Skip to main content
Top
Published in: Tumor Biology 6/2013

01-12-2013 | Research Article

MicroRNA 181a improves proliferation and invasion, suppresses apoptosis of osteosarcoma cell

Authors: Zhu Jianwei, Liu Fan, Liu Xiancheng, Bai Enzhong, Li Shuai, Li Can

Published in: Tumor Biology | Issue 6/2013

Login to get access

Abstract

MicroRNA 181a (miR-181a) was found dysregulated in a variety of human cancers and significantly associated with clinical outcome of cancer patients. However, the direct role of miR-181a has not yet been characterized in osteosarcoma progression. This study was aimed at investigating the effects of miR-181a on osteosarcoma cell biological behavior. First, the expression of miR-181a in osteosarcoma cell lines (MG63, HOS, SaOS-2, and U2OS) and a human osteoblastic cell line (hFOB1.19) was detected by qRT-PCR. Results showed that miR-181a was overexpressed in osteosarcoma cell lines compared to human osteoblastic cell line (hFOB1.19). To investigate the effects of miR-181a on proliferation, apoptosis, and invasion of osteosarcoma cells, we generated human osteosarcoma MG63 cells in which miR-181a was either overexpressed or depleted. The MG63 cell viability, cycle, apoptosis, and invasive ability were analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide staining, propidium iodide (PI) staining, Annexin V-FITC/PI double staining, and Transwell invasion experiment, respectively. The results showed that MG63 cell viability, proliferation, and invasive abilities were suppressed, and the apoptosis was enhanced in the group with underexpression of miR-181a. The viability, proliferation, and invasive abilities were improved, and the apoptosis was inhibited in the group with overexpression of miR-181a. The results from Western blotting indicated that miR-181a might be associated with the up-regulation of bcl-2 and matrix metalloproteinase 9 and the down-regulation of tissue inhibitor of metalloproteinases-3 and p21 in MG63 cells. Taken together, our results suggested that miR-181a might facilitate proliferation and invasion and suppress apoptosis of osteosarcoma cells, which might be a potential target for the treatment of osteosarcoma.
Literature
1.
go back to reference Endo-Munoz L, Evdokiou A, Saunders NA. The role of osteoclasts and tumour-associated macrophages in osteosarcoma metastasis. Biochim Biophys Acta. 2012;1826(2):434–42.PubMed Endo-Munoz L, Evdokiou A, Saunders NA. The role of osteoclasts and tumour-associated macrophages in osteosarcoma metastasis. Biochim Biophys Acta. 2012;1826(2):434–42.PubMed
2.
go back to reference Poletajew S, Fus L, Wasiutynski A. Current concepts on pathogenesis and biology of metastatic osteosarcoma tumors. Ortop Traumatol Rehabil. 2011;13(6):537–45.PubMedCrossRef Poletajew S, Fus L, Wasiutynski A. Current concepts on pathogenesis and biology of metastatic osteosarcoma tumors. Ortop Traumatol Rehabil. 2011;13(6):537–45.PubMedCrossRef
3.
go back to reference Harting MT, Blakely ML. Management of osteosarcoma pulmonary metastases. Semin Pediatr Surg. 2006;15(1):25–9.PubMedCrossRef Harting MT, Blakely ML. Management of osteosarcoma pulmonary metastases. Semin Pediatr Surg. 2006;15(1):25–9.PubMedCrossRef
4.
go back to reference Yao C, Wei JJ, Wang ZY, Ding HM, Li D, Yan SC, et al. Perifosine induces cell apoptosis in human osteosarcoma cells: new implication for osteosarcoma therapy? Cell Biochem Biophys. 2013;65(2):217–27.PubMedCrossRef Yao C, Wei JJ, Wang ZY, Ding HM, Li D, Yan SC, et al. Perifosine induces cell apoptosis in human osteosarcoma cells: new implication for osteosarcoma therapy? Cell Biochem Biophys. 2013;65(2):217–27.PubMedCrossRef
5.
go back to reference Cui J, Wang W, Li Z, Zhang Z, Wu B, Zeng L. Epigenetic changes in osteosarcoma. Bull Cancer. 2011;98(7):E62–68.PubMed Cui J, Wang W, Li Z, Zhang Z, Wu B, Zeng L. Epigenetic changes in osteosarcoma. Bull Cancer. 2011;98(7):E62–68.PubMed
6.
go back to reference Gaal Z, Olah E. MicroRNA-s and their role in malignant hematologic diseases. Orv Hetil. 2012;153(52):2051–9.PubMedCrossRef Gaal Z, Olah E. MicroRNA-s and their role in malignant hematologic diseases. Orv Hetil. 2012;153(52):2051–9.PubMedCrossRef
7.
go back to reference Lin S, Pan L, Guo S, Wu J, Jin L, Wang JC, et al. Prognostic role of microRNA-181a/b in hematological malignancies: a meta-analysis. PLoS One. 2013;8(3):e59532.PubMedPubMedCentralCrossRef Lin S, Pan L, Guo S, Wu J, Jin L, Wang JC, et al. Prognostic role of microRNA-181a/b in hematological malignancies: a meta-analysis. PLoS One. 2013;8(3):e59532.PubMedPubMedCentralCrossRef
8.
go back to reference Wang Z, Yao H, Lin S, Zhu X, Shen Z, Lu G, et al. Transcriptional and epigenetic regulation of human microRNAs. Cancer Lett. 2013;331(1):1–10.PubMedCrossRef Wang Z, Yao H, Lin S, Zhu X, Shen Z, Lu G, et al. Transcriptional and epigenetic regulation of human microRNAs. Cancer Lett. 2013;331(1):1–10.PubMedCrossRef
9.
go back to reference Baer C, Claus R, Plass C. Genome-wide epigenetic regulation of miRNAs in cancer. Cancer Res. 2013;73(2):473–7.PubMedCrossRef Baer C, Claus R, Plass C. Genome-wide epigenetic regulation of miRNAs in cancer. Cancer Res. 2013;73(2):473–7.PubMedCrossRef
10.
go back to reference Neel JC, Lebrun JJ. Activin and TGFbeta regulate expression of the microRNA-181 family to promote cell migration and invasion in breast cancer cells. Cell Signal. 2013;25(7):1556–66.PubMedCrossRef Neel JC, Lebrun JJ. Activin and TGFbeta regulate expression of the microRNA-181 family to promote cell migration and invasion in breast cancer cells. Cell Signal. 2013;25(7):1556–66.PubMedCrossRef
11.
go back to reference Ciafre SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G, et al. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun. 2005;334(4):1351–8.PubMedCrossRef Ciafre SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G, et al. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun. 2005;334(4):1351–8.PubMedCrossRef
12.
go back to reference Gao W, Yu Y, Cao H, Shen H, Li X, Pan S, et al. Deregulated expression of miR-21, miR-143 and miR-181a in non small cell lung cancer is related to clinicopathologic characteristics or patient prognosis. Biomed Pharmacother. 2010;64(6):399–408.PubMedCrossRef Gao W, Yu Y, Cao H, Shen H, Li X, Pan S, et al. Deregulated expression of miR-21, miR-143 and miR-181a in non small cell lung cancer is related to clinicopathologic characteristics or patient prognosis. Biomed Pharmacother. 2010;64(6):399–408.PubMedCrossRef
13.
go back to reference Shi L, Cheng Z, Zhang J, Li R, Zhao P, Fu Z, et al. hsa-mir-181a and hsa-mir-181b function as tumor suppressors in human glioma cells. Brain Res. 2008;1236:185–93.PubMedCrossRef Shi L, Cheng Z, Zhang J, Li R, Zhao P, Fu Z, et al. hsa-mir-181a and hsa-mir-181b function as tumor suppressors in human glioma cells. Brain Res. 2008;1236:185–93.PubMedCrossRef
14.
go back to reference Miller TE, Ghoshal K, Ramaswamy B, Roy S, Datta J, Shapiro CL, et al. MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem. 2008;283(44):29897–903.PubMedPubMedCentralCrossRef Miller TE, Ghoshal K, Ramaswamy B, Roy S, Datta J, Shapiro CL, et al. MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J Biol Chem. 2008;283(44):29897–903.PubMedPubMedCentralCrossRef
15.
go back to reference Zhang X, Nie Y, Du Y, Cao J, Shen B, Li Y. MicroRNA-181a promotes gastric cancer by negatively regulating tumor suppressor KLF6. Tumour Biol. 2012;33(5):1589–97.PubMedCrossRef Zhang X, Nie Y, Du Y, Cao J, Shen B, Li Y. MicroRNA-181a promotes gastric cancer by negatively regulating tumor suppressor KLF6. Tumour Biol. 2012;33(5):1589–97.PubMedCrossRef
16.
go back to reference Ji J, Yamashita T, Budhu A, Forgues M, Jia HL, Li C, et al. Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells. Hepatology. 2009;50(2):472–80.PubMedPubMedCentralCrossRef Ji J, Yamashita T, Budhu A, Forgues M, Jia HL, Li C, et al. Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells. Hepatology. 2009;50(2):472–80.PubMedPubMedCentralCrossRef
17.
go back to reference Meng F, Glaser SS, Francis H, DeMorrow S, Han Y, Passarini JD, et al. Functional analysis of microRNAs in human hepatocellular cancer stem cells. J Cell Mol Med. 2012;16(1):160–73.PubMedPubMedCentralCrossRef Meng F, Glaser SS, Francis H, DeMorrow S, Han Y, Passarini JD, et al. Functional analysis of microRNAs in human hepatocellular cancer stem cells. J Cell Mol Med. 2012;16(1):160–73.PubMedPubMedCentralCrossRef
18.
go back to reference Yang CC, Hung PS, Wang PW, Liu CJ, Chu TH, Cheng HW, et al. miR-181 as a putative biomarker for lymph-node metastasis of oral squamous cell carcinoma. J Oral Pathol Med. 2011;40(5):397–404.PubMedCrossRef Yang CC, Hung PS, Wang PW, Liu CJ, Chu TH, Cheng HW, et al. miR-181 as a putative biomarker for lymph-node metastasis of oral squamous cell carcinoma. J Oral Pathol Med. 2011;40(5):397–404.PubMedCrossRef
19.
go back to reference Jones KB, Salah Z, Del Mare S, Galasso M, Gaudio E, Nuovo GJ, et al. miRNA signatures associate with pathogenesis and progression of osteosarcoma. Cancer Res. 2012;72(7):1865–77.PubMedPubMedCentralCrossRef Jones KB, Salah Z, Del Mare S, Galasso M, Gaudio E, Nuovo GJ, et al. miRNA signatures associate with pathogenesis and progression of osteosarcoma. Cancer Res. 2012;72(7):1865–77.PubMedPubMedCentralCrossRef
20.
go back to reference Hu H, Zhang Y, Cai XH, Huang JF, Cai L. Changes in microRNA expression in the MG-63 osteosarcoma cell line compared with osteoblasts. Oncol Lett. 2012;4(5):1037–42.PubMedPubMedCentral Hu H, Zhang Y, Cai XH, Huang JF, Cai L. Changes in microRNA expression in the MG-63 osteosarcoma cell line compared with osteoblasts. Oncol Lett. 2012;4(5):1037–42.PubMedPubMedCentral
21.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods. 2001;25(4):402–8.PubMedCrossRef Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods. 2001;25(4):402–8.PubMedCrossRef
22.
go back to reference Wang HJ, Ruan HJ, He XJ, Ma YY, Jiang XT, Xia YJ, et al. MicroRNA-101 is down-regulated in gastric cancer and involved in cell migration and invasion. Eur J Cancer. 2010;46(12):2295–303.PubMedCrossRef Wang HJ, Ruan HJ, He XJ, Ma YY, Jiang XT, Xia YJ, et al. MicroRNA-101 is down-regulated in gastric cancer and involved in cell migration and invasion. Eur J Cancer. 2010;46(12):2295–303.PubMedCrossRef
23.
go back to reference Wang B, Hsu SH, Majumder S, Kutay H, Huang W, Jacob ST, et al. TGFbeta-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3. Oncogene. 2010;29(12):1787–97.PubMedPubMedCentralCrossRef Wang B, Hsu SH, Majumder S, Kutay H, Huang W, Jacob ST, et al. TGFbeta-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3. Oncogene. 2010;29(12):1787–97.PubMedPubMedCentralCrossRef
25.
go back to reference Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature. 1990;348(6299):334–6.PubMedCrossRef Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature. 1990;348(6299):334–6.PubMedCrossRef
Metadata
Title
MicroRNA 181a improves proliferation and invasion, suppresses apoptosis of osteosarcoma cell
Authors
Zhu Jianwei
Liu Fan
Liu Xiancheng
Bai Enzhong
Li Shuai
Li Can
Publication date
01-12-2013
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 6/2013
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-013-0902-0

Other articles of this Issue 6/2013

Tumor Biology 6/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine