Skip to main content
Top
Published in: Nuclear Medicine and Molecular Imaging 2/2016

01-06-2016 | Review

Instrumentation for Time-of-Flight Positron Emission Tomography

Authors: Muhammad Nasir Ullah, Eva Pratiwi, Jimin Cheon, Hojong Choi, Jung Yeol Yeom

Published in: Nuclear Medicine and Molecular Imaging | Issue 2/2016

Login to get access

Abstract

Positron emission tomography (PET) is a molecular imaging modality that provides information at the molecular level. This system is composed of radiation detectors to detect incoming coincident annihilation gamma photons emitted from the radiopharmaceutical injected into a patient’s body and uses these data to reconstruct images. A major trend in PET instrumentation is the development of time-of-flight positron emission tomography (ToF-PET). In ToF-PET, the time information (the instant the radiation is detected) is incorporated for image reconstruction. Therefore, precise and accurate timing recording is crucial in ToF-PET. ToF-PET leads to better localization of the annihilation event and thus results in overall improvement in the signal-to-noise ratio (SNR) of the reconstructed image. Several factors affect the timing performance of ToF-PET. In this article, the background, early research and recent advances in ToF-PET instrumentation are presented. Emphasis is placed on the various types of scintillators, photodetectors and electronic circuitry for use in ToF-PET, and their impact on timing resolution is discussed.
Literature
1.
go back to reference Ollinger JM. Fessler JA Positron-Emission Tomography. IEEE Signal Process Mag. 1997;14(1):43–55. Ollinger JM. Fessler JA Positron-Emission Tomography. IEEE Signal Process Mag. 1997;14(1):43–55.
2.
go back to reference Rouze N, Winkle W, Hutchin G. IndyPET—a high resolution, high sensitivity dedicated research scanner. Nuclear Science Symposium, 1999 Conference Record 1999 IEEE: IEEE; 1999. pp. 1460–4. Rouze N, Winkle W, Hutchin G. IndyPET—a high resolution, high sensitivity dedicated research scanner. Nuclear Science Symposium, 1999 Conference Record 1999 IEEE: IEEE; 1999. pp. 1460–4.
3.
go back to reference Bauer F. Detector considerations for time-of-flight in positron emission tomography. 2009. Bauer F. Detector considerations for time-of-flight in positron emission tomography. 2009.
5.
go back to reference Bailey DL, Townsend DW, Valk PE, Maisey MN. Positron emission tomography. Springer; 2005. Bailey DL, Townsend DW, Valk PE, Maisey MN. Positron emission tomography. Springer; 2005.
6.
go back to reference Zanzonico P. Positron emission tomography: a review of basic principles, scanner design and performance, and current systems. In Seminars in nuclear medicine. 2004;34(2):87–111. Zanzonico P. Positron emission tomography: a review of basic principles, scanner design and performance, and current systems. In Seminars in nuclear medicine. 2004;34(2):87–111.
7.
go back to reference Valk PE, Delbeke D, Bailey DL, Townsend DW, Maisey MN. Positron emission tomography clinical pratice. 2003. Springer-Verlag London Limited. doi:10.1007/1-84628-187-3. Valk PE, Delbeke D, Bailey DL, Townsend DW, Maisey MN. Positron emission tomography clinical pratice. 2003. Springer-Verlag London Limited. doi:10.1007/1-84628-187-3.
8.
go back to reference Leahy RM, Qi J. Statistical approaches in quantitative positron emission tomography. Stat Comput. 2000;10:147–65.CrossRef Leahy RM, Qi J. Statistical approaches in quantitative positron emission tomography. Stat Comput. 2000;10:147–65.CrossRef
9.
go back to reference Budinger TF. Time-of-flight positron emission tomography: status relative to conventional PET. J Nucl Med. 1983;24:73–8.PubMed Budinger TF. Time-of-flight positron emission tomography: status relative to conventional PET. J Nucl Med. 1983;24:73–8.PubMed
10.
go back to reference Moses WW. Recent advances and future advances in time-of-flight PET. Nucl Instrum Methods PhysRes, Sect A. 2007;580:919–24.CrossRef Moses WW. Recent advances and future advances in time-of-flight PET. Nucl Instrum Methods PhysRes, Sect A. 2007;580:919–24.CrossRef
11.
12.
14.
go back to reference Murray I, Kalemis A, Glennon J, Hasan S, Quraishi S, Beyer T, et al. Time-of-flight PET/CT using low-activity protocols: potential implications for cancer therapy monitoring. Eur J Nucl Med Mol Imaging. 2010;37:1643–53.CrossRefPubMed Murray I, Kalemis A, Glennon J, Hasan S, Quraishi S, Beyer T, et al. Time-of-flight PET/CT using low-activity protocols: potential implications for cancer therapy monitoring. Eur J Nucl Med Mol Imaging. 2010;37:1643–53.CrossRefPubMed
15.
go back to reference Karp JS, Surti S, Daube-Witherspoon ME, Muehllehner G. Benefit of time-of-flight in PET: experimental and clinical results. J Nucl Med. 2008;49:462–70.CrossRefPubMedPubMedCentral Karp JS, Surti S, Daube-Witherspoon ME, Muehllehner G. Benefit of time-of-flight in PET: experimental and clinical results. J Nucl Med. 2008;49:462–70.CrossRefPubMedPubMedCentral
16.
go back to reference Surti S, Karp JS, Popescu LM, Daube-Witherspoon ME, Werner M. Investigation of time-of-flight benefit for fully 3-DPET. IEEE Trans Med Imaging. 2006;25:529–38.CrossRefPubMed Surti S, Karp JS, Popescu LM, Daube-Witherspoon ME, Werner M. Investigation of time-of-flight benefit for fully 3-DPET. IEEE Trans Med Imaging. 2006;25:529–38.CrossRefPubMed
17.
go back to reference Knoll GF. Radiation detection and measurement. 4th ed. USA: John Wiley & Sons; 2010. Knoll GF. Radiation detection and measurement. 4th ed. USA: John Wiley & Sons; 2010.
18.
go back to reference Levin C, Glover G, Deller T, McDaniel D, Peterson W, Maramraju SH. Prototype time-of-flight PET ring integrated with a 3T MRI system for simultaneous whole-body PET/MR imaging. J Nucl Med. 2013;54:148. Levin C, Glover G, Deller T, McDaniel D, Peterson W, Maramraju SH. Prototype time-of-flight PET ring integrated with a 3T MRI system for simultaneous whole-body PET/MR imaging. J Nucl Med. 2013;54:148.
19.
go back to reference Surti S, Scheuermann J, El Fakhri G, Daube-Witherspoon ME, Lim R, Abi-Hatem N, et al. Impact of time-of-flight PET on whole-body oncologic studies: a human observer lesion detection and localization study. J Nucl Med. 2011;52:712–9.CrossRefPubMedPubMedCentral Surti S, Scheuermann J, El Fakhri G, Daube-Witherspoon ME, Lim R, Abi-Hatem N, et al. Impact of time-of-flight PET on whole-body oncologic studies: a human observer lesion detection and localization study. J Nucl Med. 2011;52:712–9.CrossRefPubMedPubMedCentral
20.
go back to reference El Fakhri G, Surti S, Trott CM, Scheuermann J, Karp JS. Improvement in lesion detection with whole-body oncologic time-of-flight PET. J Nucl Med. 2011;52:347–53.CrossRefPubMedPubMedCentral El Fakhri G, Surti S, Trott CM, Scheuermann J, Karp JS. Improvement in lesion detection with whole-body oncologic time-of-flight PET. J Nucl Med. 2011;52:347–53.CrossRefPubMedPubMedCentral
21.
go back to reference Paulus T. Principles and applications of timing spectroscopy. Application Note AN-42, EG&E; 1982. Paulus T. Principles and applications of timing spectroscopy. Application Note AN-42, EG&E; 1982.
22.
go back to reference Bell R. Comparison of leading-edge and crossover timing in coincidence measurements. Nucl Inst Methods. 1966;42:211–2.CrossRef Bell R. Comparison of leading-edge and crossover timing in coincidence measurements. Nucl Inst Methods. 1966;42:211–2.CrossRef
23.
go back to reference Budinger TF. Instrumentation trends in nuclear medicine. Semin Nucl Med. 1977;7(4):285–97. Budinger TF. Instrumentation trends in nuclear medicine. Semin Nucl Med. 1977;7(4):285–97.
24.
go back to reference Mullani NA, Markham J, Ter-Pogossian MM. Feasibility of time-of-flight reconstruction in positron emission tomography. J Nucl Med. 1980;21:1095–7.PubMed Mullani NA, Markham J, Ter-Pogossian MM. Feasibility of time-of-flight reconstruction in positron emission tomography. J Nucl Med. 1980;21:1095–7.PubMed
25.
go back to reference Gariod R, Allemand R, Cormoreche E, Laval M, Moszynski M. The LETI positron tomograph architecture and time of flight improvements. Proceedings of The Workshop on Time of Flight Tomography 1982. p. 25–9. Gariod R, Allemand R, Cormoreche E, Laval M, Moszynski M. The LETI positron tomograph architecture and time of flight improvements. Proceedings of The Workshop on Time of Flight Tomography 1982. p. 25–9.
26.
go back to reference Bendriem B, Soussaline F, Campagnolo R, Verrey B, Wajnberg P, Syrota A. A technique for the correction of scattered radiation in a PET system using time-of-flight information. J Comput Assist Tomogr. 1986;10:287–95.CrossRefPubMed Bendriem B, Soussaline F, Campagnolo R, Verrey B, Wajnberg P, Syrota A. A technique for the correction of scattered radiation in a PET system using time-of-flight information. J Comput Assist Tomogr. 1986;10:287–95.CrossRefPubMed
27.
go back to reference Ter-Pogossian MM, Ficke DC, Yamamoto M, Hood Sr JT. Super PETT I: a positron emission tomograph utilizing photon time-of-flight information. IEEE Trans Med Imaging. 1982;1:179–87.CrossRefPubMed Ter-Pogossian MM, Ficke DC, Yamamoto M, Hood Sr JT. Super PETT I: a positron emission tomograph utilizing photon time-of-flight information. IEEE Trans Med Imaging. 1982;1:179–87.CrossRefPubMed
28.
go back to reference Yamamoto M, Ficke DC, Ter-Pogossian MM. Experimental assessment of the gain achieved by the utilization of time-of-flight information in a positron emission tomograph (super PETT I). IEEE Trans Med Imaging. 1982;1:187–92.CrossRefPubMed Yamamoto M, Ficke DC, Ter-Pogossian MM. Experimental assessment of the gain achieved by the utilization of time-of-flight information in a positron emission tomograph (super PETT I). IEEE Trans Med Imaging. 1982;1:187–92.CrossRefPubMed
29.
go back to reference Wong W-H, Mullani NA, Philippe EA, Hartz R, Gould KL. Image improvement and design optimization of the time-of-flight PET. J Nucl Med. 1983;24:52–60.PubMed Wong W-H, Mullani NA, Philippe EA, Hartz R, Gould KL. Image improvement and design optimization of the time-of-flight PET. J Nucl Med. 1983;24:52–60.PubMed
30.
go back to reference Wong W, Mullani N, Philippe E, Hartz R, Bristow D, Yerian K, et al. Performance characteristics of the University of Texas TOFPET-I PET camera. J Nucl Med. 1986;25. Wong W, Mullani N, Philippe E, Hartz R, Bristow D, Yerian K, et al. Performance characteristics of the University of Texas TOFPET-I PET camera. J Nucl Med. 1986;25.
31.
go back to reference Tomitani T. Image reconstruction and noise evaluation in photon time-of-flight assisted positron emission tomography. IEEE Trans Nucl Sci. 1981;28:4581–9.CrossRef Tomitani T. Image reconstruction and noise evaluation in photon time-of-flight assisted positron emission tomography. IEEE Trans Nucl Sci. 1981;28:4581–9.CrossRef
32.
go back to reference Yamamoto M, Nohara N, Tanaka E, Tomitani T, Murayama H, Sato N, et al. Time-of-flight positron imaging and the resolution improvement by an iterative method. IEEE Trans Nucl Sci. 1989;36:998–1002.CrossRef Yamamoto M, Nohara N, Tanaka E, Tomitani T, Murayama H, Sato N, et al. Time-of-flight positron imaging and the resolution improvement by an iterative method. IEEE Trans Nucl Sci. 1989;36:998–1002.CrossRef
33.
go back to reference Lewellen T, Bice A, Harrison R, Pencke M, Link J. Performance measurements of the SP3000/UW time-of-flight positron emission tomograph. IEEE Trans Nucl Sci. 1988;35. Lewellen T, Bice A, Harrison R, Pencke M, Link J. Performance measurements of the SP3000/UW time-of-flight positron emission tomograph. IEEE Trans Nucl Sci. 1988;35.
34.
go back to reference Allemand R, Gresset C, Vacher J. Potential advantages of a cesium fluoride scintillator for a time-of-flight positron camera. J Nucl Med. 1980;21:153–5.PubMed Allemand R, Gresset C, Vacher J. Potential advantages of a cesium fluoride scintillator for a time-of-flight positron camera. J Nucl Med. 1980;21:153–5.PubMed
35.
go back to reference Laval M, Moszyński M, Allemand R, Cormoreche E, Guinet P, Odru R, et al. Barium fluoride-inorganic scintillator for subnanosecond timing. Nucl Instrum Methods PhysRes, Sect A. 1983;206:169–76.CrossRef Laval M, Moszyński M, Allemand R, Cormoreche E, Guinet P, Odru R, et al. Barium fluoride-inorganic scintillator for subnanosecond timing. Nucl Instrum Methods PhysRes, Sect A. 1983;206:169–76.CrossRef
36.
go back to reference Ishii K, Orihara H, Matsuzawa T, Binkley DM, Nutt R. High resolution time‐of‐flight positron emission tomograph. Rev Sci Instrum. 1990;61:3755–62.CrossRef Ishii K, Orihara H, Matsuzawa T, Binkley DM, Nutt R. High resolution time‐of‐flight positron emission tomograph. Rev Sci Instrum. 1990;61:3755–62.CrossRef
37.
go back to reference Soussaline F, Comar D, Allemand R, Campagnolo R, Laval M, Vacher J. New developments in positron emission tomography instrumentation using the time-of-flight information, The metabolism of the human brain studied with positron emission tomography. New York: Raven Press; 1985. p. 1–11. Soussaline F, Comar D, Allemand R, Campagnolo R, Laval M, Vacher J. New developments in positron emission tomography instrumentation using the time-of-flight information, The metabolism of the human brain studied with positron emission tomography. New York: Raven Press; 1985. p. 1–11.
38.
go back to reference Lewellen TK. Time-of-flight PET. Semin Nucl Med. 1988;28(3):268–75. Lewellen TK. Time-of-flight PET. Semin Nucl Med. 1988;28(3):268–75.
39.
go back to reference Weber MJ, Monchamp RR. Luminescence of Bi4 Ge3 O12: spectral and decay properties. J Appl Phys. 1973;44:5495–9.CrossRef Weber MJ, Monchamp RR. Luminescence of Bi4 Ge3 O12: spectral and decay properties. J Appl Phys. 1973;44:5495–9.CrossRef
40.
go back to reference Cates JW, Gu Y, Levin CS. Direct conversion semiconductor detectors in positron emission tomography. Mod Phys Lett A. 2015;30:1530011.CrossRef Cates JW, Gu Y, Levin CS. Direct conversion semiconductor detectors in positron emission tomography. Mod Phys Lett A. 2015;30:1530011.CrossRef
41.
go back to reference Matteson JL, Gu Y, Skelton RT, Deal AC, Stephan EA, Duttweiler F, Huszar GL, Gasaway TM, Levin CS. Charge collection studies of a high resolution CZT-based detector for PET. Nuclear Science Symposium Conference Record, 2008. NSS '08. IEEE. 19-25 Oct 2008. pp 503–510. Dresden, Germany. doi:10.1109/NSSMIC.2008.4775215. Matteson JL, Gu Y, Skelton RT, Deal AC, Stephan EA, Duttweiler F, Huszar GL, Gasaway TM, Levin CS. Charge collection studies of a high resolution CZT-based detector for PET. Nuclear Science Symposium Conference Record, 2008. NSS '08. IEEE. 19-25 Oct 2008. pp 503–510. Dresden, Germany. doi:10.1109/NSSMIC.2008.4775215.
42.
go back to reference Scheiber C, Giakos GC. Medical applications of CdTe and CdZnTe detectors. Nucl Instrum Methods PhysRes, Sect A. 2001;458:12–25.CrossRef Scheiber C, Giakos GC. Medical applications of CdTe and CdZnTe detectors. Nucl Instrum Methods PhysRes, Sect A. 2001;458:12–25.CrossRef
43.
go back to reference Eisen Y, Shor A, Mardor I. CdTe and CdZnTe gamma ray detectors for medical and industrial imaging systems. Nucl Instrum Methods PhysRes, Sect A. 1999;428:158–70.CrossRef Eisen Y, Shor A, Mardor I. CdTe and CdZnTe gamma ray detectors for medical and industrial imaging systems. Nucl Instrum Methods PhysRes, Sect A. 1999;428:158–70.CrossRef
44.
go back to reference Del Sordo S, Abbene L, Caroli E, Mancini AM, Zappettini A, Ubertini P. Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications. Sensors. 2009;9:3491–526.CrossRefPubMedPubMedCentral Del Sordo S, Abbene L, Caroli E, Mancini AM, Zappettini A, Ubertini P. Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications. Sensors. 2009;9:3491–526.CrossRefPubMedPubMedCentral
45.
go back to reference Gu Y, Matteson J, Skelton R, Deal A, Stephan E, Duttweiler F, et al. Study of a high-resolution, 3D positioning cadmium zinc telluride detector for PET. Phys Med Biol. 2011;56:1563.CrossRefPubMedPubMedCentral Gu Y, Matteson J, Skelton R, Deal A, Stephan E, Duttweiler F, et al. Study of a high-resolution, 3D positioning cadmium zinc telluride detector for PET. Phys Med Biol. 2011;56:1563.CrossRefPubMedPubMedCentral
46.
go back to reference Georgiev G, Ilieva N, Kozhuharov V, Lessigiarska I, Litov L, Pavlov B, et al. Multigap RPC for PET: development and optimisation of the detector design. J Instrum. 2013;8, P01011.CrossRef Georgiev G, Ilieva N, Kozhuharov V, Lessigiarska I, Litov L, Pavlov B, et al. Multigap RPC for PET: development and optimisation of the detector design. J Instrum. 2013;8, P01011.CrossRef
47.
go back to reference Korpar S, Dolenec R, Križan P, Pestotnik R, Stanovnik A. Study of TOF PET using Cherenkov light. Phys Procedia. 2012;37:1531–6.CrossRef Korpar S, Dolenec R, Križan P, Pestotnik R, Stanovnik A. Study of TOF PET using Cherenkov light. Phys Procedia. 2012;37:1531–6.CrossRef
48.
go back to reference Melcher C, Schweitzer J. Cerium-doped lutetium oxyorthosilicate: a fast, efficient new scintillator. IEEE Trans Nucl Sci. 1992;39:502–5.CrossRef Melcher C, Schweitzer J. Cerium-doped lutetium oxyorthosilicate: a fast, efficient new scintillator. IEEE Trans Nucl Sci. 1992;39:502–5.CrossRef
49.
go back to reference Wienhard K, Schmand M, Casey M, Baker K, Bao J, Eriksson L, et al. The ECAT HRRT: performance and first clinical application of the new high resolution research tomograph. IEEE Trans Nucl Sci. 2002;49:104–10.CrossRef Wienhard K, Schmand M, Casey M, Baker K, Bao J, Eriksson L, et al. The ECAT HRRT: performance and first clinical application of the new high resolution research tomograph. IEEE Trans Nucl Sci. 2002;49:104–10.CrossRef
50.
go back to reference Herzog H, Tellmann L, Hocke C, Pietrzyk U, Casey ME, Kuwert T. NEMA NU2-2001 guided performance evaluation of four Siemens ECAT PET scanners. IEEE Trans Nucl Sci. 2004;51:2662–9.CrossRef Herzog H, Tellmann L, Hocke C, Pietrzyk U, Casey ME, Kuwert T. NEMA NU2-2001 guided performance evaluation of four Siemens ECAT PET scanners. IEEE Trans Nucl Sci. 2004;51:2662–9.CrossRef
51.
go back to reference Moses WW, Derenzo S. Prospects for time-of-flight PET using LSO scintillator. IEEE Trans Nucl Sci. 1999;46:474–8.CrossRef Moses WW, Derenzo S. Prospects for time-of-flight PET using LSO scintillator. IEEE Trans Nucl Sci. 1999;46:474–8.CrossRef
52.
go back to reference Conti M, Bendriem B, Casey M, Chen M, Kehren F, Michel C, et al. Implementation of time-of-flight on CPS HiRez PET scanner. Nuclear Science Symposium Conference Record, 2004 IEEE: IEEE; 2004. p. 2796–800. Conti M, Bendriem B, Casey M, Chen M, Kehren F, Michel C, et al. Implementation of time-of-flight on CPS HiRez PET scanner. Nuclear Science Symposium Conference Record, 2004 IEEE: IEEE; 2004. p. 2796–800.
53.
go back to reference Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS. Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med. 2007;48:471–80.PubMed Surti S, Kuhn A, Werner ME, Perkins AE, Kolthammer J, Karp JS. Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. J Nucl Med. 2007;48:471–80.PubMed
54.
go back to reference Conti M, Bendriem B, Casey M, Chen M, Kehren F, Michel C, et al. First experimental results of time-of-flight reconstruction on an LSO PET scanner. Phys Med Biol. 2005;50:4507.CrossRefPubMed Conti M, Bendriem B, Casey M, Chen M, Kehren F, Michel C, et al. First experimental results of time-of-flight reconstruction on an LSO PET scanner. Phys Med Biol. 2005;50:4507.CrossRefPubMed
55.
go back to reference Schaart DR, Seifert S, Vinke R, van Dam HT, Dendooven P, Löhner H, et al. LaBr3: Ce and SiPMs for time-of-flight PET: achieving 100 ps coincidence resolving time. Phys Med Biol. 2010;55:N179.CrossRefPubMed Schaart DR, Seifert S, Vinke R, van Dam HT, Dendooven P, Löhner H, et al. LaBr3: Ce and SiPMs for time-of-flight PET: achieving 100 ps coincidence resolving time. Phys Med Biol. 2010;55:N179.CrossRefPubMed
56.
go back to reference Kuhn A, Surti S, Karp J, Raby P, Shah K, Perkins A, et al. Design of a lanthanum bromide detector for time-of-flight PET. IEEE Trans Nucl Sci. 2004;51:2550–7.CrossRef Kuhn A, Surti S, Karp J, Raby P, Shah K, Perkins A, et al. Design of a lanthanum bromide detector for time-of-flight PET. IEEE Trans Nucl Sci. 2004;51:2550–7.CrossRef
57.
go back to reference Karp J, Kuhn A, Perkins A, Surti S, Werner M, Daube-Witherspoon M, et al. Characterization of a time-of-flight PET scanner based on lanthanum bromide. Nuclear Science Symposium Conference Record, 2005 IEEE: IEEE; 2005. p. 5 pp. Karp J, Kuhn A, Perkins A, Surti S, Werner M, Daube-Witherspoon M, et al. Characterization of a time-of-flight PET scanner based on lanthanum bromide. Nuclear Science Symposium Conference Record, 2005 IEEE: IEEE; 2005. p. 5 pp.
58.
go back to reference Kyba C, Wiener R, Newcomer F, Van Berg R, Dressnandt N, Karp JS. Timing measurements from a TOF-PET scanner using local PMT triggering. Nuclear Science Symposium Conference Record, 2007 NSS'07 IEEE: IEEE; 2007. p. 4123–8. Kyba C, Wiener R, Newcomer F, Van Berg R, Dressnandt N, Karp JS. Timing measurements from a TOF-PET scanner using local PMT triggering. Nuclear Science Symposium Conference Record, 2007 NSS'07 IEEE: IEEE; 2007. p. 4123–8.
59.
go back to reference Daube-Witherspoon M, Surti S, Perkins A, Kyba C, Wiener R, Werner M, et al. The imaging performance of a LaBr3-based PET scanner. Phys Med Biol. 2010;55:45.CrossRefPubMedPubMedCentral Daube-Witherspoon M, Surti S, Perkins A, Kyba C, Wiener R, Werner M, et al. The imaging performance of a LaBr3-based PET scanner. Phys Med Biol. 2010;55:45.CrossRefPubMedPubMedCentral
60.
go back to reference Yeom JY, Yamamoto S, Derenzo SE, Spanoudaki VC, Kamada K, Endo T, et al. First performance results of Ce: GAGG scintillation crystals with silicon photomultipliers. IEEE Trans Nucl Sci. 2013;60:988–92.CrossRef Yeom JY, Yamamoto S, Derenzo SE, Spanoudaki VC, Kamada K, Endo T, et al. First performance results of Ce: GAGG scintillation crystals with silicon photomultipliers. IEEE Trans Nucl Sci. 2013;60:988–92.CrossRef
61.
go back to reference Kurosawa S, Kamada K, Yokota Y, Yoshikawa A. Luminescent properties of Ce: Gd3 (Al, Ga, Mg, M) 5O12 crystal (M = Zr, Hf). Jpn J Appl Phys. 2014;53, 04EG14.CrossRef Kurosawa S, Kamada K, Yokota Y, Yoshikawa A. Luminescent properties of Ce: Gd3 (Al, Ga, Mg, M) 5O12 crystal (M = Zr, Hf). Jpn J Appl Phys. 2014;53, 04EG14.CrossRef
62.
go back to reference Derenzo S, Weber M, Moses W, Dujardin C. Measurements of the intrinsic rise times of common inorganic scintillators. Nuclear Science Symposium, 1999 Conference Record 1999 IEEE: IEEE; 1999. p. 152–6. Derenzo S, Weber M, Moses W, Dujardin C. Measurements of the intrinsic rise times of common inorganic scintillators. Nuclear Science Symposium, 1999 Conference Record 1999 IEEE: IEEE; 1999. p. 152–6.
63.
go back to reference Ziegler S, Ostertag H, Kuebler WK, Lorenz WJ, Otten EW. Effects of scintillation light collection on the time resolution of a time-of-flight detector for annihilation quanta. IEEE Trans Nucl Sci. 1990;37:574–9.CrossRef Ziegler S, Ostertag H, Kuebler WK, Lorenz WJ, Otten EW. Effects of scintillation light collection on the time resolution of a time-of-flight detector for annihilation quanta. IEEE Trans Nucl Sci. 1990;37:574–9.CrossRef
64.
go back to reference Ferri A, Gola A, Serra N, Tarolli A, Zorzi N, Piemonte C. Performance of FBK high-density SiPM technology coupled to Ce: LYSO and Ce: GAGG for TOF-PET. Phys Med Biol. 2014;59:869.CrossRefPubMed Ferri A, Gola A, Serra N, Tarolli A, Zorzi N, Piemonte C. Performance of FBK high-density SiPM technology coupled to Ce: LYSO and Ce: GAGG for TOF-PET. Phys Med Biol. 2014;59:869.CrossRefPubMed
65.
go back to reference Yamamoto S, Yeom JY, Kamada K, Endo T, Levin CS. Development of an ultrahigh resolution block detector based on 0.4 mm pixel Ce: GAGG scintillators and a silicon photomultiplier array. IEEE Trans Nucl Sci. 2013;60:4582–7.CrossRef Yamamoto S, Yeom JY, Kamada K, Endo T, Levin CS. Development of an ultrahigh resolution block detector based on 0.4 mm pixel Ce: GAGG scintillators and a silicon photomultiplier array. IEEE Trans Nucl Sci. 2013;60:4582–7.CrossRef
66.
go back to reference Kamada K, Nikl M, Kurosawa S, Beitlerova A, Nagura A, Shoji Y, et al. Alkali earth co-doping effects on luminescence and scintillation properties of Ce doped Gd 3 Al 2 Ga 3 O 12 scintillator. Opt Mater. 2015;41:63–6.CrossRef Kamada K, Nikl M, Kurosawa S, Beitlerova A, Nagura A, Shoji Y, et al. Alkali earth co-doping effects on luminescence and scintillation properties of Ce doped Gd 3 Al 2 Ga 3 O 12 scintillator. Opt Mater. 2015;41:63–6.CrossRef
67.
go back to reference Renker D. Geiger-mode avalanche photodiodes, history, properties and problems. Nucl Instrum Methods PhysRes, Sect A. 2006;567:48–56.CrossRef Renker D. Geiger-mode avalanche photodiodes, history, properties and problems. Nucl Instrum Methods PhysRes, Sect A. 2006;567:48–56.CrossRef
68.
go back to reference Wernick MN, Aarsvold JN. Emission tomography: the fundamentals of PET and SPECT. Academic Press; 2004. Wernick MN, Aarsvold JN. Emission tomography: the fundamentals of PET and SPECT. Academic Press; 2004.
69.
go back to reference Moszyński M, Kapusta M, Nassalski A, Szczęśniak T, Wolski D, Eriksson L, et al. New prospects for time-of-flight PET with LSO scintillators. Nuclear Science Symposium Conference Record, 2005 IEEE: IEEE; 2005. p. 2854–8. Moszyński M, Kapusta M, Nassalski A, Szczęśniak T, Wolski D, Eriksson L, et al. New prospects for time-of-flight PET with LSO scintillators. Nuclear Science Symposium Conference Record, 2005 IEEE: IEEE; 2005. p. 2854–8.
70.
go back to reference Haselman M, Miyaoka R, Lewellen TK, Hauck S. Fpga-based data acquisition system for a positron emission tomography (PET) scanner. FPGA2008. p. 264. Haselman M, Miyaoka R, Lewellen TK, Hauck S. Fpga-based data acquisition system for a positron emission tomography (PET) scanner. FPGA2008. p. 264.
71.
go back to reference Flower MA. Webb's physics of medical imaging. CRC Press; 2012. Flower MA. Webb's physics of medical imaging. CRC Press; 2012.
72.
go back to reference Green D. The physics of particle detectors. Cambridge: University Press; 2000. Green D. The physics of particle detectors. Cambridge: University Press; 2000.
73.
go back to reference Bauer F, Zhang N, Schmand M, Loope M, Eriksson L, Aykac M. Dynode-timing method for PET block detectors. IEEE Trans Nucl Sci. 2008;55:451–6.CrossRef Bauer F, Zhang N, Schmand M, Loope M, Eriksson L, Aykac M. Dynode-timing method for PET block detectors. IEEE Trans Nucl Sci. 2008;55:451–6.CrossRef
74.
go back to reference Hamamatsu Photonics K. Photomultiplier tubes–basics and applications, 3rd eddition. Hamamatsu Photonics; 2006. Hamamatsu Photonics K. Photomultiplier tubes–basics and applications, 3rd eddition. Hamamatsu Photonics; 2006.
75.
go back to reference Flyckt S-O. Photomultiplier tubes: principles and applications. Photonis; 2002. Flyckt S-O. Photomultiplier tubes: principles and applications. Photonis; 2002.
76.
go back to reference Kuhn A, Surti S, Karp J, Muehllehner G, Newcomer F, VanBerg R. Performance assessment of pixelated LaBr 3 detector modules for time-of-flight PET. IEEE Trans Nucl Sci. 2006;53:1090–5.CrossRef Kuhn A, Surti S, Karp J, Muehllehner G, Newcomer F, VanBerg R. Performance assessment of pixelated LaBr 3 detector modules for time-of-flight PET. IEEE Trans Nucl Sci. 2006;53:1090–5.CrossRef
77.
go back to reference Szczęśniak T, Moszyński M, Nassalski A, Lavoute P, Kapusta M. Fast photomultipliers for TOF PET. Nuclear Science Symposium Conference Record, 2007 NSS'07 IEEE: IEEE; 2007. p. 2651–9. Szczęśniak T, Moszyński M, Nassalski A, Lavoute P, Kapusta M. Fast photomultipliers for TOF PET. Nuclear Science Symposium Conference Record, 2007 NSS'07 IEEE: IEEE; 2007. p. 2651–9.
78.
go back to reference Moses W, Janecek M, Spurrier M, Szupryczynski P, Choong W-S, Melcher C, et al. Optimization of a LSO-based detector module for time-of-flight PET. IEEE Trans Nucl Sci. 2010;57:1570–6.CrossRefPubMedPubMedCentral Moses W, Janecek M, Spurrier M, Szupryczynski P, Choong W-S, Melcher C, et al. Optimization of a LSO-based detector module for time-of-flight PET. IEEE Trans Nucl Sci. 2010;57:1570–6.CrossRefPubMedPubMedCentral
79.
go back to reference Kume H, Koyama K, Nakatsugawa K, Suzuki S, Fatlowitz D. Ultrafast microchannel plate photomultipliers. Appl Opt. 1988;27:1170–8.CrossRefPubMed Kume H, Koyama K, Nakatsugawa K, Suzuki S, Fatlowitz D. Ultrafast microchannel plate photomultipliers. Appl Opt. 1988;27:1170–8.CrossRefPubMed
80.
go back to reference Anashin V, Beschastnov P, Golubev V, Mironenko L, Salnikov A, Serednyakov S. Photomultipliers with microchannel plates. Nucl Instrum Methods PhysRes, Sect A. 1995;357:103–9.CrossRef Anashin V, Beschastnov P, Golubev V, Mironenko L, Salnikov A, Serednyakov S. Photomultipliers with microchannel plates. Nucl Instrum Methods PhysRes, Sect A. 1995;357:103–9.CrossRef
81.
go back to reference Kim H, Frisch H, Chen C-T, Genat J-F, Tang F, Moses W, et al. A design of a PET detector using micro-channel plate photomultipliers with transmission-line readout. Nucl Instrum Methods PhysRes, Sect A. 2010;622:628–36.CrossRef Kim H, Frisch H, Chen C-T, Genat J-F, Tang F, Moses W, et al. A design of a PET detector using micro-channel plate photomultipliers with transmission-line readout. Nucl Instrum Methods PhysRes, Sect A. 2010;622:628–36.CrossRef
82.
go back to reference Buzhan P, Dolgoshein B, Filatov L, Ilyin A, Kantzerov V, Kaplin V, et al. Silicon photomultiplier and its possible applications. Nucl Instrum Methods PhysRes, Sect A. 2003;504:48–52.CrossRef Buzhan P, Dolgoshein B, Filatov L, Ilyin A, Kantzerov V, Kaplin V, et al. Silicon photomultiplier and its possible applications. Nucl Instrum Methods PhysRes, Sect A. 2003;504:48–52.CrossRef
83.
go back to reference Henseler D, Grazioso R, Zhang N, Schmand M. SiPM performance in PET applications: An experimental and theoretical analysis. Nuclear Science Symposium Conference Record (NSS/MIC), 2009 IEEE: IEEE; 2009. p. 1941–8. Henseler D, Grazioso R, Zhang N, Schmand M. SiPM performance in PET applications: An experimental and theoretical analysis. Nuclear Science Symposium Conference Record (NSS/MIC), 2009 IEEE: IEEE; 2009. p. 1941–8.
84.
go back to reference Saveliev V. Silicon photomultiplier-new era of photon detection. INTECH Open Access Publisher; 2010. Saveliev V. Silicon photomultiplier-new era of photon detection. INTECH Open Access Publisher; 2010.
85.
go back to reference Yeom JY, Vinke R, Pavlov N, Bellis S, Wall L, O'Neill K, et al. Fast timing silicon photomultipliers for scintillation detectors. IEEE Photon Technol Lett. 2013;25:1309–12.CrossRef Yeom JY, Vinke R, Pavlov N, Bellis S, Wall L, O'Neill K, et al. Fast timing silicon photomultipliers for scintillation detectors. IEEE Photon Technol Lett. 2013;25:1309–12.CrossRef
86.
go back to reference Piemonte C. A new silicon photomultiplier structure for blue light detection. Nucl Instrum Methods PhysRes, Sect A. 2006;568:224–32.CrossRef Piemonte C. A new silicon photomultiplier structure for blue light detection. Nucl Instrum Methods PhysRes, Sect A. 2006;568:224–32.CrossRef
87.
go back to reference Dolgoshein B, Balagura V, Buzhan P, Danilov M, Filatov L, Garutti E, et al. Status report on silicon photomultiplier development and its applications. Nucl Instrum Methods PhysRes, Sect A. 2006;563:368–76.CrossRef Dolgoshein B, Balagura V, Buzhan P, Danilov M, Filatov L, Garutti E, et al. Status report on silicon photomultiplier development and its applications. Nucl Instrum Methods PhysRes, Sect A. 2006;563:368–76.CrossRef
89.
go back to reference Del Guerra A, Belcari N, Bisogni MG, LLosa G, Marcatili S, Ambrosi G, et al. Advantages and pitfalls of the silicon photomultiplier (SiPM) as photodetector for the next generation of PET scanners. Nucl Instrum Methods PhysRes, Sect A. 2010;617:223–6.CrossRef Del Guerra A, Belcari N, Bisogni MG, LLosa G, Marcatili S, Ambrosi G, et al. Advantages and pitfalls of the silicon photomultiplier (SiPM) as photodetector for the next generation of PET scanners. Nucl Instrum Methods PhysRes, Sect A. 2010;617:223–6.CrossRef
90.
91.
go back to reference Haemisch Y, Frach T, Degenhardt C, Thon A. Fully digital arrays of silicon photomultipliers (dSiPM)–a scalable alternative to vacuum photomultiplier tubes (PMT). Phys Procedia. 2012;37:1546–60.CrossRef Haemisch Y, Frach T, Degenhardt C, Thon A. Fully digital arrays of silicon photomultipliers (dSiPM)–a scalable alternative to vacuum photomultiplier tubes (PMT). Phys Procedia. 2012;37:1546–60.CrossRef
92.
go back to reference Frach T, Prescher G, Degenhardt C, De Gruyter R, Schmitz A, Ballizany R. The digital silicon photomultiplier—Principle of operation and intrinsic detector performance. Nuclear Science Symposium Conference Record (NSS/MIC), 2009 IEEE: IEEE; 2009. p. 1959–65. Frach T, Prescher G, Degenhardt C, De Gruyter R, Schmitz A, Ballizany R. The digital silicon photomultiplier—Principle of operation and intrinsic detector performance. Nuclear Science Symposium Conference Record (NSS/MIC), 2009 IEEE: IEEE; 2009. p. 1959–65.
93.
go back to reference Degenhardt C, Prescher G, Frach T, Thon A, De Gruyter R, Schmitz A, et al. The digital silicon photomultiplier—a novel sensor for the detection of scintillation light. Nuclear Science Symposium Conference Record (NSS/MIC), 2009 IEEE: IEEE; 2009. p. 2383–6. Degenhardt C, Prescher G, Frach T, Thon A, De Gruyter R, Schmitz A, et al. The digital silicon photomultiplier—a novel sensor for the detection of scintillation light. Nuclear Science Symposium Conference Record (NSS/MIC), 2009 IEEE: IEEE; 2009. p. 2383–6.
94.
go back to reference Yeom JY, Vinke R, Bieniosek MF, Levin CS. Comparison of end/side scintillator readout with digital-SiPM for ToF PET. Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2013 IEEE: IEEE; 2013. p. 1–3. Yeom JY, Vinke R, Bieniosek MF, Levin CS. Comparison of end/side scintillator readout with digital-SiPM for ToF PET. Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2013 IEEE: IEEE; 2013. p. 1–3.
95.
go back to reference Joram C, Collaboration A-P. Imaging results and TOF studies with axial PET detectors. Nucl Instrum Methods PhysRes, Sect A. 2013;732:586–90.CrossRef Joram C, Collaboration A-P. Imaging results and TOF studies with axial PET detectors. Nucl Instrum Methods PhysRes, Sect A. 2013;732:586–90.CrossRef
96.
go back to reference Marcinkowski R, Espana S, Thoen H, Vandenberghe S. Performance of digital silicon photomultipliers for time of flight PET scanners. Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2012 IEEE: IEEE; 2012. p. 2825–9. Marcinkowski R, Espana S, Thoen H, Vandenberghe S. Performance of digital silicon photomultipliers for time of flight PET scanners. Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2012 IEEE: IEEE; 2012. p. 2825–9.
97.
go back to reference Marcinkowski R, España S, Van Holen R, Vandenberghe S. Optimized light sharing for high-resolution TOF PET detector based on digital silicon photomultipliers. Phys Med Biol. 2014;59:7125–39.CrossRefPubMed Marcinkowski R, España S, Van Holen R, Vandenberghe S. Optimized light sharing for high-resolution TOF PET detector based on digital silicon photomultipliers. Phys Med Biol. 2014;59:7125–39.CrossRefPubMed
98.
go back to reference Schaart DR, van Dam HT, Seifert S, Vinke R, Dendooven P, Löhner H, et al. A novel, SiPM-array-based, monolithic scintillator detector for PET. Phys Med Biol. 2009;54:3501.CrossRefPubMed Schaart DR, van Dam HT, Seifert S, Vinke R, Dendooven P, Löhner H, et al. A novel, SiPM-array-based, monolithic scintillator detector for PET. Phys Med Biol. 2009;54:3501.CrossRefPubMed
99.
go back to reference Casella C, Heller M, Joram C, Schneider T. A high resolution tof-pet concept with axial geometry and digital sipm readout. Nucl Instrum Methods PhysRes, Sect A. 2014;736:161–8.CrossRef Casella C, Heller M, Joram C, Schneider T. A high resolution tof-pet concept with axial geometry and digital sipm readout. Nucl Instrum Methods PhysRes, Sect A. 2014;736:161–8.CrossRef
100.
go back to reference Moses W, Buckley S, Vu C, Peng Q, Pavlov N, Choong W-S, et al. OpenPET: a flexible electronics system for radiotracer imaging. IEEE Trans Nucl Sci. 2010;57:2532–7.CrossRef Moses W, Buckley S, Vu C, Peng Q, Pavlov N, Choong W-S, et al. OpenPET: a flexible electronics system for radiotracer imaging. IEEE Trans Nucl Sci. 2010;57:2532–7.CrossRef
101.
go back to reference Hong KJ, Choi Y, Jung JH, Kang J, Hu W, Lim HK, et al. A prototype MR insertable brain PET using tileable GAPD arrays. Med Phys. 2013;40:042503.CrossRefPubMed Hong KJ, Choi Y, Jung JH, Kang J, Hu W, Lim HK, et al. A prototype MR insertable brain PET using tileable GAPD arrays. Med Phys. 2013;40:042503.CrossRefPubMed
102.
go back to reference Torres J, García R, Aguilar A, Soret J, Martos J, González A, et al. Implementation of TOF-PET Systems on Advanced Reconfigurable Logic Devices. doi:10.5772/57123. Torres J, García R, Aguilar A, Soret J, Martos J, González A, et al. Implementation of TOF-PET Systems on Advanced Reconfigurable Logic Devices. doi:10.​5772/​57123.
103.
go back to reference Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. Elsevier Health Sciences; 2012. Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. Elsevier Health Sciences; 2012.
104.
go back to reference Yeom JY, Vinke R, Spanoudaki VC, Hong KJ, Levin CS. Readout electronics and data acquisition of a positron emission tomography time-of-flight detector module with waveform digitizer. IEEE Trans Nucl Sci. 2013;60:3735–41.CrossRef Yeom JY, Vinke R, Spanoudaki VC, Hong KJ, Levin CS. Readout electronics and data acquisition of a positron emission tomography time-of-flight detector module with waveform digitizer. IEEE Trans Nucl Sci. 2013;60:3735–41.CrossRef
105.
go back to reference McElroy DP, Pimpl W, Pichler BJ, Rafecas M, Schüler T, Ziegler S. Characterization and readout of MADPET-II detector modules: validation of a unique design concept for high resolution small animal PET. IEEE Trans Nucl Sci. 2005;52:199–204.CrossRef McElroy DP, Pimpl W, Pichler BJ, Rafecas M, Schüler T, Ziegler S. Characterization and readout of MADPET-II detector modules: validation of a unique design concept for high resolution small animal PET. IEEE Trans Nucl Sci. 2005;52:199–204.CrossRef
106.
go back to reference Rolo M, Alves L, Martins E, Rivetti A, Santos M, Varela J. A low-noise CMOS front-end for TOF-PET. J Instrum. 2011;6, P09003.CrossRef Rolo M, Alves L, Martins E, Rivetti A, Santos M, Varela J. A low-noise CMOS front-end for TOF-PET. J Instrum. 2011;6, P09003.CrossRef
107.
go back to reference Gao W, Gao D, Wei T, Hu Y. Advances in front-end readout ASIC design for PET imaging. Solid-State and Integrated Circuit Technology (ICSICT), 2012 I.E. 11th International Conference on: IEEE; 2012. p. 1–4. Gao W, Gao D, Wei T, Hu Y. Advances in front-end readout ASIC design for PET imaging. Solid-State and Integrated Circuit Technology (ICSICT), 2012 I.E. 11th International Conference on: IEEE; 2012. p. 1–4.
108.
go back to reference Yeom J, Ishitsu T, Takahashi H. Development of a waveform sampling front-end ASIC for PET. Proceedings of the 2004 Asia and South Pacific Design Automation Conference. IEEE Press; 2004. p. 567–8. Yeom J, Ishitsu T, Takahashi H. Development of a waveform sampling front-end ASIC for PET. Proceedings of the 2004 Asia and South Pacific Design Automation Conference. IEEE Press; 2004. p. 567–8.
109.
go back to reference Yeom J, Shimazoe K, Takahashi H, Murayama H. A waveform sampling front-end ASIC for readout of GSO/APD with DOI information. Nucl Instrum Methods PhysRes, Sect A. 2007;571:381–4.CrossRef Yeom J, Shimazoe K, Takahashi H, Murayama H. A waveform sampling front-end ASIC for readout of GSO/APD with DOI information. Nucl Instrum Methods PhysRes, Sect A. 2007;571:381–4.CrossRef
110.
go back to reference Ashmanskas W, LeGeyt B, Newcomer F, Panetta J, Ryan W, Van Berg R, et al. Waveform-sampling electronics for a whole-body time-of-flight PET scanner. IEEE Trans Nucl Sci. 2014;61:1174–81.CrossRefPubMedPubMedCentral Ashmanskas W, LeGeyt B, Newcomer F, Panetta J, Ryan W, Van Berg R, et al. Waveform-sampling electronics for a whole-body time-of-flight PET scanner. IEEE Trans Nucl Sci. 2014;61:1174–81.CrossRefPubMedPubMedCentral
111.
go back to reference Vinke R, Löhner H, Schaart D, Van Dam H, Seifert S, Beekman F, et al. Optimizing the timing resolution of SiPM sensors for use in TOF-PET detectors. Nucl Instrum Methods PhysRes, Sect A. 2009;610:188–91.CrossRef Vinke R, Löhner H, Schaart D, Van Dam H, Seifert S, Beekman F, et al. Optimizing the timing resolution of SiPM sensors for use in TOF-PET detectors. Nucl Instrum Methods PhysRes, Sect A. 2009;610:188–91.CrossRef
112.
go back to reference Szczęśniak T, Moszyński M, Nassalski A, Lavoute P, Dehaine A. A further study of timing with LSO on XP20D0 for TOF PET. IEEE Trans Nucl Sci. 2007;54:1464–73.CrossRef Szczęśniak T, Moszyński M, Nassalski A, Lavoute P, Dehaine A. A further study of timing with LSO on XP20D0 for TOF PET. IEEE Trans Nucl Sci. 2007;54:1464–73.CrossRef
113.
go back to reference Bousselham AK. FPGA based data acquistion and digital pulse processing for PET and SPECT. 2007. Bousselham AK. FPGA based data acquistion and digital pulse processing for PET and SPECT. 2007.
114.
go back to reference Wu J, Shi Z, Wang IY. Firmware-only implementation of time-to-digital converter (TDC) in field-programmable gate array (FPGA). Nuclear Science Symposium Conference Record, 2003 IEEE. IEEE; 2003. p. 177–81. Wu J, Shi Z, Wang IY. Firmware-only implementation of time-to-digital converter (TDC) in field-programmable gate array (FPGA). Nuclear Science Symposium Conference Record, 2003 IEEE. IEEE; 2003. p. 177–81.
115.
go back to reference Junnarkar SS, O'Connor P, Fontaine R. FPGA based self calibrating 40 picosecond resolution, wide range Time to Digital Converter. Nuclear Science Symposium Conference Record, 2008 NSS'08 IEEE. IEEE; 2008. p. 3434–9. Junnarkar SS, O'Connor P, Fontaine R. FPGA based self calibrating 40 picosecond resolution, wide range Time to Digital Converter. Nuclear Science Symposium Conference Record, 2008 NSS'08 IEEE. IEEE; 2008. p. 3434–9.
116.
go back to reference Hong KJ, Kim E, Yeom JY, Olcott P, Levin CS. FPGA-based time-to-digital converter for time-of-flight PET detector. Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2012 IEEE. IEEE; 2012. p. 2463–5. Hong KJ, Kim E, Yeom JY, Olcott P, Levin CS. FPGA-based time-to-digital converter for time-of-flight PET detector. Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2012 IEEE. IEEE; 2012. p. 2463–5.
117.
go back to reference Wu J, Shi Z. The 10-ps wave union TDC: Improving FPGA TDC resolution beyond its cell delay. Nuclear Science Symposium Conference Record, 2008 NSS'08 IEEE: IEEE; 2008; p. 3440–6. Wu J, Shi Z. The 10-ps wave union TDC: Improving FPGA TDC resolution beyond its cell delay. Nuclear Science Symposium Conference Record, 2008 NSS'08 IEEE: IEEE; 2008; p. 3440–6.
118.
go back to reference Fishburn MW, Menninga LH, Favi C, Charbon E. A 19.6 ps, FPGA-based TDC with multiple channels for open source applications. IEEE Trans Nucl Sci. 2013;60:2203–8.CrossRef Fishburn MW, Menninga LH, Favi C, Charbon E. A 19.6 ps, FPGA-based TDC with multiple channels for open source applications. IEEE Trans Nucl Sci. 2013;60:2203–8.CrossRef
119.
go back to reference Bayer E, Traxler M. A high-resolution (RMS) 48-channel time-to-digital converter (TDC) implemented in a field programmable gate array (FPGA). IEEE Trans Nucl Sci. 2011;58:1547–52.CrossRef Bayer E, Traxler M. A high-resolution (RMS) 48-channel time-to-digital converter (TDC) implemented in a field programmable gate array (FPGA). IEEE Trans Nucl Sci. 2011;58:1547–52.CrossRef
120.
go back to reference Szplet R, Jachna Z, Kwiatkowski P, Rozyc K. A 2.9 ps equivalent resolution interpolating time counter based on multiple independent coding lines. Meas Sci Technol. 2013;24, 035904.CrossRef Szplet R, Jachna Z, Kwiatkowski P, Rozyc K. A 2.9 ps equivalent resolution interpolating time counter based on multiple independent coding lines. Meas Sci Technol. 2013;24, 035904.CrossRef
121.
go back to reference Won JY, Kwon SI, Yoon HS, Ko GB, Son J-W, Lee JS. Dual-Phase Tapped-Delay-Line Time-to-Digital Converter With On-the-Fly Calibration Implemented in 40 nm FPGA. 2015. Biomedical Circuits and Systems, IEEE Transactions. IEEE Circuits and Systems Society. 2015. doi:10.1109/TBCAS.2015.2389227. Won JY, Kwon SI, Yoon HS, Ko GB, Son J-W, Lee JS. Dual-Phase Tapped-Delay-Line Time-to-Digital Converter With On-the-Fly Calibration Implemented in 40 nm FPGA. 2015. Biomedical Circuits and Systems, IEEE Transactions. IEEE Circuits and Systems Society. 2015. doi:10.​1109/​TBCAS.​2015.​2389227.
122.
go back to reference Kim E, Hong KJ, Yeom JY, Olcott PD, Levin CS. Trends of data path topologies for data acquisition systems in positron emission tomography. IEEE Trans Nucl Sci. 2013;60:3746–57.CrossRef Kim E, Hong KJ, Yeom JY, Olcott PD, Levin CS. Trends of data path topologies for data acquisition systems in positron emission tomography. IEEE Trans Nucl Sci. 2013;60:3746–57.CrossRef
Metadata
Title
Instrumentation for Time-of-Flight Positron Emission Tomography
Authors
Muhammad Nasir Ullah
Eva Pratiwi
Jimin Cheon
Hojong Choi
Jung Yeol Yeom
Publication date
01-06-2016
Publisher
Springer Berlin Heidelberg
Published in
Nuclear Medicine and Molecular Imaging / Issue 2/2016
Print ISSN: 1869-3474
Electronic ISSN: 1869-3482
DOI
https://doi.org/10.1007/s13139-016-0401-5

Other articles of this Issue 2/2016

Nuclear Medicine and Molecular Imaging 2/2016 Go to the issue