Skip to main content
Top
Published in: Translational Stroke Research 2/2022

01-04-2022 | Stroke | Original Article

Plasma Kallikrein Contributes to Intracerebral Hemorrhage and Hypertension in Stroke-Prone Spontaneously Hypertensive Rats

Authors: Jian Guan, Allen C. Clermont, Loc-Duyen Pham, Tuna Ustunkaya, Alexey S. Revenko, A. Robert MacLeod, Edward P. Feener, Fabrício Simão

Published in: Translational Stroke Research | Issue 2/2022

Login to get access

Abstract

Plasma kallikrein (PKa) has been implicated in contributing to hemorrhage following thrombolytic therapy; however, its role in spontaneous intracerebral hemorrhage is currently not available. This report investigates the role of PKa on hemorrhage and hypertension in stroke-prone spontaneously hypertensive rats (SHRSP). SHRSP were fed with a high salt–containing stroke-prone diet to increase blood pressure and induce intracerebral hemorrhage. The roles of PKa on blood pressure, hemorrhage, and survival in SHRSP were examined in rats receiving a PKa inhibitor or plasma prekallikrein antisense oligonucleotide (PK ASO) compared with rats receiving control ASO. Effects on PKa on the proteolytic cleavage of atrial natriuretic peptide (ANP) were analyzed by tandem mass spectrometry. We show that SHRSP on high-salt diet displayed increased levels of PKa activity compared with control rats. Cleaved kininogen was increased in plasma during stroke compared to SHRSP without stroke. Systemic administration of a PKa inhibitor or PK ASO to SHRSP reduced hemorrhage and blood pressure, and improved neurological function and survival compared with SHRSP receiving control ASO. Since PKa inhibition was associated with reduced blood pressure in hypertensive rats, we investigated the effects of PKa on the cleavage of ANP. Incubation of PKa with ANP resulted in the generation fragment ANP5-28, which displayed reduced effects on blood pressure lowering compared with full length ANP. PKa contributes to increased blood pressure in SHRSP, which is associated with hemorrhage and reduced survival. PKa-mediated cleavage of ANP reduces its blood pressure lowering effects and thereby may contribute to hypertension-induced intracerebral hemorrhage.
Literature
1.
go back to reference Brott T, Thalinger K, Hertzberg V. Hypertension as a risk factor for spontaneous intracerebral hemorrhage. Stroke. 1986;17:1078–83.PubMedCrossRef Brott T, Thalinger K, Hertzberg V. Hypertension as a risk factor for spontaneous intracerebral hemorrhage. Stroke. 1986;17:1078–83.PubMedCrossRef
2.
go back to reference Kazui SMK, Sawada T, Yamaguchi T. Predisposing factors to enlargement of spontaneous intracerebral hemorrhage. Stroke. 1997;28:2370–5.PubMedCrossRef Kazui SMK, Sawada T, Yamaguchi T. Predisposing factors to enlargement of spontaneous intracerebral hemorrhage. Stroke. 1997;28:2370–5.PubMedCrossRef
3.
go back to reference Qureshi AI, Mendelow AD, Hanley DF. Prevalence of elevated blood pressure in 563,704 adult patients with stroke presenting to the ED in the United States. Am J Emerg Med. 2007;25:32–8.PubMedPubMedCentralCrossRef Qureshi AI, Mendelow AD, Hanley DF. Prevalence of elevated blood pressure in 563,704 adult patients with stroke presenting to the ED in the United States. Am J Emerg Med. 2007;25:32–8.PubMedPubMedCentralCrossRef
4.
go back to reference Carlberg B, Asplund K, Hagg E. Factors influencing admission blood pressure levels in patients with acute stroke. Stroke. 1991;22:527–30.PubMedCrossRef Carlberg B, Asplund K, Hagg E. Factors influencing admission blood pressure levels in patients with acute stroke. Stroke. 1991;22:527–30.PubMedCrossRef
5.
go back to reference Sato S, Carcel C, Anderson CS. Blood pressure management after intracerebral hemorrhage. Curr Treat Options Neurol. 2015;17:49.PubMedCrossRef Sato S, Carcel C, Anderson CS. Blood pressure management after intracerebral hemorrhage. Curr Treat Options Neurol. 2015;17:49.PubMedCrossRef
6.
go back to reference Willmot N, Leonardi-Bee J, Bath PMW. High blood pressure in acute stroke and subsequent outcome: a systematic review. Hypertension. 2004;43:18–24.PubMedCrossRef Willmot N, Leonardi-Bee J, Bath PMW. High blood pressure in acute stroke and subsequent outcome: a systematic review. Hypertension. 2004;43:18–24.PubMedCrossRef
7.
8.
go back to reference Schmaier AH, McCrae KR. The plasma kallikrein-kinin system: its evolution from contact activation. J Thromb Haemost. 2007;5:2323–9.PubMedCrossRef Schmaier AH, McCrae KR. The plasma kallikrein-kinin system: its evolution from contact activation. J Thromb Haemost. 2007;5:2323–9.PubMedCrossRef
9.
go back to reference Liu J, Gao BB, Clermont AC, Blair P, Chilcote TJ, Sinha S, et al. Hyperglycemia-induced cerebral hematoma expansion is mediated by plasma kallikrein. Nat med. 2011;17:206–10.PubMedPubMedCentralCrossRef Liu J, Gao BB, Clermont AC, Blair P, Chilcote TJ, Sinha S, et al. Hyperglycemia-induced cerebral hematoma expansion is mediated by plasma kallikrein. Nat med. 2011;17:206–10.PubMedPubMedCentralCrossRef
10.
go back to reference Simao F, Feener EP. The effects of the contact activation system on hemorrhage. Front Med. 2017;4:121.CrossRef Simao F, Feener EP. The effects of the contact activation system on hemorrhage. Front Med. 2017;4:121.CrossRef
11.
go back to reference Liu J, Clermont AC, Gao BB, Feener EP. Intraocular hemorrhage causes retinal vascular dysfunction via plasma kallikrein. Invest Ophthalmol Vis Sci. 2013;54:1086–94.PubMedPubMedCentralCrossRef Liu J, Clermont AC, Gao BB, Feener EP. Intraocular hemorrhage causes retinal vascular dysfunction via plasma kallikrein. Invest Ophthalmol Vis Sci. 2013;54:1086–94.PubMedPubMedCentralCrossRef
12.
go back to reference Simao F, Ustunkaya T, Clermont AC, Feener EP. Plasma kallikrein mediates brain hemorrhage and edema caused by tissue plasminogen activator therapy in mice after stroke. Blood. 2017;129:2280–90.PubMedPubMedCentralCrossRef Simao F, Ustunkaya T, Clermont AC, Feener EP. Plasma kallikrein mediates brain hemorrhage and edema caused by tissue plasminogen activator therapy in mice after stroke. Blood. 2017;129:2280–90.PubMedPubMedCentralCrossRef
13.
go back to reference Revenko AS, Gao D, Crosby JR, Bhattachariee G, Zhao C, May C, et al. Selective depletion of plasma prekallikrein or coagulation factor XII inhibits thrombosis in mice without increased risk of bleeding. Blood. 2011;118:5302–11.PubMedPubMedCentralCrossRef Revenko AS, Gao D, Crosby JR, Bhattachariee G, Zhao C, May C, et al. Selective depletion of plasma prekallikrein or coagulation factor XII inhibits thrombosis in mice without increased risk of bleeding. Blood. 2011;118:5302–11.PubMedPubMedCentralCrossRef
14.
go back to reference Phipps JA, Clermont AC, Sinha S, Chilcote TJ, Bursell SE, Feener EP. Plasma kallikrein mediates angiotensin II type 1 receptor-stimulated retinal vascular permeability. Hypertension. 2009;53:175–81.PubMedCrossRef Phipps JA, Clermont AC, Sinha S, Chilcote TJ, Bursell SE, Feener EP. Plasma kallikrein mediates angiotensin II type 1 receptor-stimulated retinal vascular permeability. Hypertension. 2009;53:175–81.PubMedCrossRef
15.
go back to reference Jaffa AA, Durazo-Arvizu R, Zheng D, Lackland DT, Srikanth S, Garvey WT, et al. Plasma prekallikrein: a risk marker for hypertension and nephropathy in type 1 diabetes. Diabetes. 2003;52:1215–21.PubMedCrossRef Jaffa AA, Durazo-Arvizu R, Zheng D, Lackland DT, Srikanth S, Garvey WT, et al. Plasma prekallikrein: a risk marker for hypertension and nephropathy in type 1 diabetes. Diabetes. 2003;52:1215–21.PubMedCrossRef
16.
go back to reference Ferrone JD, Bhattacharjee G, Revenko AS, Zanardi TA, Warren MS, Derosier FJ, et al. IONIS-PKKKRx a novel antisense inhibitor of prekallikrein and bradykinin production. Nucleic Acid Ther. 2019;29:82–91.PubMedPubMedCentralCrossRef Ferrone JD, Bhattacharjee G, Revenko AS, Zanardi TA, Warren MS, Derosier FJ, et al. IONIS-PKKKRx a novel antisense inhibitor of prekallikrein and bradykinin production. Nucleic Acid Ther. 2019;29:82–91.PubMedPubMedCentralCrossRef
17.
go back to reference Zhang F, Guo RM, Yang M, Wen XH, Shen J. A stable focal cerebral ischemia injury model in adult mice: assessment using 7T MR imaging. AJNR Am J Neuroradiol. 2012;33:935–9.PubMedPubMedCentralCrossRef Zhang F, Guo RM, Yang M, Wen XH, Shen J. A stable focal cerebral ischemia injury model in adult mice: assessment using 7T MR imaging. AJNR Am J Neuroradiol. 2012;33:935–9.PubMedPubMedCentralCrossRef
18.
go back to reference Gao BB, Chen X, Timothy N, Aiello LP, Feener EP. Characterization of the vitreous proteome in diabetes without diabetic retinopathy and diabetes with proliferative diabetic retinopathy. J Proteome Res. 2008;7:2516–25.PubMedCrossRef Gao BB, Chen X, Timothy N, Aiello LP, Feener EP. Characterization of the vitreous proteome in diabetes without diabetic retinopathy and diabetes with proliferative diabetic retinopathy. J Proteome Res. 2008;7:2516–25.PubMedCrossRef
19.
go back to reference Mori N, Nakao K, Kihara M, Sugawara A, Sakamoto M, Yamori Y, et al. Decreased content in left atrium and increased plasma concentration of atrial natriuretic polypeptide in spontaneously hypertensive rats (SHR) and SHR stroke-prone. Biochem Biophys Res Commun. 1986;135:74–81.CrossRef Mori N, Nakao K, Kihara M, Sugawara A, Sakamoto M, Yamori Y, et al. Decreased content in left atrium and increased plasma concentration of atrial natriuretic polypeptide in spontaneously hypertensive rats (SHR) and SHR stroke-prone. Biochem Biophys Res Commun. 1986;135:74–81.CrossRef
20.
21.
go back to reference Oparil S. The elusive role of atrial natriuretic peptide in hypertension. Mayo Clin Proc. 1995;70:1015–7.PubMedCrossRef Oparil S. The elusive role of atrial natriuretic peptide in hypertension. Mayo Clin Proc. 1995;70:1015–7.PubMedCrossRef
22.
go back to reference Romero M, Caniffi C, Bouchet G, Costa MA, Elesgaray R, Arranz C, et al. Chronic treatment with atrial natriuretic peptide in spontaneously hypertensive rats: beneficial renal effects and sex differences. PLoS One. 2015;10:e0120362. Romero M, Caniffi C, Bouchet G, Costa MA, Elesgaray R, Arranz C, et al. Chronic treatment with atrial natriuretic peptide in spontaneously hypertensive rats: beneficial renal effects and sex differences. PLoS One. 2015;10:e0120362.
23.
go back to reference Thibault G, Garcia R, Cantin M, Genest J. Atrial natriuretic factor and urinary kallikrein in the rat: antagonistic factors? Can J Physiol Pharmacol. 1984;62:645–9.PubMedCrossRef Thibault G, Garcia R, Cantin M, Genest J. Atrial natriuretic factor and urinary kallikrein in the rat: antagonistic factors? Can J Physiol Pharmacol. 1984;62:645–9.PubMedCrossRef
24.
go back to reference Briggs J, Marin-Grez M, Steipe B, Schubert G, Schnermann J. Inactivation of atrial natriuretic substance by kallikrein. Arm J Physiol. 1984;247:F480-484. Briggs J, Marin-Grez M, Steipe B, Schubert G, Schnermann J. Inactivation of atrial natriuretic substance by kallikrein. Arm J Physiol. 1984;247:F480-484.
25.
go back to reference Li B, Tom JY, Oare D, Yen R, Fairbrother WJ, Wells JA, et al. Minimization of a polypeptide hormone. Science. 1995;270:1657–9.PubMedCrossRef Li B, Tom JY, Oare D, Yen R, Fairbrother WJ, Wells JA, et al. Minimization of a polypeptide hormone. Science. 1995;270:1657–9.PubMedCrossRef
26.
go back to reference Zeng J, Zhang Y, Mo J, Su Z, Huang R. Two-kidney, two clip renovascular hypertensive rats can be used as stroke-prone rats. Stroke. 1998;29:1709–14.CrossRef Zeng J, Zhang Y, Mo J, Su Z, Huang R. Two-kidney, two clip renovascular hypertensive rats can be used as stroke-prone rats. Stroke. 1998;29:1709–14.CrossRef
27.
go back to reference Arribas SM, Costa R, Salomone S, Morel N, Godfraind T, McGrath JC. Functional reduction and associated cellular rearrangement in SHRSP rat basilar arteries are affected by salt load and calcium antagonist treatment. J Cereb Blood Flow Metab. 1999;19:517–27.PubMedCrossRef Arribas SM, Costa R, Salomone S, Morel N, Godfraind T, McGrath JC. Functional reduction and associated cellular rearrangement in SHRSP rat basilar arteries are affected by salt load and calcium antagonist treatment. J Cereb Blood Flow Metab. 1999;19:517–27.PubMedCrossRef
28.
go back to reference Arribas SM, Gordon JF, Daly CJ, Dominiczak AF, McGrath JC. Confocal microscopic characterization of a lesion in a cerebral vessel of the stroke-prone spontaneously hypertensive rat. Stroke. 1996;27:1118–23.PubMedCrossRef Arribas SM, Gordon JF, Daly CJ, Dominiczak AF, McGrath JC. Confocal microscopic characterization of a lesion in a cerebral vessel of the stroke-prone spontaneously hypertensive rat. Stroke. 1996;27:1118–23.PubMedCrossRef
29.
go back to reference Lee JM, Zhai G, Liu Q, Gonzales ER, Yin K, Yan P, et al. Vascular permeability precedes spontaneous intracerebral hemorrhage in stroke-prone spontaneously hypertensive rats. Stroke. 2007;38:3289–91.PubMedCrossRef Lee JM, Zhai G, Liu Q, Gonzales ER, Yin K, Yan P, et al. Vascular permeability precedes spontaneous intracerebral hemorrhage in stroke-prone spontaneously hypertensive rats. Stroke. 2007;38:3289–91.PubMedCrossRef
30.
go back to reference Smeda JS, Daneshtalab N. The effects of poststroke captopril and losartan treatment on cerebral blood flow autoregulation in SHRSP with hemorrhagic stroke. J Cereb Blood Flow Metab. 2011;31:476–85.PubMedCrossRef Smeda JS, Daneshtalab N. The effects of poststroke captopril and losartan treatment on cerebral blood flow autoregulation in SHRSP with hemorrhagic stroke. J Cereb Blood Flow Metab. 2011;31:476–85.PubMedCrossRef
31.
go back to reference Smeda JS. Hemorrhagic stroke development in spontaneously hypertensive rats fed a North American. Japanese-style diet Stroke. 1989;20:1212–8.PubMed Smeda JS. Hemorrhagic stroke development in spontaneously hypertensive rats fed a North American. Japanese-style diet Stroke. 1989;20:1212–8.PubMed
32.
go back to reference Del Bigio MR, Yan HJ, Kozlowski P, Sutherland GR, Peeling J. Serial magnetic resonance imaging of rat brain after induction of renal hypertension. Stroke. 1999;30:2440–7.PubMedCrossRef Del Bigio MR, Yan HJ, Kozlowski P, Sutherland GR, Peeling J. Serial magnetic resonance imaging of rat brain after induction of renal hypertension. Stroke. 1999;30:2440–7.PubMedCrossRef
33.
go back to reference Okamoto K, Ohta Y, Chikugo T, Shiokawa H, Morita N. Chronic treatment with captopril, SQ 29,852, hydralazine and a 33% fish meal diet in malignant stroke-prone spontaneously hypertensive rats. J Hypertens. 1991;9:1105–7.PubMed Okamoto K, Ohta Y, Chikugo T, Shiokawa H, Morita N. Chronic treatment with captopril, SQ 29,852, hydralazine and a 33% fish meal diet in malignant stroke-prone spontaneously hypertensive rats. J Hypertens. 1991;9:1105–7.PubMed
34.
go back to reference Law MR, Morris JK, Wald NJ. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. BMJ. 2009;338:b1665. Law MR, Morris JK, Wald NJ. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. BMJ. 2009;338:b1665.
35.
go back to reference Horning B, Kohler C, Drexler H. Role of bradykinin in mediating vascular effects of angiotensin-converting enzyme inhibitors in humans. Circulation. 1997;95:1115–8.CrossRef Horning B, Kohler C, Drexler H. Role of bradykinin in mediating vascular effects of angiotensin-converting enzyme inhibitors in humans. Circulation. 1997;95:1115–8.CrossRef
36.
go back to reference Campbell DJ, Krum H, Esler MD. Losartan increases bradykinin levels in hypertensive humans. Circulation. 2005;111:315–20.PubMedCrossRef Campbell DJ, Krum H, Esler MD. Losartan increases bradykinin levels in hypertensive humans. Circulation. 2005;111:315–20.PubMedCrossRef
37.
go back to reference Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, White A, Cushman WC, White W, Sica D, Ferdinand K, Giles TD, Falkner B, Carey RM. Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Circulation. 2008;117:e510–26.PubMedCrossRef Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, White A, Cushman WC, White W, Sica D, Ferdinand K, Giles TD, Falkner B, Carey RM. Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Circulation. 2008;117:e510–26.PubMedCrossRef
38.
go back to reference Mohr JP, Marti-Vilalta JL. Lacunes. In: Barnett HJM, Mohr JP, Stein BM, Yatsu FM, editors. Stroke: pathophysiology, diagnosis, and management. 3rd ed. New York, NY: Churchill Livingstone; 1998. p. 599–622. Mohr JP, Marti-Vilalta JL. Lacunes. In: Barnett HJM, Mohr JP, Stein BM, Yatsu FM, editors. Stroke: pathophysiology, diagnosis, and management. 3rd ed. New York, NY: Churchill Livingstone; 1998. p. 599–622.
39.
go back to reference Schreiber S, Bueche CZ, Garz C, Braun H. Blood brain barrier breakdown as the starting point of cerebral small vessel disease? – New insights from a rat model. Exp Transl Stroke Med. 2013;5:4.PubMedPubMedCentralCrossRef Schreiber S, Bueche CZ, Garz C, Braun H. Blood brain barrier breakdown as the starting point of cerebral small vessel disease? – New insights from a rat model. Exp Transl Stroke Med. 2013;5:4.PubMedPubMedCentralCrossRef
40.
go back to reference Gob E, Reymann S, Langhauser F, Schuhmann MK, Kraft P, Thielmann I, et al. Blocking of plasma kallikrein ameliorates stroke by reducing thromboinflammation. Ann Neurol. 2015;77:784–803.PubMedCrossRef Gob E, Reymann S, Langhauser F, Schuhmann MK, Kraft P, Thielmann I, et al. Blocking of plasma kallikrein ameliorates stroke by reducing thromboinflammation. Ann Neurol. 2015;77:784–803.PubMedCrossRef
41.
go back to reference Liu J, Gao BB, Feener EP. Proteomic identification of novel plasma kallikrein substrates in the astrocyte secretome. Transl Stroke Res. 2010;1:276–86.PubMedCrossRef Liu J, Gao BB, Feener EP. Proteomic identification of novel plasma kallikrein substrates in the astrocyte secretome. Transl Stroke Res. 2010;1:276–86.PubMedCrossRef
42.
go back to reference Bailey EL, Wardlaw JM, Graham D, Dominiczak AF, Sudlow CL, Smith C. Cerebral small vessel endothelial structural changes predate hypertension in stroke-prone spontaneously hypertensive rats: a blinded, controlled immunohistochemical study of 5- to 21-week-old rats. Neuropathol Appl Neurobiol. 2011;37:711–26.PubMedCrossRef Bailey EL, Wardlaw JM, Graham D, Dominiczak AF, Sudlow CL, Smith C. Cerebral small vessel endothelial structural changes predate hypertension in stroke-prone spontaneously hypertensive rats: a blinded, controlled immunohistochemical study of 5- to 21-week-old rats. Neuropathol Appl Neurobiol. 2011;37:711–26.PubMedCrossRef
43.
go back to reference Lee JM, Zhai G, Liu Q, et al. Vascular permeability precedes spontaneous intracerebral hemorrhage in stroke-prone spontaneously hypertensive rats. Stroke. 2007;38:3289–91.PubMedCrossRef Lee JM, Zhai G, Liu Q, et al. Vascular permeability precedes spontaneous intracerebral hemorrhage in stroke-prone spontaneously hypertensive rats. Stroke. 2007;38:3289–91.PubMedCrossRef
44.
go back to reference Quick S, Moss J, Rajani RM, Williams A. A vessel for change: endothelial dysfunction in cerebral small vessel disease. Trends Neusoci. 2021;44:289–305.CrossRef Quick S, Moss J, Rajani RM, Williams A. A vessel for change: endothelial dysfunction in cerebral small vessel disease. Trends Neusoci. 2021;44:289–305.CrossRef
45.
go back to reference Rajani RM, Quick S, Ruigrok SR, Graham D, Harris SE, Verhaaren BFJ, Fornage M, Seshadri S, Atanur SS, Dominiczak AF, Smith C, Wardlaw JM, Williams A. Reversal of endothelial dysfunction reduces white matter vulnerability in cerebral small vessel disease in rats. Sci Transl Med. 2018;10:eaam9507. Rajani RM, Quick S, Ruigrok SR, Graham D, Harris SE, Verhaaren BFJ, Fornage M, Seshadri S, Atanur SS, Dominiczak AF, Smith C, Wardlaw JM, Williams A. Reversal of endothelial dysfunction reduces white matter vulnerability in cerebral small vessel disease in rats. Sci Transl Med. 2018;10:eaam9507.
46.
go back to reference Tagami M, Kubota A, Sunaga T, et al. Increased transendothelial channel transport of cerebral capillary endothelium in stroke-prone SHR. Stroke. 1993;14:591–6.CrossRef Tagami M, Kubota A, Sunaga T, et al. Increased transendothelial channel transport of cerebral capillary endothelium in stroke-prone SHR. Stroke. 1993;14:591–6.CrossRef
47.
go back to reference Fredriksson K, Kalimo H, Westergren I, et al. Blood-brain barrier leakage and brain edema in stroke-prone spontaneously hypertensive rats: effect of chronic sympathectomy and low protein/high salt diet. Acta Neuropathol (Berl). 1987;74:259–68.CrossRef Fredriksson K, Kalimo H, Westergren I, et al. Blood-brain barrier leakage and brain edema in stroke-prone spontaneously hypertensive rats: effect of chronic sympathectomy and low protein/high salt diet. Acta Neuropathol (Berl). 1987;74:259–68.CrossRef
48.
go back to reference Tomimoto H, Akiguchi I, Sunaga T, et al. Alterations of the blood-brain barrier and glial cells in white-matter lesions in cerebrovascular and Alzheimer’s disease patients. Stroke. 1996;27:2096–2074.CrossRef Tomimoto H, Akiguchi I, Sunaga T, et al. Alterations of the blood-brain barrier and glial cells in white-matter lesions in cerebrovascular and Alzheimer’s disease patients. Stroke. 1996;27:2096–2074.CrossRef
49.
go back to reference Da Fonseca AC, Matias D, Garcia C, Amaral R, Geraldo LH, Freitas C, Lima FR. The impact of microglia activation on blood-brain barrier in brain diseases. Front Cell Neurosci. 2014;8:362.PubMedPubMedCentralCrossRef Da Fonseca AC, Matias D, Garcia C, Amaral R, Geraldo LH, Freitas C, Lima FR. The impact of microglia activation on blood-brain barrier in brain diseases. Front Cell Neurosci. 2014;8:362.PubMedPubMedCentralCrossRef
50.
go back to reference Takeuchi S, Nagatani K, Otani N, Nawashiro H, Sugawara T, Wada K, Mori K. Hydrogen improves neurological function through attenuation of blood-brain barrier disruption in spontaneously hypertensive stroke-prone rats. BMC Neurosci. 2015;16:22.PubMedPubMedCentralCrossRef Takeuchi S, Nagatani K, Otani N, Nawashiro H, Sugawara T, Wada K, Mori K. Hydrogen improves neurological function through attenuation of blood-brain barrier disruption in spontaneously hypertensive stroke-prone rats. BMC Neurosci. 2015;16:22.PubMedPubMedCentralCrossRef
51.
go back to reference Yamamoto E, Tamamaki N, Nakamura T, Kataoka K, Tokutomi Y, Dong YF, Fukuda M, Matsuba S, Ogawa H, Kim-Mitsuyama S. Excess salt causes cerebral neuronal apoptosis and inflammation in stroke-prone hypertensive rats through angiotensin II-induced NADPH oxidase activation. Stroke. 2008;39:3049–56.PubMedCrossRef Yamamoto E, Tamamaki N, Nakamura T, Kataoka K, Tokutomi Y, Dong YF, Fukuda M, Matsuba S, Ogawa H, Kim-Mitsuyama S. Excess salt causes cerebral neuronal apoptosis and inflammation in stroke-prone hypertensive rats through angiotensin II-induced NADPH oxidase activation. Stroke. 2008;39:3049–56.PubMedCrossRef
52.
go back to reference Marks L, Carswell HV, Peters EE, Graham DI, Patterson J, Dominiczak AF, Macrae IM. Characterization of the microglial response to cerebral ischemia in the stroke-prone spontaneously hypertensive rat. Hypertension. 2001;38:116–22.PubMedCrossRef Marks L, Carswell HV, Peters EE, Graham DI, Patterson J, Dominiczak AF, Macrae IM. Characterization of the microglial response to cerebral ischemia in the stroke-prone spontaneously hypertensive rat. Hypertension. 2001;38:116–22.PubMedCrossRef
53.
go back to reference Kato J, Kida O, Nakamura S, Sasaki A, Kodoma K, Tanaka K. Atrial natriuretic polypeptide (ANP) in the development of spontaneously hypertensive rats (SHR) and stroke-prone SHR (SHRSP). Biochem Biophys Res Commun. 1987;143:316–22.PubMedCrossRef Kato J, Kida O, Nakamura S, Sasaki A, Kodoma K, Tanaka K. Atrial natriuretic polypeptide (ANP) in the development of spontaneously hypertensive rats (SHR) and stroke-prone SHR (SHRSP). Biochem Biophys Res Commun. 1987;143:316–22.PubMedCrossRef
54.
go back to reference John SWM, Krege JH, Oliver PM, Hagaman JR, Hodgin JB, Pang SC, et al. Genetic decreases in atrial natriuretic peptide and salt-sensitive hypertension. Science. 1995;267:679–81.PubMedCrossRef John SWM, Krege JH, Oliver PM, Hagaman JR, Hodgin JB, Pang SC, et al. Genetic decreases in atrial natriuretic peptide and salt-sensitive hypertension. Science. 1995;267:679–81.PubMedCrossRef
55.
go back to reference Steinhelper ME, Cochrane KL, Field LJ. Hypotension in transgenic mice expressing atrial natriuretic factor fusion genes. Hypertension. 1990;16:301–7.PubMedCrossRef Steinhelper ME, Cochrane KL, Field LJ. Hypotension in transgenic mice expressing atrial natriuretic factor fusion genes. Hypertension. 1990;16:301–7.PubMedCrossRef
56.
go back to reference Klinger JR, Petit RD, Curtin LA, Warburton RR, Wrenn DS, Steinhelper ME, et al. Cardiopulmonary responses to chronic hypoxia in transgenic mice that overexpress ANP. J Appl Physiol. 1993;75:198–205.PubMedCrossRef Klinger JR, Petit RD, Curtin LA, Warburton RR, Wrenn DS, Steinhelper ME, et al. Cardiopulmonary responses to chronic hypoxia in transgenic mice that overexpress ANP. J Appl Physiol. 1993;75:198–205.PubMedCrossRef
57.
go back to reference Janssen WNT, de Zeuw D, van der Hem GK, de Jong PE. Antihypertensive effect of a 5-day infusion of atrial natriuretic factor in humans. Hypertension. 1989;13:640–6.PubMedCrossRef Janssen WNT, de Zeuw D, van der Hem GK, de Jong PE. Antihypertensive effect of a 5-day infusion of atrial natriuretic factor in humans. Hypertension. 1989;13:640–6.PubMedCrossRef
Metadata
Title
Plasma Kallikrein Contributes to Intracerebral Hemorrhage and Hypertension in Stroke-Prone Spontaneously Hypertensive Rats
Authors
Jian Guan
Allen C. Clermont
Loc-Duyen Pham
Tuna Ustunkaya
Alexey S. Revenko
A. Robert MacLeod
Edward P. Feener
Fabrício Simão
Publication date
01-04-2022
Publisher
Springer US
Published in
Translational Stroke Research / Issue 2/2022
Print ISSN: 1868-4483
Electronic ISSN: 1868-601X
DOI
https://doi.org/10.1007/s12975-021-00929-x

Other articles of this Issue 2/2022

Translational Stroke Research 2/2022 Go to the issue