Skip to main content
Top
Published in: Tumor Biology 1/2013

01-02-2013 | Research Article

MiR-210 expression in tumor tissue and in vitro effects of its silencing in renal cell carcinoma

Authors: Martina Redova, Alexandr Poprach, Andrej Besse, Robert Iliev, Jana Nekvindova, Radek Lakomy, Lenka Radova, Marek Svoboda, Jan Dolezel, Rostislav Vyzula, Ondrej Slaby

Published in: Tumor Biology | Issue 1/2013

Login to get access

Abstract

Renal cell carcinoma (RCC) is the most common neoplasm of adult kidney accounting for about 3 % of adult malignancies. MicroRNAs (miRNAs) are a class of naturally occurring, short non-coding RNAs that regulate gene expression at the post-transcriptional level. We determined global miRNA expression profiles of RCC and parallel renal parenchyma tissues by using quantitative reverse transcriptase-polymerase chain reaction-based TaqMan low-density arrays. Afterward, we validated the difference in miR-210 expression levels on the larger group of RCC patients (35 RCC versus 10 non-tumorous parenchyma samples). Functional in vitro experiments were performed on ACHN and CAKI-2 RCC cell lines transfected with miRNA-210 inhibitor. Cell viability, apoptosis, cell cycle, scratch wound migration assay, and invasion assay (xCELLigence) were performed. We have identified original ccRCC-specific miRNA signature in clinical samples (73 miRNAs were significantly downregulated and five miRNAs upregulated (P < 0.003)). Increased expression levels of miR-210 in RCC tumor tissue were independently validated. We observed decreased viability of ACHN and CAKI-2 cells and accumulation of CAKI-2 in G2 phase of cell cycle after silencing of miR-210 expression. Downregulation of miR-210 also reduced the migratory and invasive potential of ACHN metastatic RCC cells. Moreover, we showed downregulation of HIF1a protein in both cell lines after miR-210 silencing indicating participation of miR-210 in hypoxic processes of RCC not only through regulation of its target mRNAs but also by indirect regulation of HIF1a. To our knowledge, this is the first report to show miR-210 regulatory effects on cell migration, invasive potential, and HIF1a protein in RCC cells.
Literature
1.
go back to reference Campbell SC, Novick AC, Bukowski RM. Renal tumors. In: Wein AJ, Kavoussi LR, Novick AC, et al., editors. Campbell-Wals Urology. 9th ed. Philadelphia: Saunders; 2007. p. 1567–637. Campbell SC, Novick AC, Bukowski RM. Renal tumors. In: Wein AJ, Kavoussi LR, Novick AC, et al., editors. Campbell-Wals Urology. 9th ed. Philadelphia: Saunders; 2007. p. 1567–637.
2.
go back to reference Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10:704–14.PubMedCrossRef Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10:704–14.PubMedCrossRef
3.
4.
5.
go back to reference Chow TF, Youssef YM, Lianidou E, Romaschin AD, Honey RJ, Stewart R, et al. Differential expression profiling of microRNAs and their potential involvement in renal cell carcinoma pathogenesis. Clin Biochem. 2010;43:150–8.PubMedCrossRef Chow TF, Youssef YM, Lianidou E, Romaschin AD, Honey RJ, Stewart R, et al. Differential expression profiling of microRNAs and their potential involvement in renal cell carcinoma pathogenesis. Clin Biochem. 2010;43:150–8.PubMedCrossRef
6.
go back to reference Nakada C, Matsuura K, Tsukamoto Y, Tanigawa M, Yoshimoto T, Narimatsu T, et al. Genome-wide microRNA expression profiling in renal cell carcinoma: significant down-regulation of miR-141 and miR-200c. J Pathol. 2008;216:418–27.PubMedCrossRef Nakada C, Matsuura K, Tsukamoto Y, Tanigawa M, Yoshimoto T, Narimatsu T, et al. Genome-wide microRNA expression profiling in renal cell carcinoma: significant down-regulation of miR-141 and miR-200c. J Pathol. 2008;216:418–27.PubMedCrossRef
