Skip to main content
Top
Published in: Insights into Imaging 3/2016

Open Access 01-06-2016 | Review

Reporting knee meniscal tears: technical aspects, typical pitfalls and how to avoid them

Authors: Nicolae V. Bolog, Gustav Andreisek

Published in: Insights into Imaging | Issue 3/2016

Login to get access

Abstract

Magnetic resonance imaging (MRI) is the most accurate imaging technique in the diagnosis of meniscal lesions and represents a standard tool in knee evaluation. MRI plays a critical role in influencing the treatment decision and enables information that would obviate unnecessary surgery including diagnostic arthroscopy. An accurate interpretation of the knee depends on several factors, starting with technical aspects including radiofrequency coils, imaging protocol and magnetic field strength. The use of dedicated high-resolution orthopaedic coils with a different number of integrated elements is mandatory in order to ensure high homogeneity of the signal and high-resolution images. The clinical imaging protocol of the knee includes different MRI sequences with high-spatial resolution in all orientations: sagittal, coronal, and axial. Usually, the slice thickness is 3 mm or less, even with standard two-dimensional fast spin echo sequences. A common potential reason for pitfalls and errors of interpretation is the unawareness of the normal tibial attachments and capsular attachment of the menisci. Complete description of meniscal tears implies that the radiologist should be aware of the patterns and the complex classification of the lesions.

Teaching points

Technical factors may influence MRI interpretation.
Unawareness of the normal meniscal anatomy may lead to errors of interpretation.
Description of meniscal tears implies the knowledge of meniscal tear classification.
Literature
1.
go back to reference Zanetti M et al (2003) Patients with suspected meniscal tears: prevalence of abnormalities seen on MRI of 100 symptomatic and 100 contralateral asymptomatic knees. AJR Am J Roentgenol 181(3):635–641PubMedCrossRef Zanetti M et al (2003) Patients with suspected meniscal tears: prevalence of abnormalities seen on MRI of 100 symptomatic and 100 contralateral asymptomatic knees. AJR Am J Roentgenol 181(3):635–641PubMedCrossRef
2.
3.
go back to reference Metcalf MH, Barrett GR (2004) Prospective evaluation of 1485 meniscal tear patterns in patients with stable knees. Am J Sports Med 32(3):675–680PubMedCrossRef Metcalf MH, Barrett GR (2004) Prospective evaluation of 1485 meniscal tear patterns in patients with stable knees. Am J Sports Med 32(3):675–680PubMedCrossRef
4.
go back to reference Robinson S et al (2011) Meniscal tears: epidemiology and correlation between clinical and arthroscopic findings. J Bone Joint Surg Br 93-B(SUPP II) Robinson S et al (2011) Meniscal tears: epidemiology and correlation between clinical and arthroscopic findings. J Bone Joint Surg Br 93-B(SUPP II)
5.
go back to reference De Smet AA et al (2008) Clinical and MRI findings associated with false-positive knee MR diagnoses of medial meniscal tears. AJR Am J Roentgenol 191(1):93–99PubMedCrossRef De Smet AA et al (2008) Clinical and MRI findings associated with false-positive knee MR diagnoses of medial meniscal tears. AJR Am J Roentgenol 191(1):93–99PubMedCrossRef
6.
go back to reference Oei EH et al (2003) MR imaging of the menisci and cruciate ligaments: a systematic review. Radiology 226(3):837–848PubMedCrossRef Oei EH et al (2003) MR imaging of the menisci and cruciate ligaments: a systematic review. Radiology 226(3):837–848PubMedCrossRef
7.
go back to reference Rosas HG (2014) Magnetic resonance imaging of the meniscus. Magn Reson Imaging Clin N Am 22(4):493–516PubMedCrossRef Rosas HG (2014) Magnetic resonance imaging of the meniscus. Magn Reson Imaging Clin N Am 22(4):493–516PubMedCrossRef
8.
go back to reference Crues JV 3rd et al (1987) Meniscal tears of the knee: accuracy of MR imaging. Radiology 164(2):445–448PubMedCrossRef Crues JV 3rd et al (1987) Meniscal tears of the knee: accuracy of MR imaging. Radiology 164(2):445–448PubMedCrossRef
9.
go back to reference Rubin DA, Paletta GA Jr (2000) Current concepts and controversies in meniscal imaging. Magn Reson Imaging Clin N Am 8(2):243–270PubMed Rubin DA, Paletta GA Jr (2000) Current concepts and controversies in meniscal imaging. Magn Reson Imaging Clin N Am 8(2):243–270PubMed
10.
go back to reference Kaplan PA et al (1991) MR of the knee: the significance of high signal in the meniscus that does not clearly extend to the surface. AJR Am J Roentgenol 156(2):333–336PubMedCrossRef Kaplan PA et al (1991) MR of the knee: the significance of high signal in the meniscus that does not clearly extend to the surface. AJR Am J Roentgenol 156(2):333–336PubMedCrossRef
12.
go back to reference Chang G et al (2015) 7 Tesla MRI of bone microarchitecture discriminates between women without and with fragility fractures who do not differ by bone mineral density. J Bone Miner Metab 33(3):285–293PubMedPubMedCentralCrossRef Chang G et al (2015) 7 Tesla MRI of bone microarchitecture discriminates between women without and with fragility fractures who do not differ by bone mineral density. J Bone Miner Metab 33(3):285–293PubMedPubMedCentralCrossRef
13.
go back to reference Magee T, Williams D (2004) Detection of meniscal tears and marrow lesions using coronal MRI. AJR Am J Roentgenol 183(5):1469–1473PubMedCrossRef Magee T, Williams D (2004) Detection of meniscal tears and marrow lesions using coronal MRI. AJR Am J Roentgenol 183(5):1469–1473PubMedCrossRef
14.
go back to reference De Smet AA et al (1993) MR diagnosis of meniscal tears of the knee: importance of high signal in the meniscus that extends to the surface. AJR Am J Roentgenol 161(1):101–107PubMedCrossRef De Smet AA et al (1993) MR diagnosis of meniscal tears of the knee: importance of high signal in the meniscus that extends to the surface. AJR Am J Roentgenol 161(1):101–107PubMedCrossRef
15.
go back to reference Lee SY, Jee WH, Kim JM (2008) Radial tear of the medial meniscal root: reliability and accuracy of MRI for diagnosis. AJR Am J Roentgenol 191(1):81–85PubMedCrossRef Lee SY, Jee WH, Kim JM (2008) Radial tear of the medial meniscal root: reliability and accuracy of MRI for diagnosis. AJR Am J Roentgenol 191(1):81–85PubMedCrossRef
16.
go back to reference Tarhan NC et al (2004) Meniscal tears: role of axial MRI alone and in combination with other imaging planes. AJR Am J Roentgenol 183(1):9–15PubMedCrossRef Tarhan NC et al (2004) Meniscal tears: role of axial MRI alone and in combination with other imaging planes. AJR Am J Roentgenol 183(1):9–15PubMedCrossRef
17.
go back to reference Araki Y et al (1992) MR diagnosis of meniscal tears of the knee: value of axial three-dimensional Fourier transformation GRASS images. AJR Am J Roentgenol 158(3):587–590PubMedCrossRef Araki Y et al (1992) MR diagnosis of meniscal tears of the knee: value of axial three-dimensional Fourier transformation GRASS images. AJR Am J Roentgenol 158(3):587–590PubMedCrossRef
18.
go back to reference Aubel S et al (1992) MR knee imaging: axial 3DFT GRASS pulse sequence versus spin-echo imaging for detecting meniscal tears. Magn Reson Imaging 10(4):531–539PubMedCrossRef Aubel S et al (1992) MR knee imaging: axial 3DFT GRASS pulse sequence versus spin-echo imaging for detecting meniscal tears. Magn Reson Imaging 10(4):531–539PubMedCrossRef
19.
go back to reference Hopper MA, Robinson P, Grainger AJ (2011) Meniscal tear evaluation. Comparison of a conventional spin-echo proton density sequence with a fast spin-echo sequence utilizing a 512 × 358 matrix size. Clin Radiol 66(4):329–333PubMedCrossRef Hopper MA, Robinson P, Grainger AJ (2011) Meniscal tear evaluation. Comparison of a conventional spin-echo proton density sequence with a fast spin-echo sequence utilizing a 512 × 358 matrix size. Clin Radiol 66(4):329–333PubMedCrossRef
20.
go back to reference Jung JY et al (2009) Diagnosis of internal derangement of the knee at 3.0-T MR imaging: 3D isotropic intermediate-weighted versus 2D sequences. Radiology 253(3):780–787PubMedCrossRef Jung JY et al (2009) Diagnosis of internal derangement of the knee at 3.0-T MR imaging: 3D isotropic intermediate-weighted versus 2D sequences. Radiology 253(3):780–787PubMedCrossRef
21.
go back to reference Kijowski R et al (2009) Knee joint: comprehensive assessment with 3D isotropic resolution fast spin-echo MR imaging--diagnostic performance compared with that of conventional MR imaging at 3.0 T. Radiology 252(2):486–495PubMedCrossRef Kijowski R et al (2009) Knee joint: comprehensive assessment with 3D isotropic resolution fast spin-echo MR imaging--diagnostic performance compared with that of conventional MR imaging at 3.0 T. Radiology 252(2):486–495PubMedCrossRef
22.
go back to reference Notohamiprodjo M et al (2009) MRI of the knee at 3T: first clinical results with an isotropic PDfs-weighted 3D-TSE-sequence. Invest Radiol 44(9):585–597PubMedCrossRef Notohamiprodjo M et al (2009) MRI of the knee at 3T: first clinical results with an isotropic PDfs-weighted 3D-TSE-sequence. Invest Radiol 44(9):585–597PubMedCrossRef
23.
go back to reference Duc SR et al (2008) Internal knee derangement assessed with 3-minute three-dimensional isovoxel true FISP MR sequence: preliminary study. Radiology 246(2):526–535PubMedCrossRef Duc SR et al (2008) Internal knee derangement assessed with 3-minute three-dimensional isovoxel true FISP MR sequence: preliminary study. Radiology 246(2):526–535PubMedCrossRef
24.
go back to reference Ristow O et al (2009) Isotropic 3D fast spin-echo imaging versus standard 2D imaging at 3.0 T of the knee--image quality and diagnostic performance. Eur Radiol 19(5):1263–1272PubMedCrossRef Ristow O et al (2009) Isotropic 3D fast spin-echo imaging versus standard 2D imaging at 3.0 T of the knee--image quality and diagnostic performance. Eur Radiol 19(5):1263–1272PubMedCrossRef
25.
go back to reference Jung JY et al (2012) Meniscal tear configurations: categorization with 3D isotropic turbo spin-echo MRI compared with conventional MRI at 3 T. AJR Am J Roentgenol 198(2):W173–W180PubMedCrossRef Jung JY et al (2012) Meniscal tear configurations: categorization with 3D isotropic turbo spin-echo MRI compared with conventional MRI at 3 T. AJR Am J Roentgenol 198(2):W173–W180PubMedCrossRef
26.
go back to reference Kijowski R et al (2012) Evaluation of the menisci of the knee joint using three-dimensional isotropic resolution fast spin-echo imaging: diagnostic performance in 250 patients with surgical correlation. Skeletal Radiol 41(2):169–178PubMedCrossRef Kijowski R et al (2012) Evaluation of the menisci of the knee joint using three-dimensional isotropic resolution fast spin-echo imaging: diagnostic performance in 250 patients with surgical correlation. Skeletal Radiol 41(2):169–178PubMedCrossRef
27.
go back to reference Andreisek G et al (2010) Synthetic-echo time postprocessing technique for generating images with variable T2-weighted contrast: diagnosis of meniscal and cartilage abnormalities of the knee. Radiology 254(1):188–199PubMedCrossRef Andreisek G et al (2010) Synthetic-echo time postprocessing technique for generating images with variable T2-weighted contrast: diagnosis of meniscal and cartilage abnormalities of the knee. Radiology 254(1):188–199PubMedCrossRef
28.
go back to reference European Society of, R (2015) Magnetic Resonance Fingerprinting - a promising new approach to obtain standardized imaging biomarkers from MRI. Insights Imaging 6(2):163–165CrossRef European Society of, R (2015) Magnetic Resonance Fingerprinting - a promising new approach to obtain standardized imaging biomarkers from MRI. Insights Imaging 6(2):163–165CrossRef
29.
go back to reference Setsompop K et al (2012) Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn Reson Med 67(5):1210–1224PubMedPubMedCentralCrossRef Setsompop K et al (2012) Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn Reson Med 67(5):1210–1224PubMedPubMedCentralCrossRef
30.
go back to reference Filli L et al (2015) Simultaneous multislice echo planar imaging with blipped controlled aliasing in parallel imaging results in higher acceleration: a promising technique for accelerated diffusion tensor imaging of skeletal muscle. Invest Radiol 50(7):456–463PubMedCrossRef Filli L et al (2015) Simultaneous multislice echo planar imaging with blipped controlled aliasing in parallel imaging results in higher acceleration: a promising technique for accelerated diffusion tensor imaging of skeletal muscle. Invest Radiol 50(7):456–463PubMedCrossRef
31.
go back to reference Saupe N et al (2005) MR imaging of the wrist: comparison between 1.5- and 3-T MR imaging--preliminary experience. Radiology 234(1):256–264PubMedCrossRef Saupe N et al (2005) MR imaging of the wrist: comparison between 1.5- and 3-T MR imaging--preliminary experience. Radiology 234(1):256–264PubMedCrossRef
32.
go back to reference Thakkar RS et al (2012) Spectrum of high-resolution MRI findings in diabetic neuropathy. AJR Am J Roentgenol 199(2):407–412PubMedCrossRef Thakkar RS et al (2012) Spectrum of high-resolution MRI findings in diabetic neuropathy. AJR Am J Roentgenol 199(2):407–412PubMedCrossRef
33.
go back to reference Chhabra A et al (2013) Anatomic MR imaging and functional diffusion tensor imaging of peripheral nerve tumors and tumorlike conditions. AJNR Am J Neuroradiol 34(4):802–807PubMedPubMedCentralCrossRef Chhabra A et al (2013) Anatomic MR imaging and functional diffusion tensor imaging of peripheral nerve tumors and tumorlike conditions. AJNR Am J Neuroradiol 34(4):802–807PubMedPubMedCentralCrossRef
34.
go back to reference Juras V et al (2012) Sodium MR imaging of Achilles tendinopathy at 7 T: preliminary results. Radiology 262(1):199–205PubMedCrossRef Juras V et al (2012) Sodium MR imaging of Achilles tendinopathy at 7 T: preliminary results. Radiology 262(1):199–205PubMedCrossRef
35.
go back to reference Zbyn S et al (2012) Evaluation of native hyaline cartilage and repair tissue after two cartilage repair surgery techniques with 23Na MR imaging at 7 T: initial experience. Osteoarthritis Cartilage 20(8):837–845PubMedCrossRef Zbyn S et al (2012) Evaluation of native hyaline cartilage and repair tissue after two cartilage repair surgery techniques with 23Na MR imaging at 7 T: initial experience. Osteoarthritis Cartilage 20(8):837–845PubMedCrossRef
36.
go back to reference Wurnig MC et al (2014) Characterization of trabecular bone density with ultra-short echo-time MRI at 1.5, 3.0 and 7.0 T--comparison with micro-computed tomography. NMR Biomed 27(10):1159–1166PubMedCrossRef Wurnig MC et al (2014) Characterization of trabecular bone density with ultra-short echo-time MRI at 1.5, 3.0 and 7.0 T--comparison with micro-computed tomography. NMR Biomed 27(10):1159–1166PubMedCrossRef
37.
go back to reference Trattnig S et al (2015) Clinical applications at ultrahigh field (7 T). Where does it make the difference? NMR Biomed Trattnig S et al (2015) Clinical applications at ultrahigh field (7 T). Where does it make the difference? NMR Biomed
38.
39.
go back to reference Nguyen JC et al (2014) MR imaging-based diagnosis and classification of meniscal tears. Radiographics 34(4):981–999PubMedCrossRef Nguyen JC et al (2014) MR imaging-based diagnosis and classification of meniscal tears. Radiographics 34(4):981–999PubMedCrossRef
40.
go back to reference Van Dyck P et al (2014) Comparison of 1.5- and 3-T MR imaging for evaluating the articular cartilage of the knee. Knee Surg Sports Traumatol Arthrosc 22(6):1376–1384PubMed Van Dyck P et al (2014) Comparison of 1.5- and 3-T MR imaging for evaluating the articular cartilage of the knee. Knee Surg Sports Traumatol Arthrosc 22(6):1376–1384PubMed
41.
go back to reference Bhatia S et al (2014) Meniscal root tears: significance, diagnosis, and treatment. Am J Sports Med 42(12):3016–3030PubMedCrossRef Bhatia S et al (2014) Meniscal root tears: significance, diagnosis, and treatment. Am J Sports Med 42(12):3016–3030PubMedCrossRef
42.
go back to reference Lerer DB et al (2004) The role of meniscal root pathology and radial meniscal tear in medial meniscal extrusion. Skeletal Radiol 33(10):569–574PubMedCrossRef Lerer DB et al (2004) The role of meniscal root pathology and radial meniscal tear in medial meniscal extrusion. Skeletal Radiol 33(10):569–574PubMedCrossRef
43.
44.
go back to reference Hein CN et al (2011) Effects of medial meniscal posterior horn avulsion and repair on meniscal displacement. Knee 18(3):189–192PubMedCrossRef Hein CN et al (2011) Effects of medial meniscal posterior horn avulsion and repair on meniscal displacement. Knee 18(3):189–192PubMedCrossRef
45.
go back to reference Shelbourne KD, Roberson TA, Gray T (2011) Long-term evaluation of posterior lateral meniscus root tears left in situ at the time of anterior cruciate ligament reconstruction. Am J Sports Med 39(7):1439–1443PubMedCrossRef Shelbourne KD, Roberson TA, Gray T (2011) Long-term evaluation of posterior lateral meniscus root tears left in situ at the time of anterior cruciate ligament reconstruction. Am J Sports Med 39(7):1439–1443PubMedCrossRef
46.
go back to reference Papalia R et al (2013) Meniscal root tears: from basic science to ultimate surgery. Br Med Bull 106:91–115PubMedCrossRef Papalia R et al (2013) Meniscal root tears: from basic science to ultimate surgery. Br Med Bull 106:91–115PubMedCrossRef
47.
go back to reference Brody JM et al (2006) Lateral meniscus root tear and meniscus extrusion with anterior cruciate ligament tear. Radiology 239(3):805–810PubMedCrossRef Brody JM et al (2006) Lateral meniscus root tear and meniscus extrusion with anterior cruciate ligament tear. Radiology 239(3):805–810PubMedCrossRef
48.
go back to reference Bin SI, Kim JM, Shin SJ (2004) Radial tears of the posterior horn of the medial meniscus. Arthroscopy 20(4):373–378PubMedCrossRef Bin SI, Kim JM, Shin SJ (2004) Radial tears of the posterior horn of the medial meniscus. Arthroscopy 20(4):373–378PubMedCrossRef
49.
go back to reference Ozkoc G et al (2008) Radial tears in the root of the posterior horn of the medial meniscus. Knee Surg Sports Traumatol Arthrosc 16(9):849–854PubMedCrossRef Ozkoc G et al (2008) Radial tears in the root of the posterior horn of the medial meniscus. Knee Surg Sports Traumatol Arthrosc 16(9):849–854PubMedCrossRef
50.
go back to reference Johnson DL et al (1995) Insertion-site anatomy of the human menisci: gross, arthroscopic, and topographical anatomy as a basis for meniscal transplantation. Arthroscopy 11(4):386–394PubMedCrossRef Johnson DL et al (1995) Insertion-site anatomy of the human menisci: gross, arthroscopic, and topographical anatomy as a basis for meniscal transplantation. Arthroscopy 11(4):386–394PubMedCrossRef
51.
go back to reference Ziegler CG et al (2011) Arthroscopically pertinent landmarks for tunnel positioning in single-bundle and double-bundle anterior cruciate ligament reconstructions. Am J Sports Med 39(4):743–752PubMedCrossRef Ziegler CG et al (2011) Arthroscopically pertinent landmarks for tunnel positioning in single-bundle and double-bundle anterior cruciate ligament reconstructions. Am J Sports Med 39(4):743–752PubMedCrossRef
52.
go back to reference Zantop T et al (2008) Tunnel positioning of anteromedial and posterolateral bundles in anatomic anterior cruciate ligament reconstruction: anatomic and radiographic findings. Am J Sports Med 36(1):65–72PubMedCrossRef Zantop T et al (2008) Tunnel positioning of anteromedial and posterolateral bundles in anatomic anterior cruciate ligament reconstruction: anatomic and radiographic findings. Am J Sports Med 36(1):65–72PubMedCrossRef
53.
go back to reference Johannsen AM et al (2012) Qualitative and quantitative anatomic analysis of the posterior root attachments of the medial and lateral menisci. Am J Sports Med 40(10):2342–2347PubMedCrossRef Johannsen AM et al (2012) Qualitative and quantitative anatomic analysis of the posterior root attachments of the medial and lateral menisci. Am J Sports Med 40(10):2342–2347PubMedCrossRef
54.
go back to reference Petersen W et al (2014) Posterior root tear of the medial and lateral meniscus. Arch Orthop Trauma Surg 134(2):237–255PubMedCrossRef Petersen W et al (2014) Posterior root tear of the medial and lateral meniscus. Arch Orthop Trauma Surg 134(2):237–255PubMedCrossRef
55.
go back to reference Kohn D, Moreno B (1995) Meniscus insertion anatomy as a basis for meniscus replacement: a morphological cadaveric study. Arthroscopy 11(1):96–103PubMedCrossRef Kohn D, Moreno B (1995) Meniscus insertion anatomy as a basis for meniscus replacement: a morphological cadaveric study. Arthroscopy 11(1):96–103PubMedCrossRef
56.
go back to reference Berlet GC, Fowler PJ (1998) The anterior horn of the medical meniscus. An anatomic study of its insertion. Am J Sports Med 26(4):540–543PubMed Berlet GC, Fowler PJ (1998) The anterior horn of the medical meniscus. An anatomic study of its insertion. Am J Sports Med 26(4):540–543PubMed
57.
go back to reference Messner K, Gao J (1998) The menisci of the knee joint. Anatomical and functional characteristics, and a rationale for clinical treatment. J Anat 193(Pt 2):161–178PubMedPubMedCentralCrossRef Messner K, Gao J (1998) The menisci of the knee joint. Anatomical and functional characteristics, and a rationale for clinical treatment. J Anat 193(Pt 2):161–178PubMedPubMedCentralCrossRef
58.
go back to reference Thompson WO et al (1991) Tibial meniscal dynamics using three-dimensional reconstruction of magnetic resonance images. Am J Sports Med 19(3):210–215, discussion 215–6PubMedCrossRef Thompson WO et al (1991) Tibial meniscal dynamics using three-dimensional reconstruction of magnetic resonance images. Am J Sports Med 19(3):210–215, discussion 215–6PubMedCrossRef
59.
go back to reference Jones AO et al (2006) Medial meniscus posterior root attachment injury and degeneration: MRI findings. Australas Radiol 50(4):306–313PubMedCrossRef Jones AO et al (2006) Medial meniscus posterior root attachment injury and degeneration: MRI findings. Australas Radiol 50(4):306–313PubMedCrossRef
60.
go back to reference Feucht MJ et al (2015) Risk factors for posterior lateral meniscus root tears in anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 23(1):140–145PubMedCrossRef Feucht MJ et al (2015) Risk factors for posterior lateral meniscus root tears in anterior cruciate ligament injuries. Knee Surg Sports Traumatol Arthrosc 23(1):140–145PubMedCrossRef
61.
go back to reference Muhle C et al (1999) Transverse ligament and its effect on meniscal motion. Correlation of kinematic MR imaging and anatomic sections. Invest Radiol 34(9):558–565PubMedCrossRef Muhle C et al (1999) Transverse ligament and its effect on meniscal motion. Correlation of kinematic MR imaging and anatomic sections. Invest Radiol 34(9):558–565PubMedCrossRef
62.
go back to reference de Abreu MR et al (2007) Anterior transverse ligament of the knee: MR imaging and anatomic study using clinical and cadaveric material with emphasis on its contribution to meniscal tears. Clin Imaging 31(3):194–201PubMedCrossRef de Abreu MR et al (2007) Anterior transverse ligament of the knee: MR imaging and anatomic study using clinical and cadaveric material with emphasis on its contribution to meniscal tears. Clin Imaging 31(3):194–201PubMedCrossRef
63.
go back to reference Sintzoff SA Jr et al (1991) Transverse geniculate ligament of the knee: appearance at plain radiography. Radiology 180(1):259PubMedCrossRef Sintzoff SA Jr et al (1991) Transverse geniculate ligament of the knee: appearance at plain radiography. Radiology 180(1):259PubMedCrossRef
64.
go back to reference Bolog NV, Andreisek G, Ulbrich E (2015) Meniscus, in MRI of the knee: a guide to evaluation and reporting, Bolog NV, Andreisek G, Ulbrich E, Ed. Springer Heidelberg, Germany. p. 65–93 Bolog NV, Andreisek G, Ulbrich E (2015) Meniscus, in MRI of the knee: a guide to evaluation and reporting, Bolog NV, Andreisek G, Ulbrich E, Ed. Springer Heidelberg, Germany. p. 65–93
65.
go back to reference Sanders TG et al (1999) Oblique meniscomeniscal ligament: another potential pitfall for a meniscal tear--anatomic description and appearance at MR imaging in three cases. Radiology 213(1):213–216PubMedCrossRef Sanders TG et al (1999) Oblique meniscomeniscal ligament: another potential pitfall for a meniscal tear--anatomic description and appearance at MR imaging in three cases. Radiology 213(1):213–216PubMedCrossRef
66.
go back to reference De Maeseneer M et al (2000) Three layers of the medial capsular and supporting structures of the knee: MR imaging-anatomic correlation. Radiographics 20:S83–S89PubMedCrossRef De Maeseneer M et al (2000) Three layers of the medial capsular and supporting structures of the knee: MR imaging-anatomic correlation. Radiographics 20:S83–S89PubMedCrossRef
67.
go back to reference Starok M et al (1997) Normal patellar retinaculum: MR and sonographic imaging with cadaveric correlation. AJR Am J Roentgenol 168(6):1493–1499PubMedCrossRef Starok M et al (1997) Normal patellar retinaculum: MR and sonographic imaging with cadaveric correlation. AJR Am J Roentgenol 168(6):1493–1499PubMedCrossRef
68.
go back to reference Fenn S, Datir A, Saifuddin A (2009) Synovial recesses of the knee: MR imaging review of anatomical and pathological features. Skeletal Radiol 38(4):317–328PubMedCrossRef Fenn S, Datir A, Saifuddin A (2009) Synovial recesses of the knee: MR imaging review of anatomical and pathological features. Skeletal Radiol 38(4):317–328PubMedCrossRef
69.
go back to reference De Maeseneer M et al (2002) Medial meniscocapsular separation: MR imaging criteria and diagnostic pitfalls. Eur J Radiol 41(3):242–252PubMedCrossRef De Maeseneer M et al (2002) Medial meniscocapsular separation: MR imaging criteria and diagnostic pitfalls. Eur J Radiol 41(3):242–252PubMedCrossRef
70.
go back to reference Bolog N, Hodler J (2007) MR imaging of the posterolateral corner of the knee. Skeletal Radiol 36(8):715–728PubMedCrossRef Bolog N, Hodler J (2007) MR imaging of the posterolateral corner of the knee. Skeletal Radiol 36(8):715–728PubMedCrossRef
71.
go back to reference Sussmann PS et al (2001) Development of the popliteomeniscal fasciculi in the fetal human knee joint. Arthroscopy 17(1):14–18PubMedCrossRef Sussmann PS et al (2001) Development of the popliteomeniscal fasciculi in the fetal human knee joint. Arthroscopy 17(1):14–18PubMedCrossRef
72.
go back to reference Diamantopoulos A et al (2005) The posterolateral corner of the knee: evaluation under microsurgical dissection. Arthroscopy 21(7):826–833PubMedCrossRef Diamantopoulos A et al (2005) The posterolateral corner of the knee: evaluation under microsurgical dissection. Arthroscopy 21(7):826–833PubMedCrossRef
73.
go back to reference LaPrade RF, Konowalchuk BK (2005) Popliteomeniscal fascicle tears causing symptomatic lateral compartment knee pain: diagnosis by the figure 4 test and treatment by open repair. Am J Sports Med 33(8):1231–1236PubMedCrossRef LaPrade RF, Konowalchuk BK (2005) Popliteomeniscal fascicle tears causing symptomatic lateral compartment knee pain: diagnosis by the figure 4 test and treatment by open repair. Am J Sports Med 33(8):1231–1236PubMedCrossRef
74.
go back to reference Heller L, Langman J (1964) The Menisco-Femoral Ligaments of the Human Knee. J Bone Joint Surg (Br) 46:307–313 Heller L, Langman J (1964) The Menisco-Femoral Ligaments of the Human Knee. J Bone Joint Surg (Br) 46:307–313
76.
go back to reference Weiss CB et al (1989) Non-operative treatment of meniscal tears. J Bone Joint Surg Am 71(6):811–822PubMed Weiss CB et al (1989) Non-operative treatment of meniscal tears. J Bone Joint Surg Am 71(6):811–822PubMed
77.
go back to reference DeHaven KE (1990) Decision-making factors in the treatment of meniscus lesions. Clin Orthop Relat Res 252:49–54PubMed DeHaven KE (1990) Decision-making factors in the treatment of meniscus lesions. Clin Orthop Relat Res 252:49–54PubMed
78.
go back to reference Vande Berg BC et al (2001) Lesions of the menisci of the knee: value of MR imaging criteria for recognition of unstable lesions. AJR Am J Roentgenol 176(3):771–776PubMedCrossRef Vande Berg BC et al (2001) Lesions of the menisci of the knee: value of MR imaging criteria for recognition of unstable lesions. AJR Am J Roentgenol 176(3):771–776PubMedCrossRef
79.
go back to reference Barber BR, McNally EG (2013) Meniscal injuries and imaging the postoperative meniscus. Radiol Clin North Am 51(3):371–391PubMedCrossRef Barber BR, McNally EG (2013) Meniscal injuries and imaging the postoperative meniscus. Radiol Clin North Am 51(3):371–391PubMedCrossRef
80.
go back to reference Yagishita K et al (2004) Healing potential of meniscal tears without repair in knees with anterior cruciate ligament reconstruction. Am J Sports Med 32(8):1953–1961PubMedCrossRef Yagishita K et al (2004) Healing potential of meniscal tears without repair in knees with anterior cruciate ligament reconstruction. Am J Sports Med 32(8):1953–1961PubMedCrossRef
Metadata
Title
Reporting knee meniscal tears: technical aspects, typical pitfalls and how to avoid them
Authors
Nicolae V. Bolog
Gustav Andreisek
Publication date
01-06-2016
Publisher
Springer Berlin Heidelberg
Published in
Insights into Imaging / Issue 3/2016
Electronic ISSN: 1869-4101
DOI
https://doi.org/10.1007/s13244-016-0472-y

Other articles of this Issue 3/2016

Insights into Imaging 3/2016 Go to the issue