Skip to main content
Top
Published in: Translational Stroke Research 1/2016

01-02-2016 | Review Article

Pharmacological Preventions of Brain Injury Following Experimental Germinal Matrix Hemorrhage: an Up-to-Date Review

Authors: Jun Tang, Yihao Tao, Bing Jiang, Qianwei Chen, Feng Hua, John Zhang, Gang Zhu, Zhi Chen

Published in: Translational Stroke Research | Issue 1/2016

Login to get access

Abstract

Germinal matrix hemorrhage (GMH) is defined as the rupture of immature blood vessels in the subependymal zone of premature infants with significant mortality and morbidity. Considering the notable social and ecological stress brought by GMH-induced brain injury and sequelae, safe and efficient pharmacological preventions are badly needed. Currently, several appropriate animal models are available to mimic the clinical outcomes of GMH in human patients. In the long run, hemorrhagic strokes are the research target. Previously, we found that minocycline was efficient to alleviate GMH-induced brain edema and posthemorrhagic hydrocephalus (PHH) in rats, which may be closely related to the activation of cannabinoid receptor 2 (CB2R). However, how the two molecules correlate and the underlined molecular pathway remain unknown. To extensively understand current experimental GMH treatment, this literature review critically evaluates existing therapeutic strategies, potential treatments, and potentially involved molecular mechanisms. Each strategy has its own advantages and disadvantages. Some of the mechanisms are still controversial, requiring an increasing number of animal experiments before the therapeutic strategy would be widely accepted.
Literature
1.
go back to reference Ballabh P, Braun A, Nedergaard M. Anatomic analysis of blood vessels in germinal matrix, cerebral cortex, and white matter in developing infants. Pediatr Res. 2004;56:117–24.PubMedCrossRef Ballabh P, Braun A, Nedergaard M. Anatomic analysis of blood vessels in germinal matrix, cerebral cortex, and white matter in developing infants. Pediatr Res. 2004;56:117–24.PubMedCrossRef
2.
go back to reference Bassan H, Limperopoulos C, Visconti K, Mayer DL, Feldman HA, Avery L, et al. Neurodevelopmental outcome in survivors of periventricular hemorrhagic infarction. Pediatrics. 2007;120:785–92.PubMedCrossRef Bassan H, Limperopoulos C, Visconti K, Mayer DL, Feldman HA, Avery L, et al. Neurodevelopmental outcome in survivors of periventricular hemorrhagic infarction. Pediatrics. 2007;120:785–92.PubMedCrossRef
3.
go back to reference Robinson S. Neonatal posthemorrhagic hydrocephalus from prematurity: pathophysiology and current treatment concepts. J Neurosurg Pediatr. 2012;9:242–58.PubMedCrossRef Robinson S. Neonatal posthemorrhagic hydrocephalus from prematurity: pathophysiology and current treatment concepts. J Neurosurg Pediatr. 2012;9:242–58.PubMedCrossRef
4.
go back to reference Heron M, Sutton PD, Xu J, Ventura SJ, Strobino DM, Guyer B. Annual summary of vital statistics: 2007. Pediatrics. 2010;125:4–15.PubMedCrossRef Heron M, Sutton PD, Xu J, Ventura SJ, Strobino DM, Guyer B. Annual summary of vital statistics: 2007. Pediatrics. 2010;125:4–15.PubMedCrossRef
5.
go back to reference Strahle J, Garton HJ, Maher CO, Muraszko KM, Keep RF, Xi G. Mechanisms of hydrocephalus after neonatal and adult intraventricular hemorrhage. Translational Stroke Res. 2012;3:25–38.CrossRef Strahle J, Garton HJ, Maher CO, Muraszko KM, Keep RF, Xi G. Mechanisms of hydrocephalus after neonatal and adult intraventricular hemorrhage. Translational Stroke Res. 2012;3:25–38.CrossRef
6.
go back to reference Lekic T, Manaenko A, Rolland W, Krafft PR, Peters R, Hartman RE, et al. Rodent neonatal germinal matrix hemorrhage mimics the human brain injury, neurological consequences, and post-hemorrhagic hydrocephalus. Exp Neurol. 2012;236:69–78.PubMedCentralPubMedCrossRef Lekic T, Manaenko A, Rolland W, Krafft PR, Peters R, Hartman RE, et al. Rodent neonatal germinal matrix hemorrhage mimics the human brain injury, neurological consequences, and post-hemorrhagic hydrocephalus. Exp Neurol. 2012;236:69–78.PubMedCentralPubMedCrossRef
8.
go back to reference Chen Z, Gao C, Hua Y, Keep RF, Muraszko K, Xi G. Role of iron in brain injury after intraventricular hemorrhage. Stroke: J Cereb Circulation. 2011;42:465–70.CrossRef Chen Z, Gao C, Hua Y, Keep RF, Muraszko K, Xi G. Role of iron in brain injury after intraventricular hemorrhage. Stroke: J Cereb Circulation. 2011;42:465–70.CrossRef
9.
go back to reference Chen Q, Zhang J, Guo J, Tang J, Tao Y, Li L, et al. Chronic hydrocephalus and perihematomal tissue injury developed in a rat model of intracerebral hemorrhage with ventricular extension. Translational Stroke Res. 2015;6:125–32.CrossRef Chen Q, Zhang J, Guo J, Tang J, Tao Y, Li L, et al. Chronic hydrocephalus and perihematomal tissue injury developed in a rat model of intracerebral hemorrhage with ventricular extension. Translational Stroke Res. 2015;6:125–32.CrossRef
10.
go back to reference Guo J, Chen Q, Tang J, Zhang J, Tao Y, Li L, et al. Minocycline-induced attenuation of iron overload and brain injury after experimental germinal matrix hemorrhage. Brain Res. 2015;1594:115–24.PubMedCrossRef Guo J, Chen Q, Tang J, Zhang J, Tao Y, Li L, et al. Minocycline-induced attenuation of iron overload and brain injury after experimental germinal matrix hemorrhage. Brain Res. 2015;1594:115–24.PubMedCrossRef
11.
go back to reference Tang J, Chen Q, Guo J, Yang L, Tao Y, Li L, et al. Minocycline attenuates neonatal germinal-matrix-hemorrhage-induced neuroinflammation and brain edema by activating cannabinoid receptor 2. Mol Neurobiol. 2015. doi:10.1007/s12035-015-9154-x. Tang J, Chen Q, Guo J, Yang L, Tao Y, Li L, et al. Minocycline attenuates neonatal germinal-matrix-hemorrhage-induced neuroinflammation and brain edema by activating cannabinoid receptor 2. Mol Neurobiol. 2015. doi:10.​1007/​s12035-015-9154-x.
12.
go back to reference Tang J, Tao Y, Tan L, Yang L, Niu Y, Chen Q, et al. Cannabinoid receptor 2 attenuates microglial accumulation and brain injury following germinal matrix hemorrhage via ERK dephosphorylation in vivo and in vitro. Neuropharmacology. 2015;95:424–33.PubMedCrossRef Tang J, Tao Y, Tan L, Yang L, Niu Y, Chen Q, et al. Cannabinoid receptor 2 attenuates microglial accumulation and brain injury following germinal matrix hemorrhage via ERK dephosphorylation in vivo and in vitro. Neuropharmacology. 2015;95:424–33.PubMedCrossRef
13.
go back to reference Tao Y, Tang J, Chen Q, Guo J, Li L, Yang L, et al. Cannabinoid CB2 receptor stimulation attenuates brain edema and neurological deficits in a germinal matrix hemorrhage rat model. Brain Res. 2015;1602:127–35.PubMedCrossRef Tao Y, Tang J, Chen Q, Guo J, Li L, Yang L, et al. Cannabinoid CB2 receptor stimulation attenuates brain edema and neurological deficits in a germinal matrix hemorrhage rat model. Brain Res. 2015;1602:127–35.PubMedCrossRef
14.
go back to reference Berger R, Bender S, Sefkow S, Klingmuller V, Kunzel W, Jensen A. Peri/intraventricular haemorrhage: a cranial ultrasound study on 5286 neonates. Eur J Obstet Gynecol Reprod Biol. 1997;75:191–203.PubMedCrossRef Berger R, Bender S, Sefkow S, Klingmuller V, Kunzel W, Jensen A. Peri/intraventricular haemorrhage: a cranial ultrasound study on 5286 neonates. Eur J Obstet Gynecol Reprod Biol. 1997;75:191–203.PubMedCrossRef
15.
go back to reference Tsitouras V, Sgouros S. Infantile posthemorrhagic hydrocephalus. Childs Nerv Syst: ChNS: Off J Int Soc Pediatr Neurosurg. 2011;27:1595–608.CrossRef Tsitouras V, Sgouros S. Infantile posthemorrhagic hydrocephalus. Childs Nerv Syst: ChNS: Off J Int Soc Pediatr Neurosurg. 2011;27:1595–608.CrossRef
16.
go back to reference Papile LA, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr. 1978;92:529–34.PubMedCrossRef Papile LA, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr. 1978;92:529–34.PubMedCrossRef
17.
go back to reference Hintz SR, Barnes PD, Bulas D, Slovis TL, Finer NN, Wrage LA, et al. Neuroimaging and neurodevelopmental outcome in extremely preterm infants. Pediatrics. 2015;135:e32–42.PubMedCentralPubMedCrossRef Hintz SR, Barnes PD, Bulas D, Slovis TL, Finer NN, Wrage LA, et al. Neuroimaging and neurodevelopmental outcome in extremely preterm infants. Pediatrics. 2015;135:e32–42.PubMedCentralPubMedCrossRef
18.
go back to reference Roberts D, Dalziel S. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2006;(3):CD004454 Roberts D, Dalziel S. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2006;(3):CD004454
19.
go back to reference Whitelaw A. Intraventricular haemorrhage and posthaemorrhagic hydrocephalus: pathogenesis, prevention and future interventions. Semin Neonatol: SN. 2001;6:135–46.PubMedCrossRef Whitelaw A. Intraventricular haemorrhage and posthaemorrhagic hydrocephalus: pathogenesis, prevention and future interventions. Semin Neonatol: SN. 2001;6:135–46.PubMedCrossRef
20.
go back to reference Fowlie PW, Davis PG. Prophylactic indomethacin for preterm infants: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2003;88:F464–6.PubMedCentralPubMedCrossRef Fowlie PW, Davis PG. Prophylactic indomethacin for preterm infants: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2003;88:F464–6.PubMedCentralPubMedCrossRef
21.
go back to reference Bruinsma N, Stobberingh EE, Herpers MJ, Vles JS, Weber BJ, Gavilanes DA. Subcutaneous ventricular catheter reservoir and ventriculoperitoneal drain-related infections in preterm infants and young children. Clin Microbiol Infect: Off Publ Eur Soc Clin Microbiol Infect Dis. 2000;6:202–6.CrossRef Bruinsma N, Stobberingh EE, Herpers MJ, Vles JS, Weber BJ, Gavilanes DA. Subcutaneous ventricular catheter reservoir and ventriculoperitoneal drain-related infections in preterm infants and young children. Clin Microbiol Infect: Off Publ Eur Soc Clin Microbiol Infect Dis. 2000;6:202–6.CrossRef
22.
go back to reference Brockmeyer DL, Wright LC, Walker ML, Ward RM. Management of posthemorrhagic hydrocephalus in the low-birth-weight preterm neonate. Pediatr Neurosci. 1989;15:302–7. discussion 308.PubMedCrossRef Brockmeyer DL, Wright LC, Walker ML, Ward RM. Management of posthemorrhagic hydrocephalus in the low-birth-weight preterm neonate. Pediatr Neurosci. 1989;15:302–7. discussion 308.PubMedCrossRef
23.
go back to reference Kormanik K, Praca J, Garton HJ, Sarkar S. Repeated tapping of ventricular reservoir in preterm infants with post-hemorrhagic ventricular dilatation does not increase the risk of reservoir infection. J Perinatol: Off J Calif Perinatal Assoc. 2010;30:218–21.CrossRef Kormanik K, Praca J, Garton HJ, Sarkar S. Repeated tapping of ventricular reservoir in preterm infants with post-hemorrhagic ventricular dilatation does not increase the risk of reservoir infection. J Perinatol: Off J Calif Perinatal Assoc. 2010;30:218–21.CrossRef
24.
go back to reference Perret GE, Graf CJ. Subgaleal shunt for temporary ventricle decompression and subdural drainage. J Neurosurg. 1977;47:590–5.PubMedCrossRef Perret GE, Graf CJ. Subgaleal shunt for temporary ventricle decompression and subdural drainage. J Neurosurg. 1977;47:590–5.PubMedCrossRef
25.
go back to reference Vassilyadi M, Tataryn Z, Shamji MF, Ventureyra EC. Functional outcomes among premature infants with intraventricular hemorrhage. Pediatr Neurosurg. 2009;45:247–55.PubMedCrossRef Vassilyadi M, Tataryn Z, Shamji MF, Ventureyra EC. Functional outcomes among premature infants with intraventricular hemorrhage. Pediatr Neurosurg. 2009;45:247–55.PubMedCrossRef
26.
go back to reference Gould SJ, Howard S. Glial differentiation in the germinal layer of fetal and preterm infant brain: an immunocytochemical study. Pediatr Pathol Affiliated Int Paediatr Pathol Assoc. 1988;8:25–36. Gould SJ, Howard S. Glial differentiation in the germinal layer of fetal and preterm infant brain: an immunocytochemical study. Pediatr Pathol Affiliated Int Paediatr Pathol Assoc. 1988;8:25–36.
28.
go back to reference Volpe JJ. Intraventricular hemorrhage in the premature infant—current concepts. Part I. Ann Neurol. 1989;25:3–11.PubMedCrossRef Volpe JJ. Intraventricular hemorrhage in the premature infant—current concepts. Part I. Ann Neurol. 1989;25:3–11.PubMedCrossRef
29.
go back to reference Antoniuk S, da Silva RV. Periventricular and intraventricular hemorrhage in the premature infants. Rev Neurol. 2000;31:238–43.PubMed Antoniuk S, da Silva RV. Periventricular and intraventricular hemorrhage in the premature infants. Rev Neurol. 2000;31:238–43.PubMed
30.
go back to reference Kenny JD, Garcia-Prats JA, Hilliard JL, Corbet AJ, Rudolph AJ. Hypercarbia at birth: a possible role in the pathogenesis of intraventricular hemorrhage. Pediatrics. 1978;62:465–7.PubMed Kenny JD, Garcia-Prats JA, Hilliard JL, Corbet AJ, Rudolph AJ. Hypercarbia at birth: a possible role in the pathogenesis of intraventricular hemorrhage. Pediatrics. 1978;62:465–7.PubMed
31.
go back to reference Hill A, Shackelford GD, Volpe JJ. A potential mechanism of pathogenesis for early posthemorrhagic hydrocephalus in the premature newborn. Pediatrics. 1984;73:19–21.PubMed Hill A, Shackelford GD, Volpe JJ. A potential mechanism of pathogenesis for early posthemorrhagic hydrocephalus in the premature newborn. Pediatrics. 1984;73:19–21.PubMed
32.
go back to reference Oi S, Di Rocco C. Proposal of “evolution theory in cerebrospinal fluid dynamics” and minor pathway hydrocephalus in developing immature brain. Childs Nerv Syst: ChNS: Off J Int Soc Pediatr Neurosurg. 2006;22:662–9.CrossRef Oi S, Di Rocco C. Proposal of “evolution theory in cerebrospinal fluid dynamics” and minor pathway hydrocephalus in developing immature brain. Childs Nerv Syst: ChNS: Off J Int Soc Pediatr Neurosurg. 2006;22:662–9.CrossRef
34.
go back to reference Aquilina K, Chakkarapani E, Thoresen M. Early deterioration of cerebrospinal fluid dynamics in a neonatal piglet model of intraventricular hemorrhage and posthemorrhagic ventricular dilation. J Neurosurg Pediatr. 2012;10:529–37.PubMedCrossRef Aquilina K, Chakkarapani E, Thoresen M. Early deterioration of cerebrospinal fluid dynamics in a neonatal piglet model of intraventricular hemorrhage and posthemorrhagic ventricular dilation. J Neurosurg Pediatr. 2012;10:529–37.PubMedCrossRef
35.
go back to reference El-Khoury N, Braun A, Hu F, Pandey M, Nedergaard M, Lagamma EF, et al. Astrocyte end-feet in germinal matrix, cerebral cortex, and white matter in developing infants. Pediatr Res. 2006;59:673–9.PubMedCrossRef El-Khoury N, Braun A, Hu F, Pandey M, Nedergaard M, Lagamma EF, et al. Astrocyte end-feet in germinal matrix, cerebral cortex, and white matter in developing infants. Pediatr Res. 2006;59:673–9.PubMedCrossRef
36.
go back to reference Fernandez-Lopez D, Faustino J, Daneman R, Zhou L, Lee SY, Derugin N, et al. Blood-brain barrier permeability is increased after acute adult stroke but not neonatal stroke in the rat. J Neurosci: Off J Soc Neurosci. 2012;32:9588–600.CrossRef Fernandez-Lopez D, Faustino J, Daneman R, Zhou L, Lee SY, Derugin N, et al. Blood-brain barrier permeability is increased after acute adult stroke but not neonatal stroke in the rat. J Neurosci: Off J Soc Neurosci. 2012;32:9588–600.CrossRef
37.
go back to reference Ballabh P, Hu F, Kumarasiri M, Braun A, Nedergaard M. Development of tight junction molecules in blood vessels of germinal matrix, cerebral cortex, and white matter. Pediatr Res. 2005;58:791–8.PubMedCrossRef Ballabh P, Hu F, Kumarasiri M, Braun A, Nedergaard M. Development of tight junction molecules in blood vessels of germinal matrix, cerebral cortex, and white matter. Pediatr Res. 2005;58:791–8.PubMedCrossRef
38.
go back to reference Braun A, Xu H, Hu F, Kocherlakota P, Siegel D, Chander P, et al. Paucity of pericytes in germinal matrix vasculature of premature infants. J Neurosci: Off J Soc Neurosci. 2007;27:12012–24.CrossRef Braun A, Xu H, Hu F, Kocherlakota P, Siegel D, Chander P, et al. Paucity of pericytes in germinal matrix vasculature of premature infants. J Neurosci: Off J Soc Neurosci. 2007;27:12012–24.CrossRef
39.
go back to reference Deren KE, Packer M, Forsyth J, Milash B, Abdullah OM, Hsu EW, et al. Reactive astrocytosis, microgliosis and inflammation in rats with neonatal hydrocephalus. Exp Neurol. 2010;226:110–9.PubMedCrossRef Deren KE, Packer M, Forsyth J, Milash B, Abdullah OM, Hsu EW, et al. Reactive astrocytosis, microgliosis and inflammation in rats with neonatal hydrocephalus. Exp Neurol. 2010;226:110–9.PubMedCrossRef
40.
go back to reference Glees P, Hasan M. Ultrastructure of human cerebral macroglia and microglia: maturing and hydrocephalic frontal cortex. Neurosurg Rev. 1990;13:231–42.PubMedCrossRef Glees P, Hasan M. Ultrastructure of human cerebral macroglia and microglia: maturing and hydrocephalic frontal cortex. Neurosurg Rev. 1990;13:231–42.PubMedCrossRef
41.
go back to reference Fernandez-Lopez D, Faustino J, Derugin N, Wendland M, Lizasoain I, Moro MA, et al. Reduced infarct size and accumulation of microglia in rats treated with WIN 55,212-2 after neonatal stroke. Neuroscience. 2012;207:307–15.PubMedCentralPubMedCrossRef Fernandez-Lopez D, Faustino J, Derugin N, Wendland M, Lizasoain I, Moro MA, et al. Reduced infarct size and accumulation of microglia in rats treated with WIN 55,212-2 after neonatal stroke. Neuroscience. 2012;207:307–15.PubMedCentralPubMedCrossRef
42.
go back to reference Supramaniam V, Vontell R, Srinivasan L, Wyatt-Ashmead J, Hagberg H, Rutherford M. Microglia activation in the extremely preterm human brain. Pediatr Res. 2013;73:301–9.PubMedCrossRef Supramaniam V, Vontell R, Srinivasan L, Wyatt-Ashmead J, Hagberg H, Rutherford M. Microglia activation in the extremely preterm human brain. Pediatr Res. 2013;73:301–9.PubMedCrossRef
43.
go back to reference Tada T, Kanaji M, Kobayashi S. Induction of communicating hydrocephalus in mice by intrathecal injection of human recombinant transforming growth factor-beta 1. J Neuroimmunol. 1994;50:153–8.PubMedCrossRef Tada T, Kanaji M, Kobayashi S. Induction of communicating hydrocephalus in mice by intrathecal injection of human recombinant transforming growth factor-beta 1. J Neuroimmunol. 1994;50:153–8.PubMedCrossRef
44.
go back to reference Cherian S, Thoresen M, Silver IA, Whitelaw A, Love S. Transforming growth factor-betas in a rat model of neonatal posthaemorrhagic hydrocephalus. Neuropathol Appl Neurobiol. 2004;30:585–600.PubMedCrossRef Cherian S, Thoresen M, Silver IA, Whitelaw A, Love S. Transforming growth factor-betas in a rat model of neonatal posthaemorrhagic hydrocephalus. Neuropathol Appl Neurobiol. 2004;30:585–600.PubMedCrossRef
45.
go back to reference Balasubramaniam J, Del Bigio MR. Animal models of germinal matrix hemorrhage. J Child Neurol. 2006;21:365–71.PubMed Balasubramaniam J, Del Bigio MR. Animal models of germinal matrix hemorrhage. J Child Neurol. 2006;21:365–71.PubMed
46.
go back to reference Reynolds ML, Evans CA, Reynolds EO, Saunders NR, Durbin GM, Wigglesworth JS. Intracranial haemorrhage in the preterm sheep fetus. Early Hum Dev. 1979;3:163–86.PubMedCrossRef Reynolds ML, Evans CA, Reynolds EO, Saunders NR, Durbin GM, Wigglesworth JS. Intracranial haemorrhage in the preterm sheep fetus. Early Hum Dev. 1979;3:163–86.PubMedCrossRef
47.
go back to reference Ting P, Yamaguchi S, Bacher JD, Killens RH, Myers RE. Failure to produce germinal matrix or intraventricular hemorrhage by hypoxia, hypo-, or hypervolemia. Exp Neurol. 1984;83:449–60.PubMedCrossRef Ting P, Yamaguchi S, Bacher JD, Killens RH, Myers RE. Failure to produce germinal matrix or intraventricular hemorrhage by hypoxia, hypo-, or hypervolemia. Exp Neurol. 1984;83:449–60.PubMedCrossRef
48.
go back to reference Cohn HE, Sacks EJ, Heymann MA, Rudolph AM. Cardiovascular responses to hypoxemia and acidemia in fetal lambs. Am J Obstet Gynecol. 1974;120:817–24.PubMedCrossRef Cohn HE, Sacks EJ, Heymann MA, Rudolph AM. Cardiovascular responses to hypoxemia and acidemia in fetal lambs. Am J Obstet Gynecol. 1974;120:817–24.PubMedCrossRef
49.
go back to reference Pond WG, Boleman SL, Fiorotto ML, Ho H, Knabe DA, Mersmann HJ, et al. Perinatal ontogeny of brain growth in the domestic pig. Proc Soc Exp Biol Med Soc Exp Biol Med. 2000;223:102–8.CrossRef Pond WG, Boleman SL, Fiorotto ML, Ho H, Knabe DA, Mersmann HJ, et al. Perinatal ontogeny of brain growth in the domestic pig. Proc Soc Exp Biol Med Soc Exp Biol Med. 2000;223:102–8.CrossRef
50.
go back to reference Stankovic MR, Maulik D, Rosenfeld W, Stubblefield PG, Kofinas AD, Drexler S, et al. Real-time optical imaging of experimental brain ischemia and hemorrhage in neonatal piglets. J Perinat Med. 1999;27:279–86.PubMedCrossRef Stankovic MR, Maulik D, Rosenfeld W, Stubblefield PG, Kofinas AD, Drexler S, et al. Real-time optical imaging of experimental brain ischemia and hemorrhage in neonatal piglets. J Perinat Med. 1999;27:279–86.PubMedCrossRef
51.
go back to reference Leuschen MP, Nelson Jr RM. Telencephalic microvessels of premature beagle pups. Anat Rec. 1986;215:59–64.PubMedCrossRef Leuschen MP, Nelson Jr RM. Telencephalic microvessels of premature beagle pups. Anat Rec. 1986;215:59–64.PubMedCrossRef
52.
go back to reference Trommer BL, Groothuis DR, Pasternak JF. Quantitative analysis of cerebral vessels in the newborn puppy: the structure of germinal matrix vessels may predispose to hemorrhage. Pediatr Res. 1987;22:23–8.PubMedCrossRef Trommer BL, Groothuis DR, Pasternak JF. Quantitative analysis of cerebral vessels in the newborn puppy: the structure of germinal matrix vessels may predispose to hemorrhage. Pediatr Res. 1987;22:23–8.PubMedCrossRef
53.
go back to reference Ment LR, Stewart WB, Duncan CC. Beagle puppy model of intraventricular hemorrhage: ethamsylate studies. Prostaglandins. 1984;27:245–56.PubMedCrossRef Ment LR, Stewart WB, Duncan CC. Beagle puppy model of intraventricular hemorrhage: ethamsylate studies. Prostaglandins. 1984;27:245–56.PubMedCrossRef
54.
go back to reference Goddard-Finegold J, Donley DK, Adham BI, Michael LH. Phenobarbital and cerebral blood flow during hypertension in the newborn beagle. Pediatrics. 1990;86:501–8.PubMed Goddard-Finegold J, Donley DK, Adham BI, Michael LH. Phenobarbital and cerebral blood flow during hypertension in the newborn beagle. Pediatrics. 1990;86:501–8.PubMed
55.
go back to reference Ment LR, Stewart WB, Duncan CC, Lambrecht R. Beagle puppy model of intraventricular hemorrhage. J Neurosurg. 1982;57:219–23.PubMedCrossRef Ment LR, Stewart WB, Duncan CC, Lambrecht R. Beagle puppy model of intraventricular hemorrhage. J Neurosurg. 1982;57:219–23.PubMedCrossRef
56.
go back to reference Ment LR, Stewart WB, Duncan CC, Scott DT, Lambrecht R. Beagle puppy model of intraventricular hemorrhage. Effect of indomethacin on local cerebral glucose utilization. J Neurosurg. 1984;60:737–42.PubMedCrossRef Ment LR, Stewart WB, Duncan CC, Scott DT, Lambrecht R. Beagle puppy model of intraventricular hemorrhage. Effect of indomethacin on local cerebral glucose utilization. J Neurosurg. 1984;60:737–42.PubMedCrossRef
57.
go back to reference Ment LR, Stewart WB, Duncan CC. Beagle puppy model of intraventricular hemorrhage. Effect of superoxide dismutase on cerebral blood flow and prostaglandins. J Neurosurg. 1985;62:563–9.PubMedCrossRef Ment LR, Stewart WB, Duncan CC. Beagle puppy model of intraventricular hemorrhage. Effect of superoxide dismutase on cerebral blood flow and prostaglandins. J Neurosurg. 1985;62:563–9.PubMedCrossRef
58.
go back to reference Kakita A, Goldman JE. Patterns and dynamics of SVZ cell migration in the postnatal forebrain: monitoring living progenitors in slice preparations. Neuron. 1999;23:461–72.PubMedCrossRef Kakita A, Goldman JE. Patterns and dynamics of SVZ cell migration in the postnatal forebrain: monitoring living progenitors in slice preparations. Neuron. 1999;23:461–72.PubMedCrossRef
59.
go back to reference Levers TE, Edgar JM, Price DJ. The fates of cells generated at the end of neurogenesis in developing mouse cortex. J Neurobiol. 2001;48:265–77.PubMedCrossRef Levers TE, Edgar JM, Price DJ. The fates of cells generated at the end of neurogenesis in developing mouse cortex. J Neurobiol. 2001;48:265–77.PubMedCrossRef
60.
go back to reference Altman J, Sudarshan K. Postnatal development of locomotion in the laboratory rat. Anim Behav. 1975;23:896–920.PubMedCrossRef Altman J, Sudarshan K. Postnatal development of locomotion in the laboratory rat. Anim Behav. 1975;23:896–920.PubMedCrossRef
61.
go back to reference Lekic T, Manaenko A, Rolland W, Fathali N, Peterson M, Tang J, et al. Protective effect of hydrogen gas therapy after germinal matrix hemorrhage in neonatal rats. Acta Neurochir Suppl. 2011;111:237–41.PubMedCentralPubMedCrossRef Lekic T, Manaenko A, Rolland W, Fathali N, Peterson M, Tang J, et al. Protective effect of hydrogen gas therapy after germinal matrix hemorrhage in neonatal rats. Acta Neurochir Suppl. 2011;111:237–41.PubMedCentralPubMedCrossRef
62.
go back to reference Lekic T, Manaenko A, Rolland W, Virbel K, Hartman R, Tang J, et al. Neuroprotection by melatonin after germinal matrix hemorrhage in neonatal rats. Acta Neurochir Suppl. 2011;111:201–6.PubMedCentralPubMedCrossRef Lekic T, Manaenko A, Rolland W, Virbel K, Hartman R, Tang J, et al. Neuroprotection by melatonin after germinal matrix hemorrhage in neonatal rats. Acta Neurochir Suppl. 2011;111:201–6.PubMedCentralPubMedCrossRef
63.
go back to reference Leitzke AS, Rolland WB, Krafft PR, Lekic T, Klebe D, Flores JJ, et al. Isoflurane post-treatment ameliorates GMH-induced brain injury in neonatal rats. Stroke; J Cerebral Circ. 2013;44:3587–90.CrossRef Leitzke AS, Rolland WB, Krafft PR, Lekic T, Klebe D, Flores JJ, et al. Isoflurane post-treatment ameliorates GMH-induced brain injury in neonatal rats. Stroke; J Cerebral Circ. 2013;44:3587–90.CrossRef
64.
go back to reference McCrea HJ, Ment LR. The diagnosis, management, and postnatal prevention of intraventricular hemorrhage in the preterm neonate. Clin Perinatol. 2008;35:777–92. vii.PubMedCentralPubMedCrossRef McCrea HJ, Ment LR. The diagnosis, management, and postnatal prevention of intraventricular hemorrhage in the preterm neonate. Clin Perinatol. 2008;35:777–92. vii.PubMedCentralPubMedCrossRef
65.
go back to reference Klebe D, Krafft PR, Hoffmann C, Lekic T, Flores JJ, Rolland W, et al. Acute and delayed deferoxamine treatment attenuates long-term sequelae after germinal matrix hemorrhage in neonatal rats. Stroke; J Cerebral Circ. 2014;45:2475–2479. Klebe D, Krafft PR, Hoffmann C, Lekic T, Flores JJ, Rolland W, et al. Acute and delayed deferoxamine treatment attenuates long-term sequelae after germinal matrix hemorrhage in neonatal rats. Stroke; J Cerebral Circ. 2014;45:2475–2479.
66.
go back to reference Lekic T, Manaenko A, Rolland W, Ostrowski RP, Virbel K, Tang J, et al. Beneficial effect of hyperbaric oxygenation after neonatal germinal matrix hemorrhage. Acta Neurochir Suppl. 2011;111:253–7.PubMedCentralPubMedCrossRef Lekic T, Manaenko A, Rolland W, Ostrowski RP, Virbel K, Tang J, et al. Beneficial effect of hyperbaric oxygenation after neonatal germinal matrix hemorrhage. Acta Neurochir Suppl. 2011;111:253–7.PubMedCentralPubMedCrossRef
67.
go back to reference Tosun C, Koltz MT, Kurland DB, Ijaz H, Gurakar M, Schwartzbauer G, et al. The protective effect of glibenclamide in a model of hemorrhagic encephalopathy of prematurity. Brain Sci. 2013;3:215–238 Tosun C, Koltz MT, Kurland DB, Ijaz H, Gurakar M, Schwartzbauer G, et al. The protective effect of glibenclamide in a model of hemorrhagic encephalopathy of prematurity. Brain Sci. 2013;3:215–238
68.
go back to reference Ballabh P, Xu H, Hu F, Braun A, Smith K, Rivera A, et al. Angiogenic inhibition reduces germinal matrix hemorrhage. Nat Med. 2007;13:477–85.PubMedCrossRef Ballabh P, Xu H, Hu F, Braun A, Smith K, Rivera A, et al. Angiogenic inhibition reduces germinal matrix hemorrhage. Nat Med. 2007;13:477–85.PubMedCrossRef
69.
go back to reference Del Bigio MR, Wilson MJ, Enno T. Chronic hydrocephalus in rats and humans: white matter loss and behavior changes. Ann Neurol. 2003;53:337–46.PubMedCrossRef Del Bigio MR, Wilson MJ, Enno T. Chronic hydrocephalus in rats and humans: white matter loss and behavior changes. Ann Neurol. 2003;53:337–46.PubMedCrossRef
70.
go back to reference Deren KE, Forsyth J, Abdullah O, Hsu EW, Klinge PM, Silverberg GD, et al. Low levels of amyloid-beta and its transporters in neonatal rats with and without hydrocephalus. Cerebrospinal Fluid Res. 2009;6:4.PubMedCentralPubMedCrossRef Deren KE, Forsyth J, Abdullah O, Hsu EW, Klinge PM, Silverberg GD, et al. Low levels of amyloid-beta and its transporters in neonatal rats with and without hydrocephalus. Cerebrospinal Fluid Res. 2009;6:4.PubMedCentralPubMedCrossRef
71.
go back to reference Mangano FT, McAllister 2nd JP, Jones HC, Johnson MJ, Kriebel RM. The microglial response to progressive hydrocephalus in a model of inherited aqueductal stenosis. Neurol Res. 1998;20:697–704.PubMed Mangano FT, McAllister 2nd JP, Jones HC, Johnson MJ, Kriebel RM. The microglial response to progressive hydrocephalus in a model of inherited aqueductal stenosis. Neurol Res. 1998;20:697–704.PubMed
72.
go back to reference Gram M, Sveinsdottir S, Ruscher K, Hansson SR, Cinthio M, Akerstrom B, et al. Hemoglobin induces inflammation after preterm intraventricular hemorrhage by methemoglobin formation. J Neuroinflammation. 2013;10:100.PubMedCentralPubMedCrossRef Gram M, Sveinsdottir S, Ruscher K, Hansson SR, Cinthio M, Akerstrom B, et al. Hemoglobin induces inflammation after preterm intraventricular hemorrhage by methemoglobin formation. J Neuroinflammation. 2013;10:100.PubMedCentralPubMedCrossRef
73.
go back to reference Ahn SY, Chang YS, Sung DK, Sung SI, Yoo HS, Lee JH, et al. Mesenchymal stem cells prevent hydrocephalus after severe intraventricular hemorrhage. Stroke; J Cereb Circ. 2013;44:497–504.CrossRef Ahn SY, Chang YS, Sung DK, Sung SI, Yoo HS, Lee JH, et al. Mesenchymal stem cells prevent hydrocephalus after severe intraventricular hemorrhage. Stroke; J Cereb Circ. 2013;44:497–504.CrossRef
74.
go back to reference Manaenko A, Lekic T, Barnhart M, Hartman R, Zhang JH. Inhibition of transforming growth factor-beta attenuates brain injury and neurological deficits in a rat model of germinal matrix hemorrhage. Stroke; J Cereb Circ. 2014;45:828–34.CrossRef Manaenko A, Lekic T, Barnhart M, Hartman R, Zhang JH. Inhibition of transforming growth factor-beta attenuates brain injury and neurological deficits in a rat model of germinal matrix hemorrhage. Stroke; J Cereb Circ. 2014;45:828–34.CrossRef
75.
go back to reference Gomes FC, Sousa Vde O, Romao L. Emerging roles for TGF-beta1 in nervous system development. Int J Dev Neurosci: Off J Int Soc Dev Neurosci. 2005;23:413–24.CrossRef Gomes FC, Sousa Vde O, Romao L. Emerging roles for TGF-beta1 in nervous system development. Int J Dev Neurosci: Off J Int Soc Dev Neurosci. 2005;23:413–24.CrossRef
77.
go back to reference Bernard DJ, Chapman SC, Woodruff TK. An emerging role for co-receptors in inhibin signal transduction. Mol Cell Endocrinol. 2001;180:55–62.PubMedCrossRef Bernard DJ, Chapman SC, Woodruff TK. An emerging role for co-receptors in inhibin signal transduction. Mol Cell Endocrinol. 2001;180:55–62.PubMedCrossRef
78.
go back to reference Lee JY, Keep RF, He Y, Sagher O, Hua Y, Xi G. Hemoglobin and iron handling in brain after subarachnoid hemorrhage and the effect of deferoxamine on early brain injury. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2010;30:1793–803.CrossRef Lee JY, Keep RF, He Y, Sagher O, Hua Y, Xi G. Hemoglobin and iron handling in brain after subarachnoid hemorrhage and the effect of deferoxamine on early brain injury. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab. 2010;30:1793–803.CrossRef
79.
go back to reference Savman K, Nilsson UA, Blennow M, Kjellmer I, Whitelaw A. Non-protein-bound iron is elevated in cerebrospinal fluid from preterm infants with posthemorrhagic ventricular dilatation. Pediatr Res. 2001;49:208–12.PubMedCrossRef Savman K, Nilsson UA, Blennow M, Kjellmer I, Whitelaw A. Non-protein-bound iron is elevated in cerebrospinal fluid from preterm infants with posthemorrhagic ventricular dilatation. Pediatr Res. 2001;49:208–12.PubMedCrossRef
80.
go back to reference Strahle JM, Garton T, Bazzi AA, Kilaru H, Garton HJ, Maher CO, et al. Role of hemoglobin and iron in hydrocephalus after neonatal intraventricular hemorrhage. Neurosurgery. 2014;75:696–705. discussion 706.PubMedCentralPubMedCrossRef Strahle JM, Garton T, Bazzi AA, Kilaru H, Garton HJ, Maher CO, et al. Role of hemoglobin and iron in hydrocephalus after neonatal intraventricular hemorrhage. Neurosurgery. 2014;75:696–705. discussion 706.PubMedCentralPubMedCrossRef
81.
go back to reference Aronson AL. Pharmacotherapeutics of the newer tetracyclines. J Am Vet Med Assoc. 1980;176:1061–8.PubMed Aronson AL. Pharmacotherapeutics of the newer tetracyclines. J Am Vet Med Assoc. 1980;176:1061–8.PubMed
82.
go back to reference Aso E, Juves S, Maldonado R, Ferrer I. CB2 cannabinoid receptor agonist ameliorates Alzheimer-like phenotype in AbetaPP/PS1 mice. J Alzheimer’s Dis: JAD. 2013;35:847–58.PubMed Aso E, Juves S, Maldonado R, Ferrer I. CB2 cannabinoid receptor agonist ameliorates Alzheimer-like phenotype in AbetaPP/PS1 mice. J Alzheimer’s Dis: JAD. 2013;35:847–58.PubMed
83.
go back to reference Gomez-Galvez Y, Palomo-Garo C, Fernandez-Ruiz J, Garcia C. Potential of the cannabinoid CB2 receptor as a pharmacological target against inflammation in Parkinson’s disease. Prog Neuro-Psychopharmacol Biol Psychiatry. 2016;64:200–8.CrossRef Gomez-Galvez Y, Palomo-Garo C, Fernandez-Ruiz J, Garcia C. Potential of the cannabinoid CB2 receptor as a pharmacological target against inflammation in Parkinson’s disease. Prog Neuro-Psychopharmacol Biol Psychiatry. 2016;64:200–8.CrossRef
84.
go back to reference Malfitano AM, Laezza C, D’Alessandro A, Procaccini C, Saccomanni G, Tuccinardi T, et al. Effects on immune cells of a new 1,8-naphthyridin-2-one derivative and its analogues as selective CB2 agonists: implications in multiple sclerosis. PLoS One. 2013;8:e62511.PubMedCentralPubMedCrossRef Malfitano AM, Laezza C, D’Alessandro A, Procaccini C, Saccomanni G, Tuccinardi T, et al. Effects on immune cells of a new 1,8-naphthyridin-2-one derivative and its analogues as selective CB2 agonists: implications in multiple sclerosis. PLoS One. 2013;8:e62511.PubMedCentralPubMedCrossRef
85.
go back to reference Barichello T, Generoso JS, Simoes LR, Goularte JA, Petronilho F, Saigal P, et al. Role of microglial activation in the pathophysiology of bacterial meningitis. Mol Neurobiol. 2015. doi:10.1007/s12035-015-9107-4. Barichello T, Generoso JS, Simoes LR, Goularte JA, Petronilho F, Saigal P, et al. Role of microglial activation in the pathophysiology of bacterial meningitis. Mol Neurobiol. 2015. doi:10.​1007/​s12035-015-9107-4.
86.
go back to reference Yang Y, Salayandia VM, Thompson JF, Yang LY, Estrada EY, Yang Y. Attenuation of acute stroke injury in rat brain by minocycline promotes blood-brain barrier remodeling and alternative microglia/macrophage activation during recovery. J Neuroinflammation. 2015;12:26.PubMedCentralPubMedCrossRef Yang Y, Salayandia VM, Thompson JF, Yang LY, Estrada EY, Yang Y. Attenuation of acute stroke injury in rat brain by minocycline promotes blood-brain barrier remodeling and alternative microglia/macrophage activation during recovery. J Neuroinflammation. 2015;12:26.PubMedCentralPubMedCrossRef
87.
88.
go back to reference Diz-Chaves Y, Pernia O, Carrero P, Garcia-Segura LM. Prenatal stress causes alterations in the morphology of microglia and the inflammatory response of the hippocampus of adult female mice. J Neuroinflammation. 2012;9:71.PubMedCentralPubMedCrossRef Diz-Chaves Y, Pernia O, Carrero P, Garcia-Segura LM. Prenatal stress causes alterations in the morphology of microglia and the inflammatory response of the hippocampus of adult female mice. J Neuroinflammation. 2012;9:71.PubMedCentralPubMedCrossRef
89.
go back to reference Yang F, Zhou L, Wang D, Wang Z, Huang QY. Minocycline ameliorates hypoxia-induced blood-brain barrier damage by inhibition of HIF-1alpha through SIRT-3/PHD-2 degradation pathway. Neuroscience. 2015;304:250–9.PubMedCrossRef Yang F, Zhou L, Wang D, Wang Z, Huang QY. Minocycline ameliorates hypoxia-induced blood-brain barrier damage by inhibition of HIF-1alpha through SIRT-3/PHD-2 degradation pathway. Neuroscience. 2015;304:250–9.PubMedCrossRef
90.
go back to reference Zhao F, Hua Y, He Y, Keep RF, Xi G. Minocycline-induced attenuation of iron overload and brain injury after experimental intracerebral hemorrhage. Stroke; J Cereb Circ. 2011;42:3587–93.CrossRef Zhao F, Hua Y, He Y, Keep RF, Xi G. Minocycline-induced attenuation of iron overload and brain injury after experimental intracerebral hemorrhage. Stroke; J Cereb Circ. 2011;42:3587–93.CrossRef
91.
go back to reference Lopez-Rodriguez AB, Siopi E, Finn DP, Marchand-Leroux C, Garcia-Segura LM, Jafarian-Tehrani M, et al. CB1 and CB2 cannabinoid receptor antagonists prevent minocycline-induced neuroprotection following traumatic brain injury in mice. Cereb Cortex. 2015;25:35–45.PubMedCrossRef Lopez-Rodriguez AB, Siopi E, Finn DP, Marchand-Leroux C, Garcia-Segura LM, Jafarian-Tehrani M, et al. CB1 and CB2 cannabinoid receptor antagonists prevent minocycline-induced neuroprotection following traumatic brain injury in mice. Cereb Cortex. 2015;25:35–45.PubMedCrossRef
92.
go back to reference Georgiadis P, Xu H, Chua C, Hu F, Collins L, Huynh C, et al. Characterization of acute brain injuries and neurobehavioral profiles in a rabbit model of germinal matrix hemorrhage. Stroke; J Cereb Circ. 2008;39:3378–88.CrossRef Georgiadis P, Xu H, Chua C, Hu F, Collins L, Huynh C, et al. Characterization of acute brain injuries and neurobehavioral profiles in a rabbit model of germinal matrix hemorrhage. Stroke; J Cereb Circ. 2008;39:3378–88.CrossRef
93.
go back to reference Hua Y, Keep RF, Hoff JT, Xi G. Brain injury after intracerebral hemorrhage: the role of thrombin and iron. Stroke; J Cereb Circ. 2007;38:759–62.CrossRef Hua Y, Keep RF, Hoff JT, Xi G. Brain injury after intracerebral hemorrhage: the role of thrombin and iron. Stroke; J Cereb Circ. 2007;38:759–62.CrossRef
94.
go back to reference Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5:53–63.PubMedCrossRef Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5:53–63.PubMedCrossRef
95.
go back to reference von Bernhardi R, Eugenin-von Bernhardi L, Eugenin J. Microglial cell dysregulation in brain aging and neurodegeneration. Front Aging Neurosci. 2015;7:124. von Bernhardi R, Eugenin-von Bernhardi L, Eugenin J. Microglial cell dysregulation in brain aging and neurodegeneration. Front Aging Neurosci. 2015;7:124.
96.
go back to reference Takeuchi H, Suzumura A. Gap junctions and hemichannels composed of connexins: potential therapeutic targets for neurodegenerative diseases. Front Cell Neurosci. 2014;8:189.PubMedCentralPubMedCrossRef Takeuchi H, Suzumura A. Gap junctions and hemichannels composed of connexins: potential therapeutic targets for neurodegenerative diseases. Front Cell Neurosci. 2014;8:189.PubMedCentralPubMedCrossRef
97.
go back to reference Koenigsknecht J, Landreth G. Microglial phagocytosis of fibrillar beta-amyloid through a beta1 integrin-dependent mechanism. J Neurosci: Off J Soc Neurosci. 2004;24:9838–46.CrossRef Koenigsknecht J, Landreth G. Microglial phagocytosis of fibrillar beta-amyloid through a beta1 integrin-dependent mechanism. J Neurosci: Off J Soc Neurosci. 2004;24:9838–46.CrossRef
98.
go back to reference Schwab JM, Schluesener HJ. Microglia rules: insights into microglial-neuronal signaling. Cell Death Differ. 2004;11:1245–6.PubMedCrossRef Schwab JM, Schluesener HJ. Microglia rules: insights into microglial-neuronal signaling. Cell Death Differ. 2004;11:1245–6.PubMedCrossRef
99.
go back to reference Esiaba I, Angeles DM, Holden MS, Tan JB, Asmerom Y, Gollin G, et al. Urinary allantoin is elevated in severe intraventricular hemorrhage in the preterm newborn. Translational Stroke Res. 2015. doi:10.1007/s12975-015-0405-y. Esiaba I, Angeles DM, Holden MS, Tan JB, Asmerom Y, Gollin G, et al. Urinary allantoin is elevated in severe intraventricular hemorrhage in the preterm newborn. Translational Stroke Res. 2015. doi:10.​1007/​s12975-015-0405-y.
100.
go back to reference Tataranno ML, Perrone S, Buonocore G. Plasma biomarkers of oxidative stress in neonatal brain injury. Clin Perinatol. 2015;42:529–39.PubMedCrossRef Tataranno ML, Perrone S, Buonocore G. Plasma biomarkers of oxidative stress in neonatal brain injury. Clin Perinatol. 2015;42:529–39.PubMedCrossRef
101.
go back to reference Abdel Ghany EA, Alsharany W, Ali AA, Younass ER, Hussein JS. Anti-oxidant profiles and markers of oxidative stress in preterm neonates. Paediatr Int Child Health. 2015;2046905515Y0000000017. Abdel Ghany EA, Alsharany W, Ali AA, Younass ER, Hussein JS. Anti-oxidant profiles and markers of oxidative stress in preterm neonates. Paediatr Int Child Health. 2015;2046905515Y0000000017.
102.
go back to reference Nakamura T, Keep RF, Hua Y, Hoff JT, Xi G. Oxidative DNA injury after experimental intracerebral hemorrhage. Brain Res. 2005;1039:30–6.PubMedCrossRef Nakamura T, Keep RF, Hua Y, Hoff JT, Xi G. Oxidative DNA injury after experimental intracerebral hemorrhage. Brain Res. 2005;1039:30–6.PubMedCrossRef
103.
go back to reference Peeling J, Del Bigio MR, Corbett D, Green AR, Jackson DM. Efficacy of disodium 4-[(tert-butylimino)methyl]benzene-1,3-disulfonate N-oxide (NXY-059), a free radical trapping agent, in a rat model of hemorrhagic stroke. Neuropharmacology. 2001;40:433–9.PubMedCrossRef Peeling J, Del Bigio MR, Corbett D, Green AR, Jackson DM. Efficacy of disodium 4-[(tert-butylimino)methyl]benzene-1,3-disulfonate N-oxide (NXY-059), a free radical trapping agent, in a rat model of hemorrhagic stroke. Neuropharmacology. 2001;40:433–9.PubMedCrossRef
104.
go back to reference Morgan PJ, Barrett P, Howell HE, Helliwell R. Melatonin receptors: localization, molecular pharmacology and physiological significance. Neurochem Int. 1994;24:101–46.PubMedCrossRef Morgan PJ, Barrett P, Howell HE, Helliwell R. Melatonin receptors: localization, molecular pharmacology and physiological significance. Neurochem Int. 1994;24:101–46.PubMedCrossRef
105.
go back to reference Musshoff U, Riewenherm D, Berger E, Fauteck JD, Speckmann EJ. Melatonin receptors in rat hippocampus: molecular and functional investigations. Hippocampus. 2002;12:165–73.PubMedCrossRef Musshoff U, Riewenherm D, Berger E, Fauteck JD, Speckmann EJ. Melatonin receptors in rat hippocampus: molecular and functional investigations. Hippocampus. 2002;12:165–73.PubMedCrossRef
106.
go back to reference Murphy BP, Inder TE, Rooks V, Taylor GA, Anderson NJ, Mogridge N, et al. Posthaemorrhagic ventricular dilatation in the premature infant: natural history and predictors of outcome. Arch Dis Child Fetal Neonatal Ed. 2002;87:F37–41.PubMedCentralPubMedCrossRef Murphy BP, Inder TE, Rooks V, Taylor GA, Anderson NJ, Mogridge N, et al. Posthaemorrhagic ventricular dilatation in the premature infant: natural history and predictors of outcome. Arch Dis Child Fetal Neonatal Ed. 2002;87:F37–41.PubMedCentralPubMedCrossRef
107.
go back to reference Balabanov R, Dore-Duffy P. Role of the CNS microvascular pericyte in the blood-brain barrier. J Neurosci Res. 1998;53:637–44.PubMedCrossRef Balabanov R, Dore-Duffy P. Role of the CNS microvascular pericyte in the blood-brain barrier. J Neurosci Res. 1998;53:637–44.PubMedCrossRef
108.
go back to reference Hirschi KK, D’Amore PA. Control of angiogenesis by the pericyte: molecular mechanisms and significance. EXS. 1997;79:419–28.PubMed Hirschi KK, D’Amore PA. Control of angiogenesis by the pericyte: molecular mechanisms and significance. EXS. 1997;79:419–28.PubMed
109.
go back to reference von Tell D, Armulik A, Betsholtz C. Pericytes and vascular stability. Exp Cell Res. 2006;312:623–9.CrossRef von Tell D, Armulik A, Betsholtz C. Pericytes and vascular stability. Exp Cell Res. 2006;312:623–9.CrossRef
110.
go back to reference Guasti L, Richardson D, Jhaveri M, Eldeeb K, Barrett D, Elphick MR, et al. Minocycline treatment inhibits microglial activation and alters spinal levels of endocannabinoids in a rat model of neuropathic pain. Mol Pain. 2009;5:35.PubMedCentralPubMedCrossRef Guasti L, Richardson D, Jhaveri M, Eldeeb K, Barrett D, Elphick MR, et al. Minocycline treatment inhibits microglial activation and alters spinal levels of endocannabinoids in a rat model of neuropathic pain. Mol Pain. 2009;5:35.PubMedCentralPubMedCrossRef
111.
go back to reference Hermann DM, Peruzzotti-Jametti L, Schlechter J, Bernstock JD, Doeppner TR, Pluchino S. Neural precursor cells in the ischemic brain—integration, cellular crosstalk, and consequences for stroke recovery. Front Cell Neurosci. 2014;8:291.PubMedCentralPubMedCrossRef Hermann DM, Peruzzotti-Jametti L, Schlechter J, Bernstock JD, Doeppner TR, Pluchino S. Neural precursor cells in the ischemic brain—integration, cellular crosstalk, and consequences for stroke recovery. Front Cell Neurosci. 2014;8:291.PubMedCentralPubMedCrossRef
112.
go back to reference Nash KR, Moran P, Finneran DJ, Hudson C, Robinson J, Morgan D, et al. Fractalkine over expression suppresses alpha-synuclein-mediated neurodegeneration. Mol Ther: J Am Soc Gene Ther. 2015;23:17–23.CrossRef Nash KR, Moran P, Finneran DJ, Hudson C, Robinson J, Morgan D, et al. Fractalkine over expression suppresses alpha-synuclein-mediated neurodegeneration. Mol Ther: J Am Soc Gene Ther. 2015;23:17–23.CrossRef
113.
go back to reference Saijo K, Glass CK. Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol. 2011;11:775–87.PubMedCrossRef Saijo K, Glass CK. Microglial cell origin and phenotypes in health and disease. Nat Rev Immunol. 2011;11:775–87.PubMedCrossRef
114.
go back to reference Su P, Zhang J, Zhao F, Aschner M, Chen J, Luo W. The interaction between microglia and neural stem/precursor cells. Brain Res Bull. 2014;109:32–8.PubMedCrossRef Su P, Zhang J, Zhao F, Aschner M, Chen J, Luo W. The interaction between microglia and neural stem/precursor cells. Brain Res Bull. 2014;109:32–8.PubMedCrossRef
115.
go back to reference Reshef R, Kreisel T, Beroukhim Kay D, Yirmiya R. Microglia and their CX3CR1 signaling are involved in hippocampal- but not olfactory bulb-related memory and neurogenesis. Brain Behav Immun. 2014;41:239–50.PubMedCrossRef Reshef R, Kreisel T, Beroukhim Kay D, Yirmiya R. Microglia and their CX3CR1 signaling are involved in hippocampal- but not olfactory bulb-related memory and neurogenesis. Brain Behav Immun. 2014;41:239–50.PubMedCrossRef
Metadata
Title
Pharmacological Preventions of Brain Injury Following Experimental Germinal Matrix Hemorrhage: an Up-to-Date Review
Authors
Jun Tang
Yihao Tao
Bing Jiang
Qianwei Chen
Feng Hua
John Zhang
Gang Zhu
Zhi Chen
Publication date
01-02-2016
Publisher
Springer US
Published in
Translational Stroke Research / Issue 1/2016
Print ISSN: 1868-4483
Electronic ISSN: 1868-601X
DOI
https://doi.org/10.1007/s12975-015-0432-8

Other articles of this Issue 1/2016

Translational Stroke Research 1/2016 Go to the issue