7.
go back to reference Slaby O, Jancovicova J, Lakomy R, Svoboda M, Poprach A, Fabian P, et al. Expression of miRNA-106b in conventional renal cell carcinoma is a potential marker for prediction of early metastasis after nephrectomy. J Exp Clin Cancer Res. 2010;29:90.PubMedCrossRef Slaby O, Jancovicova J, Lakomy R, Svoboda M, Poprach A, Fabian P, et al. Expression of miRNA-106b in conventional renal cell carcinoma is a potential marker for prediction of early metastasis after nephrectomy. J Exp Clin Cancer Res. 2010;29:90.PubMedCrossRef
8.
go back to reference Giannakakis A, Sandaltzopoulos R, Greshock J, Liang S, Huang J, Hasegawa K, et al. MiR-210 links hypoxia with cell cycle regulation and is deleted in human epithelial ovarian cancer. Cancer Biol Ther. 2008;7:255–64.PubMedCrossRef Giannakakis A, Sandaltzopoulos R, Greshock J, Liang S, Huang J, Hasegawa K, et al. MiR-210 links hypoxia with cell cycle regulation and is deleted in human epithelial ovarian cancer. Cancer Biol Ther. 2008;7:255–64.PubMedCrossRef
9.
go back to reference White NM, Yousef GM. MicroRNAs: exploring a new dimension in the pathogenesis of kidney cancer. BMC Med. 2010;8:65.PubMedCrossRef White NM, Yousef GM. MicroRNAs: exploring a new dimension in the pathogenesis of kidney cancer. BMC Med. 2010;8:65.PubMedCrossRef
10.
go back to reference Reimers M, Carey VJ. Bioconductor: an open source framework for bioinformatics and computational biology. Methods Enzymol. 2006;411:119–34.PubMedCrossRef Reimers M, Carey VJ. Bioconductor: an open source framework for bioinformatics and computational biology. Methods Enzymol. 2006;411:119–34.PubMedCrossRef
11.
go back to reference Slaby O, Svoboda M, Michalek J, Vyzula R. MicroRNAs in colorectal cancer: translation of molecular biology into clinical application. Mol Cancer. 2009;8:102.PubMedCrossRef Slaby O, Svoboda M, Michalek J, Vyzula R. MicroRNAs in colorectal cancer: translation of molecular biology into clinical application. Mol Cancer. 2009;8:102.PubMedCrossRef
12.
go back to reference Redova M, Svoboda M, Slaby O. MicroRNAs and their target gene networks in renal cell carcinoma. Biochem Biophys Res Commun. 2011;405:153–6.PubMedCrossRef Redova M, Svoboda M, Slaby O. MicroRNAs and their target gene networks in renal cell carcinoma. Biochem Biophys Res Commun. 2011;405:153–6.PubMedCrossRef
13.
go back to reference Chen Y, Stallings RL. Differential patterns of microRNA expression in neuroblastoma are correlated with prognosis, differentiation, and apoptosis. Cancer Res. 2007;67:976–83.PubMedCrossRef Chen Y, Stallings RL. Differential patterns of microRNA expression in neuroblastoma are correlated with prognosis, differentiation, and apoptosis. Cancer Res. 2007;67:976–83.PubMedCrossRef
14.
go back to reference Zhou L, Chen J, Li Z, Li X, Hu X, Huang Y, et al. Integrated profiling of microRNAs and mRNAs: microRNAs located on Xq27.3 associate with clear cell renal cell carcinoma. PLoS One. 2010;5:e15224.PubMedCrossRef Zhou L, Chen J, Li Z, Li X, Hu X, Huang Y, et al. Integrated profiling of microRNAs and mRNAs: microRNAs located on Xq27.3 associate with clear cell renal cell carcinoma. PLoS One. 2010;5:e15224.PubMedCrossRef
15.
go back to reference Heinzelmann J, Henning B, Sanjmyatav J, Posorski N, Steiner T, Wunderlich H, et al. Specific miRNA signatures are associated with metastasis and poor prognosis in clear cell renal cell carcinoma. World Urol. 2011;29:367–73.CrossRef Heinzelmann J, Henning B, Sanjmyatav J, Posorski N, Steiner T, Wunderlich H, et al. Specific miRNA signatures are associated with metastasis and poor prognosis in clear cell renal cell carcinoma. World Urol. 2011;29:367–73.CrossRef
16.
go back to reference Song KH, Li T, Owsley E, Chiang JY. A putative role of micro RNA in regulation of cholesterol 7alpha-hydroxylase expression in human hepatocytes. J Lipid Res. 2010;51:2223–33.PubMedCrossRef Song KH, Li T, Owsley E, Chiang JY. A putative role of micro RNA in regulation of cholesterol 7alpha-hydroxylase expression in human hepatocytes. J Lipid Res. 2010;51:2223–33.PubMedCrossRef
17.
go back to reference Xu Y, Xia F, Ma L, Shan J, Shen J, Yang Z, et al. MicroRNA-122 sensitizes HCC cancer cells to adriamycin and vincristine through modulating expression of MDR and inducing cell cycle arrest. Cancer Lett. 2011;310:160–9.PubMed Xu Y, Xia F, Ma L, Shan J, Shen J, Yang Z, et al. MicroRNA-122 sensitizes HCC cancer cells to adriamycin and vincristine through modulating expression of MDR and inducing cell cycle arrest. Cancer Lett. 2011;310:160–9.PubMed
18.
go back to reference Gui J, Tian Y, Wen X, Zhang W, Zhang P, Gao J. Serum microRNA characterization identifies miR-885-5p as a potential marker for detecting liver pathologies. Clin Sci (Lond). 2011;120:183–93.CrossRef Gui J, Tian Y, Wen X, Zhang W, Zhang P, Gao J. Serum microRNA characterization identifies miR-885-5p as a potential marker for detecting liver pathologies. Clin Sci (Lond). 2011;120:183–93.CrossRef
19.
go back to reference Garzon R, Pichiorri F, Palumbo T, Visentini M, Aqeilan R, Cimmino A, et al. MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia. Oncogene. 2007;26:4148–57.PubMedCrossRef Garzon R, Pichiorri F, Palumbo T, Visentini M, Aqeilan R, Cimmino A, et al. MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia. Oncogene. 2007;26:4148–57.PubMedCrossRef
20.
go back to reference Lowery AJ, Miller N, Devaney A, McNeill RE, Davoren PA, Lemetre C, et al. MicroRNA signatures predict oestrogen receptor, progesterone receptor and HER2/neu receptor status in breast cancer. Breast Cancer Res. 2009;11:R27.PubMedCrossRef Lowery AJ, Miller N, Devaney A, McNeill RE, Davoren PA, Lemetre C, et al. MicroRNA signatures predict oestrogen receptor, progesterone receptor and HER2/neu receptor status in breast cancer. Breast Cancer Res. 2009;11:R27.PubMedCrossRef
21.
go back to reference Huang Y, Dai Y, Yang J, Chen T, Yin Y, Tang M, et al. Microarray analysis of microRNA expression in renal clear cell carcinoma. Eur J Surg Oncol. 2009;35:1119–23.PubMedCrossRef Huang Y, Dai Y, Yang J, Chen T, Yin Y, Tang M, et al. Microarray analysis of microRNA expression in renal clear cell carcinoma. Eur J Surg Oncol. 2009;35:1119–23.PubMedCrossRef
22.
go back to reference Seliger B, Jasinski S, Dressler SP, Marincola FM, Recktenwald CV, Wang E, Lichtenfels R. Linkage of microRNA and proteome-based profiling data sets: a perspective for the priorization of candidate biomarkers in renal cell carcinoma? J Proteome Res. 2011;10:191–9.PubMedCrossRef Seliger B, Jasinski S, Dressler SP, Marincola FM, Recktenwald CV, Wang E, Lichtenfels R. Linkage of microRNA and proteome-based profiling data sets: a perspective for the priorization of candidate biomarkers in renal cell carcinoma? J Proteome Res. 2011;10:191–9.PubMedCrossRef
23.
go back to reference White NM, Bao TT, Grigull J, Youssef YM, Girgis A, Diamandis M, et al. miRNA profiling for clear cell renal cell carcinoma: biomarker discovery and identification of potential controls and consequences of miRNA dysregulation. J Urol. 2011;186:1077–83.PubMedCrossRef White NM, Bao TT, Grigull J, Youssef YM, Girgis A, Diamandis M, et al. miRNA profiling for clear cell renal cell carcinoma: biomarker discovery and identification of potential controls and consequences of miRNA dysregulation. J Urol. 2011;186:1077–83.PubMedCrossRef
24.
go back to reference Valera VA, Walter BA, Linehan WM, Merino MJ. Regulatory effects of microRNA-92 (miR-92) on VHL gene expression and the hypoxic activation of miR-210 in clear cell renal cell carcinoma. J Cancer. 2011;2:515–26.PubMedCrossRef Valera VA, Walter BA, Linehan WM, Merino MJ. Regulatory effects of microRNA-92 (miR-92) on VHL gene expression and the hypoxic activation of miR-210 in clear cell renal cell carcinoma. J Cancer. 2011;2:515–26.PubMedCrossRef
25.
go back to reference Chan SY, Loscalzo J. MicroRNA-210: a unique and pleiotropic hypoxamir. Cell Cycle. 2011;9:1072–83.CrossRef Chan SY, Loscalzo J. MicroRNA-210: a unique and pleiotropic hypoxamir. Cell Cycle. 2011;9:1072–83.CrossRef
26.
go back to reference Nakada C, Tsukamoto Y, Matsuura K, Nguyen TL, Hijiya N, Uchida T, et al. Overexpression of miR-210, a downstream target of HIF1α, causes centrosome amplification in renal carcinoma cells. J Pathol. 2011;224:280–8.PubMedCrossRef Nakada C, Tsukamoto Y, Matsuura K, Nguyen TL, Hijiya N, Uchida T, et al. Overexpression of miR-210, a downstream target of HIF1α, causes centrosome amplification in renal carcinoma cells. J Pathol. 2011;224:280–8.PubMedCrossRef
27.
go back to reference Rothé F, Ignatiadis M, Chaboteaux C, Haibe-Kains B, Kheddoumi N, Majjaj S, et al. Global microRNA expression profiling identifies MiR-210 associated with tumor proliferation, invasion and poor clinical outcome in breast cancer. PLoS One. 2011;6:e20980.PubMedCrossRef Rothé F, Ignatiadis M, Chaboteaux C, Haibe-Kains B, Kheddoumi N, Majjaj S, et al. Global microRNA expression profiling identifies MiR-210 associated with tumor proliferation, invasion and poor clinical outcome in breast cancer. PLoS One. 2011;6:e20980.PubMedCrossRef
28.
go back to reference Zhang Z, Sun H, Dai H, Walsh RM, Imakura M, Schelter J, et al. MicroRNA miR-210 modulates cellular response to hypoxia through the MYC antagonist MNT. Cell Cycle. 2009;8:2756–68.PubMedCrossRef Zhang Z, Sun H, Dai H, Walsh RM, Imakura M, Schelter J, et al. MicroRNA miR-210 modulates cellular response to hypoxia through the MYC antagonist MNT. Cell Cycle. 2009;8:2756–68.PubMedCrossRef
29.
go back to reference Fasanaro P, D’Alessandra Y, Di Stefano V, Melchionna R, Romani S, Pompilio G. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand ephrin-A3. J Biol Chem. 2008;283:15878–83.PubMedCrossRef Fasanaro P, D’Alessandra Y, Di Stefano V, Melchionna R, Romani S, Pompilio G. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand ephrin-A3. J Biol Chem. 2008;283:15878–83.PubMedCrossRef
30.
go back to reference Kelly TJ, Souza AL, Clish CB, Puigserver P. A hypoxia-induced positive feedback loop promotes hypoxia-inducible factor 1alpha stability through miR-210 suppression of glycerol-3-phosphate dehydrogenase 1-like. Mol Cell Biol. 2011;31:2696–706.PubMedCrossRef Kelly TJ, Souza AL, Clish CB, Puigserver P. A hypoxia-induced positive feedback loop promotes hypoxia-inducible factor 1alpha stability through miR-210 suppression of glycerol-3-phosphate dehydrogenase 1-like. Mol Cell Biol. 2011;31:2696–706.PubMedCrossRef
Metadata
Title
MiR-210 expression in tumor tissue and in vitro effects of its silencing in renal cell carcinoma
Authors
Martina Redova
Alexandr Poprach
Andrej Besse
Robert Iliev
Jana Nekvindova
Radek Lakomy
Lenka Radova
Marek Svoboda
Jan Dolezel
Rostislav Vyzula
Ondrej Slaby
Publication date
01-02-2013
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 1/2013
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-012-0573-2

Other articles of this Issue 1/2013

Tumor Biology 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine