Skip to main content
Top
Published in: Insights into Imaging 5/2014

Open Access 01-10-2014 | Pictorial Review

FDG-PET/CT pitfalls in oncological head and neck imaging

Authors: Bela S. Purohit, Angeliki Ailianou, Nicolas Dulguerov, Christoph D. Becker, Osman Ratib, Minerva Becker

Published in: Insights into Imaging | Issue 5/2014

Login to get access

Abstract

Objectives

Positron emission tomography-computed tomography (PET/CT) with fluorine-18-fluorodeoxy-D-glucose (FDG) has evolved from a research modality to an invaluable tool in head and neck cancer imaging. However, interpretation of FDG PET/CT studies may be difficult due to the inherently complex anatomical landmarks, certain physiological variants and unusual patterns of high FDG uptake in the head and neck. The purpose of this article is to provide a comprehensive approach to key imaging features and interpretation pitfalls of FDG-PET/CT of the head and neck and how to avoid them.

Methods

We review the pathophysiological mechanisms leading to potentially false-positive and false-negative assessments, and we discuss the complementary use of high-resolution contrast-enhanced head and neck PET/CT (HR HN PET/CT) and additional cross-sectional imaging techniques, including ultrasound (US) and magnetic resonance imaging (MRI).

Results

The commonly encountered false-positive PET/CT interpretation pitfalls are due to high FDG uptake by physiological causes, benign thyroid nodules, unilateral cranial nerve palsy and increased FDG uptake due to inflammation, recent chemoradiotherapy and surgery. False-negative findings are caused by lesion vicinity to structures with high glucose metabolism, obscuration of FDG uptake by dental hardware, inadequate PET scanner resolution and inherent low FDG-avidity of some tumours.

Conclusions

The interpreting physician must be aware of these unusual patterns of FDG uptake, as well as limitations of PET/CT as a modality, in order to avoid overdiagnosis of benign conditions as malignancy, as well as missing out on actual pathology.

Teaching points

Knowledge of key imaging features of physiological and non-physiological FDG uptake is essential for the interpretation of head and neck PET/CT studies.
Precise anatomical evaluation and correlation with contrast-enhanced CT, US or MRI avoid PET/CT misinterpretation.
Awareness of unusual FDG uptake patterns avoids overdiagnosis of benign conditions as malignancy.
Literature
1.
go back to reference Subramaniam RM, Truong M, Peller P, Sakai O, Mercier G (2010) Fluorodeoxyglucose-positron-emission tomography imaging of head and neck squamous cell cancer. AJNR Am J Neuroradiol 31:598–604PubMedCrossRef Subramaniam RM, Truong M, Peller P, Sakai O, Mercier G (2010) Fluorodeoxyglucose-positron-emission tomography imaging of head and neck squamous cell cancer. AJNR Am J Neuroradiol 31:598–604PubMedCrossRef
2.
go back to reference Blodgett TM, Fukui MB, Snyderman CH et al (2005) Combined PET-CT in the head and neck: part 1. Physiologic, altered physiologic, and artifactual FDG uptake. Radiographics 25:897–912PubMedCrossRef Blodgett TM, Fukui MB, Snyderman CH et al (2005) Combined PET-CT in the head and neck: part 1. Physiologic, altered physiologic, and artifactual FDG uptake. Radiographics 25:897–912PubMedCrossRef
3.
go back to reference Fukui MB, Blodgett TM, Snyderman CH et al (2005) Combined PET-CT in the head and neck: part 2. Diagn Pitfalls Oncol Imaging Radiogr 25:913–930 Fukui MB, Blodgett TM, Snyderman CH et al (2005) Combined PET-CT in the head and neck: part 2. Diagn Pitfalls Oncol Imaging Radiogr 25:913–930
4.
go back to reference Schöder H (2013) Head and neck cancer. In: Strauss HW, Mariani G, Volterrani D, Larson SM (eds) Nuclear oncology: pathophysiology and clinical applications. Springer, New York, pp 269–295CrossRef Schöder H (2013) Head and neck cancer. In: Strauss HW, Mariani G, Volterrani D, Larson SM (eds) Nuclear oncology: pathophysiology and clinical applications. Springer, New York, pp 269–295CrossRef
6.
go back to reference Kostakoglu L, Hardoff R, Mirtcheva R, Goldsmith SJ (2004) PET-CT fusion imaging in differentiating physiologic from pathologic FDG uptake. Radiographics 24:1411–1431PubMedCrossRef Kostakoglu L, Hardoff R, Mirtcheva R, Goldsmith SJ (2004) PET-CT fusion imaging in differentiating physiologic from pathologic FDG uptake. Radiographics 24:1411–1431PubMedCrossRef
7.
go back to reference El-Haddad G, Alavi A, Mavi A, Bural G, Zhuang H (2004) Normal variants in [18 F]-fluorodeoxyglucose PET imaging. Radiol Clin North Am 42:1063–1081PubMedCrossRef El-Haddad G, Alavi A, Mavi A, Bural G, Zhuang H (2004) Normal variants in [18 F]-fluorodeoxyglucose PET imaging. Radiol Clin North Am 42:1063–1081PubMedCrossRef
8.
go back to reference Bhargava P, Rahman S, Wendt J (2011) Atlas of confounding factors in head and neck PET/CT imaging. Clin Nucl Med 36:e20–e29PubMedCrossRef Bhargava P, Rahman S, Wendt J (2011) Atlas of confounding factors in head and neck PET/CT imaging. Clin Nucl Med 36:e20–e29PubMedCrossRef
9.
go back to reference Castaigne C, Muylle K, Flamen P (2006) Positron emission tomography in head and neck cancer. In: Hermans R (ed) Head and neck cancer imaging. Springer, Berlin Heidelberg, pp 329–343 Castaigne C, Muylle K, Flamen P (2006) Positron emission tomography in head and neck cancer. In: Hermans R (ed) Head and neck cancer imaging. Springer, Berlin Heidelberg, pp 329–343
10.
go back to reference Metser U, Miller E, Lerman H, Even-Sapir E (2007) Benign nonphysiologic lesions with increased 18 F-FDG uptake on PET/CT: characterization and incidence. AJR Am J Roentgenol 189:1203–1210PubMedCrossRef Metser U, Miller E, Lerman H, Even-Sapir E (2007) Benign nonphysiologic lesions with increased 18 F-FDG uptake on PET/CT: characterization and incidence. AJR Am J Roentgenol 189:1203–1210PubMedCrossRef
11.
go back to reference Rodrigues RS, Bozza FA, Christian PE et al (2009) Comparison of whole-body PET/CT, dedicated high-resolution head and neck PET/CT, and contrast-enhanced CT in preoperative staging of clinically M0 squamous cell carcinoma of the head and neck. J Nucl Med 50:1205–1213PubMedCrossRef Rodrigues RS, Bozza FA, Christian PE et al (2009) Comparison of whole-body PET/CT, dedicated high-resolution head and neck PET/CT, and contrast-enhanced CT in preoperative staging of clinically M0 squamous cell carcinoma of the head and neck. J Nucl Med 50:1205–1213PubMedCrossRef
12.
go back to reference Rangaswamy B, Fardanesh MR, Genden EM et al (2013) Improvement in the detection of locoregional recurrence in head and neck malignancies: F-18 fluorodeoxyglucose-positron emission tomography/computed tomography compared to high-resolution contrast-enhanced computed tomography and endoscopic examination. Laryngoscope 123:2664–2669PubMedCrossRef Rangaswamy B, Fardanesh MR, Genden EM et al (2013) Improvement in the detection of locoregional recurrence in head and neck malignancies: F-18 fluorodeoxyglucose-positron emission tomography/computed tomography compared to high-resolution contrast-enhanced computed tomography and endoscopic examination. Laryngoscope 123:2664–2669PubMedCrossRef
13.
go back to reference Chatziioannou SN, Georgakopoulos AT, Pianou NK, Kafiri GT, Pavlou SN, Kallergi M (2014) Recurrent thyroid cancer diagnosis: ROC study of the effect of a high-resolution head and neck 18 F-FDG PET/CT scan. Acad Radiol 21:58–63PubMedCrossRef Chatziioannou SN, Georgakopoulos AT, Pianou NK, Kafiri GT, Pavlou SN, Kallergi M (2014) Recurrent thyroid cancer diagnosis: ROC study of the effect of a high-resolution head and neck 18 F-FDG PET/CT scan. Acad Radiol 21:58–63PubMedCrossRef
14.
go back to reference Haerle SK, Strobel K, Ahmad N, Soltermann A, Schmid DT, Stoeckli SJ (2011) Contrast-enhanced (18)F-FDG-PET/CT for the assessment of necrotic lymph node metastases. Head Neck 33:324–329PubMed Haerle SK, Strobel K, Ahmad N, Soltermann A, Schmid DT, Stoeckli SJ (2011) Contrast-enhanced (18)F-FDG-PET/CT for the assessment of necrotic lymph node metastases. Head Neck 33:324–329PubMed
15.
go back to reference Boellaard R, O’Doherty MJ, Weber WA et al (2010) FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 37:181–200PubMedPubMedCentralCrossRef Boellaard R, O’Doherty MJ, Weber WA et al (2010) FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 37:181–200PubMedPubMedCentralCrossRef
16.
go back to reference Chen YK, Su CT, Chi KH, Cheng RH, Wang SC, Hsu CH (2007) Utility of 18 F-FDG PET/CT uptake patterns in Waldeyer’s ring for differentiating benign from malignant lesions in lateral pharyngeal recess of nasopharynx. J Nucl Med 48:8–14PubMed Chen YK, Su CT, Chi KH, Cheng RH, Wang SC, Hsu CH (2007) Utility of 18 F-FDG PET/CT uptake patterns in Waldeyer’s ring for differentiating benign from malignant lesions in lateral pharyngeal recess of nasopharynx. J Nucl Med 48:8–14PubMed
17.
go back to reference Davison JM, Ozonoff A, Imsande HM, Grillone GA, Subramaniam RM (2010) Squamous cell carcinoma of the palatine tonsils: FDG standardized uptake value ratio as a biomarker to differentiate tonsillar carcinoma from physiologic uptake. Radiology 255:578–585PubMedCrossRef Davison JM, Ozonoff A, Imsande HM, Grillone GA, Subramaniam RM (2010) Squamous cell carcinoma of the palatine tonsils: FDG standardized uptake value ratio as a biomarker to differentiate tonsillar carcinoma from physiologic uptake. Radiology 255:578–585PubMedCrossRef
18.
go back to reference Basu S, Houseni M, Alavi A (2008) Significance of incidental fluorodeoxyglucose uptake in the parotid glands and its impact on patient management. Nucl Med Commun 29:367–373PubMedCrossRef Basu S, Houseni M, Alavi A (2008) Significance of incidental fluorodeoxyglucose uptake in the parotid glands and its impact on patient management. Nucl Med Commun 29:367–373PubMedCrossRef
19.
go back to reference Hadiprodjo D, Ryan T, Truong MT, Mercier G, Subramaniam RM (2012) Parotid gland tumors: preliminary data for the value of FDG PET/CT diagnostic parameters. AJR Am J Roentgenol 198:W185–W190PubMedCrossRef Hadiprodjo D, Ryan T, Truong MT, Mercier G, Subramaniam RM (2012) Parotid gland tumors: preliminary data for the value of FDG PET/CT diagnostic parameters. AJR Am J Roentgenol 198:W185–W190PubMedCrossRef
20.
go back to reference Roh JL, Ryu CH, Choi SH et al (2007) Clinical utility of 18 F-FDG PET for patients with salivary gland malignancies. J Nucl Med 48:240–246PubMed Roh JL, Ryu CH, Choi SH et al (2007) Clinical utility of 18 F-FDG PET for patients with salivary gland malignancies. J Nucl Med 48:240–246PubMed
21.
go back to reference Terraz S, Poletti PA, Dulguerov P et al (2013) How reliable is sonography in the assessment of sialolithiasis? AJR Am J Roentgenol 201:W104–W109PubMedCrossRef Terraz S, Poletti PA, Dulguerov P et al (2013) How reliable is sonography in the assessment of sialolithiasis? AJR Am J Roentgenol 201:W104–W109PubMedCrossRef
23.
go back to reference Abdullah A, Rivas FF, Srinivasan A (2013) Imaging of the salivary glands. Semin Roentgenol 48:65–74PubMedCrossRef Abdullah A, Rivas FF, Srinivasan A (2013) Imaging of the salivary glands. Semin Roentgenol 48:65–74PubMedCrossRef
24.
go back to reference Bajaj Y, Singh S, Cozens N, Sharp J (2005) Critical clinical appraisal of the role of ultrasound guided fine needle aspiration cytology in the management of parotid tumours. J Laryngol Otol 119:289–292PubMedCrossRef Bajaj Y, Singh S, Cozens N, Sharp J (2005) Critical clinical appraisal of the role of ultrasound guided fine needle aspiration cytology in the management of parotid tumours. J Laryngol Otol 119:289–292PubMedCrossRef
25.
go back to reference Friedman ER, Saindane AM (2013) Pitfalls in the staging of cancer of the major salivary gland neoplasms. Neuroimaging Clin N Am 23:107–122PubMedCrossRef Friedman ER, Saindane AM (2013) Pitfalls in the staging of cancer of the major salivary gland neoplasms. Neuroimaging Clin N Am 23:107–122PubMedCrossRef
26.
go back to reference Celebi I, Mahmutoglu AS, Ucgul A, Ulusay SM, Basak T, Basak M (2013) Quantitative diffusion-weighted magnetic resonance imaging in the evaluation of parotid gland masses: a study with histopathological correlation. Clin Imaging 37:232–238PubMedCrossRef Celebi I, Mahmutoglu AS, Ucgul A, Ulusay SM, Basak T, Basak M (2013) Quantitative diffusion-weighted magnetic resonance imaging in the evaluation of parotid gland masses: a study with histopathological correlation. Clin Imaging 37:232–238PubMedCrossRef
27.
go back to reference Zhu Z, Chou C, Yen TC, Cui R (2001) Elevated F-18 FDG uptake in laryngeal muscles mimicking thyroid cancer metastases. Clin Nucl Med 26:689–691PubMedCrossRef Zhu Z, Chou C, Yen TC, Cui R (2001) Elevated F-18 FDG uptake in laryngeal muscles mimicking thyroid cancer metastases. Clin Nucl Med 26:689–691PubMedCrossRef
28.
go back to reference Jacene HA, Goudarzi B, Wahl RL (2008) Scalene muscle uptake: a potential pitfall in head and neck PET/CT. Eur J Nucl Med Mol Imaging 35:89–94PubMedCrossRef Jacene HA, Goudarzi B, Wahl RL (2008) Scalene muscle uptake: a potential pitfall in head and neck PET/CT. Eur J Nucl Med Mol Imaging 35:89–94PubMedCrossRef
29.
go back to reference Su HC, Huang CK, Bai YL, Lin CY, Hung GU (2009) Physiologically variant FDG uptake in scalene muscle mimicking neck lymph node metastasis in a patient with lung cancer. Ann Nucl Med Sci 22:239–243 Su HC, Huang CK, Bai YL, Lin CY, Hung GU (2009) Physiologically variant FDG uptake in scalene muscle mimicking neck lymph node metastasis in a patient with lung cancer. Ann Nucl Med Sci 22:239–243
30.
go back to reference Perkins AC, Mshelia DS, Symonds ME, Sathekge M (2013) Prevalence and pattern of brown adipose tissue distribution of 18 F-FDG in patients undergoing PET-CT in a subtropical climatic zone. Nucl Med Commun 34:168–174PubMedCrossRef Perkins AC, Mshelia DS, Symonds ME, Sathekge M (2013) Prevalence and pattern of brown adipose tissue distribution of 18 F-FDG in patients undergoing PET-CT in a subtropical climatic zone. Nucl Med Commun 34:168–174PubMedCrossRef
31.
go back to reference Rousseau C, Bourbouloux E, Campion L et al (2006) Brown fat in breast cancer patients: analysis of serial (18)F-FDG PET/CT scans. Eur J Nucl Med Mol Imaging 33:785–791PubMedCrossRef Rousseau C, Bourbouloux E, Campion L et al (2006) Brown fat in breast cancer patients: analysis of serial (18)F-FDG PET/CT scans. Eur J Nucl Med Mol Imaging 33:785–791PubMedCrossRef
32.
go back to reference Tsuchiya T, Osanai T, Ishikawa A, Kato N, Watanabe Y, Ogino T (2006) Hibernomas show intense accumulation of FDG positron emission tomography. J Comput Assist Tomogr 30:333–336PubMedCrossRef Tsuchiya T, Osanai T, Ishikawa A, Kato N, Watanabe Y, Ogino T (2006) Hibernomas show intense accumulation of FDG positron emission tomography. J Comput Assist Tomogr 30:333–336PubMedCrossRef
33.
go back to reference Schmalfuss I (2012) Positron emission tomography in head and neck cancer. In: Hermans R (ed) Head and neck cancer imaging, 2nd edn. Springer, Berlin Heidelberg, pp 363–385 Schmalfuss I (2012) Positron emission tomography in head and neck cancer. In: Hermans R (ed) Head and neck cancer imaging, 2nd edn. Springer, Berlin Heidelberg, pp 363–385
34.
go back to reference Zhuang H, Yu JQ, Alavi A (2005) Applications of fluorodeoxyglucose-PET imaging in the detection of infection and inflammation and other benign disorders. Radiol Clin North Am 43:121–134PubMedCrossRef Zhuang H, Yu JQ, Alavi A (2005) Applications of fluorodeoxyglucose-PET imaging in the detection of infection and inflammation and other benign disorders. Radiol Clin North Am 43:121–134PubMedCrossRef
35.
go back to reference Walter MA, Melzer RA, Schindler C, Muller-Brand J, Tyndall A, Nitzsche EU (2005) The value of [18 F]FDG-PET in the diagnosis of large-vessel vasculitis and the assessment of activity and extent of disease. Eur J Nucl Med Mol Imaging 32:674–681PubMedCrossRef Walter MA, Melzer RA, Schindler C, Muller-Brand J, Tyndall A, Nitzsche EU (2005) The value of [18 F]FDG-PET in the diagnosis of large-vessel vasculitis and the assessment of activity and extent of disease. Eur J Nucl Med Mol Imaging 32:674–681PubMedCrossRef
36.
go back to reference Jezovnik MK, Zidar N, Lezaic L, Gersak B, Poredos P (2014) Identification of inflamed atherosclerotic lesions in vivo using PET-CT. Inflammation 37:426–434PubMedCrossRef Jezovnik MK, Zidar N, Lezaic L, Gersak B, Poredos P (2014) Identification of inflamed atherosclerotic lesions in vivo using PET-CT. Inflammation 37:426–434PubMedCrossRef
37.
go back to reference Harrigal C, Branstetter BF, Snyderman CH, Maroon J (2005) Teflon granuloma in the nasopharynx: a potentially false-positive PET/CT finding. AJNR Am J Neuroradiol 26:417–420PubMed Harrigal C, Branstetter BF, Snyderman CH, Maroon J (2005) Teflon granuloma in the nasopharynx: a potentially false-positive PET/CT finding. AJNR Am J Neuroradiol 26:417–420PubMed
38.
go back to reference Wong RJ, Lin DT, Schoder H et al (2002) Diagnostic and prognostic value of [(18)F]fluorodeoxyglucose positron emission tomography for recurrent head and neck squamous cell carcinoma. J Clin Oncol 20:4199–4208PubMedCrossRef Wong RJ, Lin DT, Schoder H et al (2002) Diagnostic and prognostic value of [(18)F]fluorodeoxyglucose positron emission tomography for recurrent head and neck squamous cell carcinoma. J Clin Oncol 20:4199–4208PubMedCrossRef
39.
go back to reference Metser U, Even-Sapir E (2007) Increased (18)F-fluorodeoxyglucose uptake in benign, nonphysiologic lesions found on whole-body positron emission tomography/computed tomography (PET/CT): accumulated data from four years of experience with PET/CT. Semin Nucl Med 37:206–222PubMedCrossRef Metser U, Even-Sapir E (2007) Increased (18)F-fluorodeoxyglucose uptake in benign, nonphysiologic lesions found on whole-body positron emission tomography/computed tomography (PET/CT): accumulated data from four years of experience with PET/CT. Semin Nucl Med 37:206–222PubMedCrossRef
40.
go back to reference Porceddu SV, Jarmolowski E, Hicks RJ et al (2005) Utility of positron emission tomography for the detection of disease in residual neck nodes after (chemo)radiotherapy in head and neck cancer. Head Neck 27:175–181PubMedCrossRef Porceddu SV, Jarmolowski E, Hicks RJ et al (2005) Utility of positron emission tomography for the detection of disease in residual neck nodes after (chemo)radiotherapy in head and neck cancer. Head Neck 27:175–181PubMedCrossRef
41.
go back to reference Schoder H, Fury M, Lee N, Kraus D (2009) PET monitoring of therapy response in head and neck squamous cell carcinoma. J Nucl Med 50(Suppl 1):74S–88SPubMedCrossRef Schoder H, Fury M, Lee N, Kraus D (2009) PET monitoring of therapy response in head and neck squamous cell carcinoma. J Nucl Med 50(Suppl 1):74S–88SPubMedCrossRef
42.
go back to reference Kapoor V, Fukui MB, McCook BM (2005) Role of 18FFDG PET/CT in the treatment of head and neck cancers: posttherapy evaluation and pitfalls. AJR Am J Roentgenol 184:589–597PubMedCrossRef Kapoor V, Fukui MB, McCook BM (2005) Role of 18FFDG PET/CT in the treatment of head and neck cancers: posttherapy evaluation and pitfalls. AJR Am J Roentgenol 184:589–597PubMedCrossRef
43.
go back to reference Becker M, Schroth G, Zbaren P et al (1997) Long-term changes induced by high-dose irradiation of the head and neck region: imaging findings. Radiographics 17:5–26PubMedCrossRef Becker M, Schroth G, Zbaren P et al (1997) Long-term changes induced by high-dose irradiation of the head and neck region: imaging findings. Radiographics 17:5–26PubMedCrossRef
44.
go back to reference Nabil S, Samman N (2012) Risk factors for osteoradionecrosis after head and neck radiation: a systematic review. Oral Surg Oral Med Oral Pathol Oral Radiol 113:54–69PubMedCrossRef Nabil S, Samman N (2012) Risk factors for osteoradionecrosis after head and neck radiation: a systematic review. Oral Surg Oral Med Oral Pathol Oral Radiol 113:54–69PubMedCrossRef
45.
46.
go back to reference Alhilali L, Reynods AR, Fakhran S (2014) Osteoradionecrosis after radiation therapy for head and neck cancer: differentiation from recurrent disease with CT and PET/CT imaging. AJNR Am J Neuroradiol 35:1405-1411PubMedCrossRef Alhilali L, Reynods AR, Fakhran S (2014) Osteoradionecrosis after radiation therapy for head and neck cancer: differentiation from recurrent disease with CT and PET/CT imaging. AJNR Am J Neuroradiol 35:1405-1411PubMedCrossRef
47.
go back to reference Thoeny HC, De Keyzer F, King AD (2012) Diffusion-weighted MR imaging in the head and neck. Radiology 263:19–32PubMedCrossRef Thoeny HC, De Keyzer F, King AD (2012) Diffusion-weighted MR imaging in the head and neck. Radiology 263:19–32PubMedCrossRef
48.
49.
go back to reference Boss A, Stegger L, Bisdas S et al (2011) Feasibility of simultaneous PET/MR imaging in the head and upper neck area. Eur Radiol 21:1439–1446PubMedCrossRef Boss A, Stegger L, Bisdas S et al (2011) Feasibility of simultaneous PET/MR imaging in the head and upper neck area. Eur Radiol 21:1439–1446PubMedCrossRef
50.
go back to reference Vargas MI, Becker M, Garibotto V et al (2013) Approaches for the optimization of MR protocols in clinical hybrid PET/MRI studies. MAGMA 26:57–69PubMedCrossRef Vargas MI, Becker M, Garibotto V et al (2013) Approaches for the optimization of MR protocols in clinical hybrid PET/MRI studies. MAGMA 26:57–69PubMedCrossRef
51.
go back to reference Varoquaux A, Rager O, Poncet A et al (2014) Detection and quantification of focal uptake in head and neck tumours: (18)F-FDG PET/MR versus PET/CT. Eur J Nucl Med Mol Imaging 41:462–475PubMedPubMedCentralCrossRef Varoquaux A, Rager O, Poncet A et al (2014) Detection and quantification of focal uptake in head and neck tumours: (18)F-FDG PET/MR versus PET/CT. Eur J Nucl Med Mol Imaging 41:462–475PubMedPubMedCentralCrossRef
52.
go back to reference Desmouliere A, Redard M, Darby I, Gabbiani G (1995) Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol 146:56–66PubMedPubMedCentral Desmouliere A, Redard M, Darby I, Gabbiani G (1995) Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol 146:56–66PubMedPubMedCentral
53.
go back to reference Kumar V, Abbas AK, Aster JC (2012) Inflammation and repair. In: Kumar V, Abbas AK, Aster JC (eds) Robbins basic pathology, 9th edn. Elsevier Saunders, Philadelphia, pp 29–74 Kumar V, Abbas AK, Aster JC (2012) Inflammation and repair. In: Kumar V, Abbas AK, Aster JC (eds) Robbins basic pathology, 9th edn. Elsevier Saunders, Philadelphia, pp 29–74
54.
go back to reference Romo LV, Curtin HD (1999) Atrophy of the posterior cricoarytenoid muscle as an indicator of recurrent laryngeal nerve palsy. AJNR Am J Neuroradiol 20:467–471PubMed Romo LV, Curtin HD (1999) Atrophy of the posterior cricoarytenoid muscle as an indicator of recurrent laryngeal nerve palsy. AJNR Am J Neuroradiol 20:467–471PubMed
55.
go back to reference Heller MT, Meltzer CC, Fukui MB et al (2000) Superphysiologic FDG uptake in the non-paralyzed vocal cord. Resolution of a false-positive PET result with combined PET-CT imaging. Clin Positron Imaging 3:207–211PubMedCrossRef Heller MT, Meltzer CC, Fukui MB et al (2000) Superphysiologic FDG uptake in the non-paralyzed vocal cord. Resolution of a false-positive PET result with combined PET-CT imaging. Clin Positron Imaging 3:207–211PubMedCrossRef
56.
go back to reference Pai M, Kim HK, Kim HS (2006) Hypermetabolism of compensatory laryngeal muscles in unilateral vocal cord palsy: comparison study between speech and silence with normal subjects by co-registered PET-CT fusion images. Nucl Med Mol Imaging 40:23–27 Pai M, Kim HK, Kim HS (2006) Hypermetabolism of compensatory laryngeal muscles in unilateral vocal cord palsy: comparison study between speech and silence with normal subjects by co-registered PET-CT fusion images. Nucl Med Mol Imaging 40:23–27
57.
go back to reference Paquette CM, Manos DC, Psooy BJ (2012) Unilateral vocal cord paralysis: a review of CT findings, mediastinal causes, and the course of the recurrent laryngeal nerves. Radiographics 32:721–740PubMedCrossRef Paquette CM, Manos DC, Psooy BJ (2012) Unilateral vocal cord paralysis: a review of CT findings, mediastinal causes, and the course of the recurrent laryngeal nerves. Radiographics 32:721–740PubMedCrossRef
58.
go back to reference Becker M, Leuchter I, Platon A, Becker CD, Dulguerov P, Varoquaux A (2014) Imaging of laryngeal trauma. Eur J Radiol 83:142–154PubMedCrossRef Becker M, Leuchter I, Platon A, Becker CD, Dulguerov P, Varoquaux A (2014) Imaging of laryngeal trauma. Eur J Radiol 83:142–154PubMedCrossRef
59.
go back to reference Policeni BA, Smoker WR (2008) Pathologic conditions of the lower cranial nerves IX, X, XI, and XII. Neuroimaging Clin N Am 18:347–368PubMedCrossRef Policeni BA, Smoker WR (2008) Pathologic conditions of the lower cranial nerves IX, X, XI, and XII. Neuroimaging Clin N Am 18:347–368PubMedCrossRef
60.
go back to reference Becker M, Kohler R, Vargas MI, Viallon M, Delavelle J (2008) Pathology of the trigeminal nerve. Neuroimaging Clin N Am 18:283–307PubMedCrossRef Becker M, Kohler R, Vargas MI, Viallon M, Delavelle J (2008) Pathology of the trigeminal nerve. Neuroimaging Clin N Am 18:283–307PubMedCrossRef
61.
go back to reference Werner MK, Pfannenberg C, Oksuz MO (2011) Nonspecific FDG uptake in the tongue mimicking the primary tumor in a patient with cancer of unknown primary. Clin Imaging 35:405–407PubMedCrossRef Werner MK, Pfannenberg C, Oksuz MO (2011) Nonspecific FDG uptake in the tongue mimicking the primary tumor in a patient with cancer of unknown primary. Clin Imaging 35:405–407PubMedCrossRef
62.
go back to reference Chen W, Parsons M, Torigian DA, Zhuang H, Alavi A (2009) Evaluation of thyroid FDG uptake incidentally identified on FDG-PET/CT imaging. Nucl Med Commun 30:240–244PubMedCrossRef Chen W, Parsons M, Torigian DA, Zhuang H, Alavi A (2009) Evaluation of thyroid FDG uptake incidentally identified on FDG-PET/CT imaging. Nucl Med Commun 30:240–244PubMedCrossRef
63.
go back to reference Choi JY, Lee KS, Kim HJ et al (2006) Focal thyroid lesions incidentally identified by integrated 18 F-FDG PET/CT: clinical significance and improved characterization. J Nucl Med 47:609–615PubMed Choi JY, Lee KS, Kim HJ et al (2006) Focal thyroid lesions incidentally identified by integrated 18 F-FDG PET/CT: clinical significance and improved characterization. J Nucl Med 47:609–615PubMed
64.
go back to reference Lin EC (2002) Thyroid nodule mimicking cervical adenopathy on FDG positron emission tomographic imaging. Clin Nucl Med 27:656–657PubMedCrossRef Lin EC (2002) Thyroid nodule mimicking cervical adenopathy on FDG positron emission tomographic imaging. Clin Nucl Med 27:656–657PubMedCrossRef
65.
go back to reference Weiler-Sagie M, Bushelev O, Epelbaum R et al (2010) (18)F-FDG avidity in lymphoma readdressed: a study of 766 patients. J Nucl Med 51:25–30PubMedCrossRef Weiler-Sagie M, Bushelev O, Epelbaum R et al (2010) (18)F-FDG avidity in lymphoma readdressed: a study of 766 patients. J Nucl Med 51:25–30PubMedCrossRef
66.
go back to reference Purohit BS, Dulguerov P, Burkhardt K, Becker M (2014) Dedifferentiated laryngeal chondrosarcoma: combined morphologic and functional imaging with positron-emission tomography/magnetic resonance imaging. Laryngoscope 124:E274–E277PubMedCrossRef Purohit BS, Dulguerov P, Burkhardt K, Becker M (2014) Dedifferentiated laryngeal chondrosarcoma: combined morphologic and functional imaging with positron-emission tomography/magnetic resonance imaging. Laryngoscope 124:E274–E277PubMedCrossRef
67.
go back to reference Avril NE, Weber WA (2005) Monitoring response to treatment in patients utilizing PET. Radiol Clin North Am 43:189–204PubMedCrossRef Avril NE, Weber WA (2005) Monitoring response to treatment in patients utilizing PET. Radiol Clin North Am 43:189–204PubMedCrossRef
68.
go back to reference Harvey RJ, Pitzer G, Nissman DB et al (2010) PET/CT in the assessment of previously treated skull base malignancies. Head Neck 32:76–84PubMed Harvey RJ, Pitzer G, Nissman DB et al (2010) PET/CT in the assessment of previously treated skull base malignancies. Head Neck 32:76–84PubMed
69.
70.
go back to reference King AD, Ma BB, Yau YY et al (2008) The impact of 18 F-FDG PET/CT on assessment of nasopharyngeal carcinoma at diagnosis. Br J Radiol 81:291–298PubMedCrossRef King AD, Ma BB, Yau YY et al (2008) The impact of 18 F-FDG PET/CT on assessment of nasopharyngeal carcinoma at diagnosis. Br J Radiol 81:291–298PubMedCrossRef
71.
go back to reference Goerres GW, Hany TF, Kamel E, von Schulthess GK, Buck A (2002) Head and neck imaging with PET and PET/CT: artefacts from dental metallic implants. Eur J Nucl Med Mol Imaging 29:367–370PubMedCrossRef Goerres GW, Hany TF, Kamel E, von Schulthess GK, Buck A (2002) Head and neck imaging with PET and PET/CT: artefacts from dental metallic implants. Eur J Nucl Med Mol Imaging 29:367–370PubMedCrossRef
72.
go back to reference Abdoli M, Ay MR, Ahmadian A, Dierckx RA, Zaidi H (2010) Reduction of dental filling metallic artifacts in CT-based attenuation correction of PET data using weighted virtual sinograms optimized by a genetic algorithm. Med Phys 37:6166–6177PubMedCrossRef Abdoli M, Ay MR, Ahmadian A, Dierckx RA, Zaidi H (2010) Reduction of dental filling metallic artifacts in CT-based attenuation correction of PET data using weighted virtual sinograms optimized by a genetic algorithm. Med Phys 37:6166–6177PubMedCrossRef
73.
go back to reference Park HH, Shin JY, Lee J et al (2013) A study on the artifacts generated by dental materials in PET/CT image. Conf Proc IEEE Eng Med Biol Soc 2013:2465–2468PubMed Park HH, Shin JY, Lee J et al (2013) A study on the artifacts generated by dental materials in PET/CT image. Conf Proc IEEE Eng Med Biol Soc 2013:2465–2468PubMed
74.
go back to reference Nahmias C, Lemmens C, Faul D et al (2008) Does reducing CT artifacts from dental implants influence the PET interpretation in PET/CT studies of oral cancer and head and neck cancer? J Nucl Med 49:1047–1052PubMedCrossRef Nahmias C, Lemmens C, Faul D et al (2008) Does reducing CT artifacts from dental implants influence the PET interpretation in PET/CT studies of oral cancer and head and neck cancer? J Nucl Med 49:1047–1052PubMedCrossRef
75.
go back to reference Delso G, Wollenweber S, Lonn A, Wiesinger F, Veit-Haibach P (2013) MR-driven metal artifact reduction in PET/CT. Phys Med Biol 58:2267–2280PubMedCrossRef Delso G, Wollenweber S, Lonn A, Wiesinger F, Veit-Haibach P (2013) MR-driven metal artifact reduction in PET/CT. Phys Med Biol 58:2267–2280PubMedCrossRef
Metadata
Title
FDG-PET/CT pitfalls in oncological head and neck imaging
Authors
Bela S. Purohit
Angeliki Ailianou
Nicolas Dulguerov
Christoph D. Becker
Osman Ratib
Minerva Becker
Publication date
01-10-2014
Publisher
Springer Berlin Heidelberg
Published in
Insights into Imaging / Issue 5/2014
Electronic ISSN: 1869-4101
DOI
https://doi.org/10.1007/s13244-014-0349-x

Other articles of this Issue 5/2014

Insights into Imaging 5/2014 Go to the issue