suppressor in the lens. Disease Models Mech. 2011;4:484–95.CrossRef Wiley LA, Rajagopal R, Dattilo LK, Beebe DC. The tumor suppressor gene TRP53 protects the mouse lens against posterior subcapsular cataracts and the bmp receptor ACVR1 acts as a tumor suppressor in the lens. Disease Models Mech. 2011;4:484–95.CrossRef
34.
go back to reference Nicoloso MS, Sun H, Spizzo R, Kim H, Wickramasinghe P, Shimizu M, et al. Single-nucleotide polymorphisms inside microRNA target sites influence tumor susceptibility. Cancer Res. 2010;70:2789–98.CrossRefPubMedPubMedCentral Nicoloso MS, Sun H, Spizzo R, Kim H, Wickramasinghe P, Shimizu M, et al. Single-nucleotide polymorphisms inside microRNA target sites influence tumor susceptibility. Cancer Res. 2010;70:2789–98.CrossRefPubMedPubMedCentral
35.
go back to reference Zhao X, Ye Q, Xu K, Cheng J, Gao Y, Li Q, et al. Single-nucleotide polymorphisms inside microrna target sites influence the susceptibility to type 2 diabetes. J Human Genet. 2013;58:135–41.CrossRef Zhao X, Ye Q, Xu K, Cheng J, Gao Y, Li Q, et al. Single-nucleotide polymorphisms inside microrna target sites influence the susceptibility to type 2 diabetes. J Human Genet. 2013;58:135–41.CrossRef
Metadata
Title
A genetic variant in microRNA target site of TGF-β signaling pathway increases the risk of colorectal cancer in a Chinese population
Authors
Jing Gong
Na Shen
Hong-Mei Zhang
Rong Zhong
Wei Chen
Xiaoping Miao
An-Yuan Guo
Publication date
01-05-2014
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 5/2014
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-013-1562-9

Other articles of this Issue 5/2014

Tumor Biology 5/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine