Skip to main content
Top
Published in: Translational Stroke Research 4/2015

01-08-2015 | Review Article

The Pathophysiology of Intracerebral Hemorrhage Formation and Expansion

Authors: Frieder Schlunk, Steven M. Greenberg

Published in: Translational Stroke Research | Issue 4/2015

Login to get access

Abstract

Intracerebral hemorrhage is a devastating disease. Despite its clinical importance, the pathophysiology of intracerebral hemorrhage is not well understood. Hematoma expansion occurs in a large subset of patients and is a predictor of poor outcomes. Since hematoma growth provides a potential opportunity for therapeutic intervention, a thorough understanding of its biological mechanisms is of key importance. After vessel rupture, an initial hematoma forms. Following this initial phase, accumulating evidence suggests that the mass effect causes secondary vessel rupture, which contributes to the hematoma and may trigger an avalanche of further vessel ruptures. The circumstances under which this occurs and to what extent secondary hemorrhage contributes to final hematoma volume remain unknown, however. To address these questions, a translational approach seems most suitable. Current experimental models include intracranial injections of collagenase or autologous blood. Each has individual strengths and weaknesses in its ability to simulate human intracerebral hemorrhage. The ultimate goal for improved understanding and modeling of the pathophysiology of hematoma expansion is to identify new treatment approaches.
Literature
1.
go back to reference Jakubovic R, Aviv RI. Intracerebral hemorrhage: toward physiological imaging of hemorrhage risk in acute and chronic bleeding. Front Neurol. 2012;3:86.PubMedCentralPubMedCrossRef Jakubovic R, Aviv RI. Intracerebral hemorrhage: toward physiological imaging of hemorrhage risk in acute and chronic bleeding. Front Neurol. 2012;3:86.PubMedCentralPubMedCrossRef
2.
go back to reference van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A, et al. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol. 2010;9:167–76.PubMedCrossRef van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A, et al. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol. 2010;9:167–76.PubMedCrossRef
3.
go back to reference Wang X, Arima H, Al-Shahi Salman R, Woodward M, Heeley E, et al. Clinical Prediction Algorithm (BRAIN) to Determine Risk of Hematoma Growth in Acute Intracerebral Hemorrhage. Stroke. 2015;46:376–81.PubMedCrossRef Wang X, Arima H, Al-Shahi Salman R, Woodward M, Heeley E, et al. Clinical Prediction Algorithm (BRAIN) to Determine Risk of Hematoma Growth in Acute Intracerebral Hemorrhage. Stroke. 2015;46:376–81.PubMedCrossRef
4.
go back to reference Davis SM, Broderick J, Hennerici M, Brun NC, Diringer MN, et al. Hematoma growth is a determinant of mortality and poor outcome after intracerebral hemorrhage. Neurology. 2006;66:1175–81.PubMedCrossRef Davis SM, Broderick J, Hennerici M, Brun NC, Diringer MN, et al. Hematoma growth is a determinant of mortality and poor outcome after intracerebral hemorrhage. Neurology. 2006;66:1175–81.PubMedCrossRef
5.
go back to reference Anderson CS, Chalmers J, Stapf C. Blood-pressure lowering in acute intracerebral hemorrhage. N Engl J Med. 2013;369:1274–5.PubMed Anderson CS, Chalmers J, Stapf C. Blood-pressure lowering in acute intracerebral hemorrhage. N Engl J Med. 2013;369:1274–5.PubMed
6.
go back to reference Goldstein J, Brouwers H, Romero J, McNamara K, Schwab K, et al. SCORE-IT: the Spot Sign score in restricting ICH growth horizontal line an Atach-II ancillary study. J Vasc Interv Neurol. 2012;5:20–5.PubMedCentralPubMed Goldstein J, Brouwers H, Romero J, McNamara K, Schwab K, et al. SCORE-IT: the Spot Sign score in restricting ICH growth horizontal line an Atach-II ancillary study. J Vasc Interv Neurol. 2012;5:20–5.PubMedCentralPubMed
7.
go back to reference Mayer SA. Recombinant activated factor VII for acute intracerebral hemorrhage. Stroke. 2007;38:763–7.PubMedCrossRef Mayer SA. Recombinant activated factor VII for acute intracerebral hemorrhage. Stroke. 2007;38:763–7.PubMedCrossRef
8.
go back to reference Krafft PR, Rolland WB, Duris K, Lekic T, Campbell A, et al. Modeling intracerebral hemorrhage in mice: injection of autologous blood or bacterial collagenase. J Vis Exp. 2012;(67):e4289. doi:10.3791/4289. Krafft PR, Rolland WB, Duris K, Lekic T, Campbell A, et al. Modeling intracerebral hemorrhage in mice: injection of autologous blood or bacterial collagenase. J Vis Exp. 2012;(67):e4289. doi:10.​3791/​4289.
9.
go back to reference Fisher CM. Pathological observations in hypertensive cerebral hemorrhage. J Neuropathol Exp Neurol. 1971;30:536–50.PubMedCrossRef Fisher CM. Pathological observations in hypertensive cerebral hemorrhage. J Neuropathol Exp Neurol. 1971;30:536–50.PubMedCrossRef
10.
11.
go back to reference Keep RF, Hua Y, Xi G. Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol. 2012;11:720–31.PubMedCrossRef Keep RF, Hua Y, Xi G. Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol. 2012;11:720–31.PubMedCrossRef
12.
go back to reference Qureshi AI, Tuhrim S, Broderick JP, Batjer HH, Hondo H, et al. Spontaneous intracerebral hemorrhage. N Engl J Med. 2001;344:1450–60.PubMedCrossRef Qureshi AI, Tuhrim S, Broderick JP, Batjer HH, Hondo H, et al. Spontaneous intracerebral hemorrhage. N Engl J Med. 2001;344:1450–60.PubMedCrossRef
13.
go back to reference Intiso D, Stampatore P, Zarrelli MM, Guerra GL, Arpaia G, et al. Incidence of first-ever ischemic and hemorrhagic stroke in a well-defined community of southern Italy, 1993–1995. Eur J Neurol. 2003;10:559–65.PubMedCrossRef Intiso D, Stampatore P, Zarrelli MM, Guerra GL, Arpaia G, et al. Incidence of first-ever ischemic and hemorrhagic stroke in a well-defined community of southern Italy, 1993–1995. Eur J Neurol. 2003;10:559–65.PubMedCrossRef
14.
go back to reference Poon MT, Fonville AF, Al-Shahi Salman R. Long-term prognosis after intracerebral haemorrhage: systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2014;85:660–7.PubMedCrossRef Poon MT, Fonville AF, Al-Shahi Salman R. Long-term prognosis after intracerebral haemorrhage: systematic review and meta-analysis. J Neurol Neurosurg Psychiatry. 2014;85:660–7.PubMedCrossRef
15.
go back to reference Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V. Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol. 2009;8:355–69.PubMedCrossRef Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V. Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol. 2009;8:355–69.PubMedCrossRef
18.
go back to reference Brouwers HB, Chang Y, Falcone GJ, Cai X, Ayres AM, et al. Predicting hematoma expansion after primary intracerebral hemorrhage. JAMA Neurol. 2014;71:158–64.PubMedCentralPubMedCrossRef Brouwers HB, Chang Y, Falcone GJ, Cai X, Ayres AM, et al. Predicting hematoma expansion after primary intracerebral hemorrhage. JAMA Neurol. 2014;71:158–64.PubMedCentralPubMedCrossRef
19.
go back to reference Broderick JP, Brott TG, Duldner JE, Tomsick T, Huster G. Volume of intracerebral hemorrhage. A powerful and easy-to-use predictor of 30-day mortality. Stroke. 1993;24:987–93.PubMedCrossRef Broderick JP, Brott TG, Duldner JE, Tomsick T, Huster G. Volume of intracerebral hemorrhage. A powerful and easy-to-use predictor of 30-day mortality. Stroke. 1993;24:987–93.PubMedCrossRef
20.
go back to reference Flaherty ML, Haverbusch M, Sekar P, Kissela B, Kleindorfer D, et al. Long-term mortality after intracerebral hemorrhage. Neurology. 2006;66:1182–6.PubMedCrossRef Flaherty ML, Haverbusch M, Sekar P, Kissela B, Kleindorfer D, et al. Long-term mortality after intracerebral hemorrhage. Neurology. 2006;66:1182–6.PubMedCrossRef
21.
go back to reference Dowlatshahi D, Smith EE, Flaherty ML, Ali M, Lyden P, et al. Small intracerebral haemorrhages are associated with less haematoma expansion and better outcomes. Int J Stroke. 2011;6:201–6.PubMedCrossRef Dowlatshahi D, Smith EE, Flaherty ML, Ali M, Lyden P, et al. Small intracerebral haemorrhages are associated with less haematoma expansion and better outcomes. Int J Stroke. 2011;6:201–6.PubMedCrossRef
22.
23.
go back to reference LoPresti MA, Bruce SS, Camacho E, Kunchala S, Dubois BG, et al. Hematoma volume as the major determinant of outcomes after intracerebral hemorrhage. J Neurol Sci. 2014;345:3–7.PubMedCrossRef LoPresti MA, Bruce SS, Camacho E, Kunchala S, Dubois BG, et al. Hematoma volume as the major determinant of outcomes after intracerebral hemorrhage. J Neurol Sci. 2014;345:3–7.PubMedCrossRef
24.
go back to reference Delcourt C, Huang Y, Arima H, Chalmers J, Davis SM, et al. Hematoma growth and outcomes in intracerebral hemorrhage: the INTERACT1 study. Neurology. 2012;79:314–9.PubMedCrossRef Delcourt C, Huang Y, Arima H, Chalmers J, Davis SM, et al. Hematoma growth and outcomes in intracerebral hemorrhage: the INTERACT1 study. Neurology. 2012;79:314–9.PubMedCrossRef
25.
go back to reference Takebayashi S, Kaneko M. Electron microscopic studies of ruptured arteries in hypertensive intracerebral hemorrhage. Stroke. 1983;14:28–36.PubMedCrossRef Takebayashi S, Kaneko M. Electron microscopic studies of ruptured arteries in hypertensive intracerebral hemorrhage. Stroke. 1983;14:28–36.PubMedCrossRef
26.
go back to reference Masawa N, Yoshida Y, Yamada T, Joshita T, Sato S, et al. Morphometry of structural preservation of tunica media in aged and hypertensive human intracerebral arteries. Stroke. 1994;25:122–7.PubMedCrossRef Masawa N, Yoshida Y, Yamada T, Joshita T, Sato S, et al. Morphometry of structural preservation of tunica media in aged and hypertensive human intracerebral arteries. Stroke. 1994;25:122–7.PubMedCrossRef
29.
go back to reference Fisher CM. Hypertensive cerebral hemorrhage. Demonstration of the source of bleeding. J Neuropathol Exp Neurol. 2003;62:104–7.PubMed Fisher CM. Hypertensive cerebral hemorrhage. Demonstration of the source of bleeding. J Neuropathol Exp Neurol. 2003;62:104–7.PubMed
30.
go back to reference Rosand J, Muzikansky A, Kumar A, Wisco JJ, Smith EE, et al. Spatial clustering of hemorrhages in probable cerebral amyloid angiopathy. Ann Neurol. 2005;58:459–62.PubMedCrossRef Rosand J, Muzikansky A, Kumar A, Wisco JJ, Smith EE, et al. Spatial clustering of hemorrhages in probable cerebral amyloid angiopathy. Ann Neurol. 2005;58:459–62.PubMedCrossRef
31.
go back to reference Frackowiak J, Zoltowska A, Wisniewski HM. Non-fibrillar beta-amyloid protein is associated with smooth muscle cells of vessel walls in Alzheimer disease. J Neuropathol Exp Neurol. 1994;53:637–45.PubMedCrossRef Frackowiak J, Zoltowska A, Wisniewski HM. Non-fibrillar beta-amyloid protein is associated with smooth muscle cells of vessel walls in Alzheimer disease. J Neuropathol Exp Neurol. 1994;53:637–45.PubMedCrossRef
32.
go back to reference Wisniewski HM, Wegiel J, Vorbrodt AW, Mazur-Kolecka B, Frackowiak J. Role of perivascular cells and myocytes in vascular amyloidosis. Ann N Y Acad Sci. 2000;903:6–18.PubMedCrossRef Wisniewski HM, Wegiel J, Vorbrodt AW, Mazur-Kolecka B, Frackowiak J. Role of perivascular cells and myocytes in vascular amyloidosis. Ann N Y Acad Sci. 2000;903:6–18.PubMedCrossRef
33.
go back to reference Revesz T, Holton JL, Lashley T, Plant G, Rostagno A, et al. Sporadic and familial cerebral amyloid angiopathies. Brain Pathol. 2002;12:343–57.PubMedCrossRef Revesz T, Holton JL, Lashley T, Plant G, Rostagno A, et al. Sporadic and familial cerebral amyloid angiopathies. Brain Pathol. 2002;12:343–57.PubMedCrossRef
35.
go back to reference Vonsattel JP, Myers RH, Hedley-Whyte ET, Ropper AH, Bird ED, et al. Cerebral amyloid angiopathy without and with cerebral hemorrhages: a comparative histological study. Ann Neurol. 1991;30:637–49.PubMedCrossRef Vonsattel JP, Myers RH, Hedley-Whyte ET, Ropper AH, Bird ED, et al. Cerebral amyloid angiopathy without and with cerebral hemorrhages: a comparative histological study. Ann Neurol. 1991;30:637–49.PubMedCrossRef
36.
go back to reference Edlow BL, Bove RM, Viswanathan A, Greenberg SM, Silverman SB. The pattern and pace of hyperacute hemorrhage expansion. Neurocrit Care. 2012;17:250–4.PubMedCentralPubMedCrossRef Edlow BL, Bove RM, Viswanathan A, Greenberg SM, Silverman SB. The pattern and pace of hyperacute hemorrhage expansion. Neurocrit Care. 2012;17:250–4.PubMedCentralPubMedCrossRef
37.
go back to reference Brott T, Broderick J, Kothari R, Barsan W, Tomsick T, et al. Early hemorrhage growth in patients with intracerebral hemorrhage. Stroke. 1997;28:1–5.PubMedCrossRef Brott T, Broderick J, Kothari R, Barsan W, Tomsick T, et al. Early hemorrhage growth in patients with intracerebral hemorrhage. Stroke. 1997;28:1–5.PubMedCrossRef
38.
go back to reference Liu R, Huynh TJ, Huang Y, Ramsay D, Hynynen K, et al. Modeling the Pattern of Contrast Extravasation in Acute Intracerebral Hemorrhage Using Dynamic Contrast-Enhanced MR. Neurocrit Care. 2015;22:320–4.PubMedCrossRef Liu R, Huynh TJ, Huang Y, Ramsay D, Hynynen K, et al. Modeling the Pattern of Contrast Extravasation in Acute Intracerebral Hemorrhage Using Dynamic Contrast-Enhanced MR. Neurocrit Care. 2015;22:320–4.PubMedCrossRef
39.
go back to reference Rodriguez-Luna D, Rubiera M, Ribo M, Coscojuela P, Pineiro S, et al. Ultraearly hematoma growth predicts poor outcome after acute intracerebral hemorrhage. Neurology. 2011;77:1599–604.PubMedCrossRef Rodriguez-Luna D, Rubiera M, Ribo M, Coscojuela P, Pineiro S, et al. Ultraearly hematoma growth predicts poor outcome after acute intracerebral hemorrhage. Neurology. 2011;77:1599–604.PubMedCrossRef
40.
go back to reference Greenberg CH, Frosch MP, Goldstein JN, Rosand J, Greenberg SM. Modeling intracerebral hemorrhage growth and response to anticoagulation. PLoS One. 2012;7, e48458.PubMedCentralPubMedCrossRef Greenberg CH, Frosch MP, Goldstein JN, Rosand J, Greenberg SM. Modeling intracerebral hemorrhage growth and response to anticoagulation. PLoS One. 2012;7, e48458.PubMedCentralPubMedCrossRef
41.
go back to reference Barras CD, Tress BM, Christensen S, MacGregor L, Collins M, et al. Density and shape as CT predictors of intracerebral hemorrhage growth. Stroke. 2009;40:1325–31.PubMedCrossRef Barras CD, Tress BM, Christensen S, MacGregor L, Collins M, et al. Density and shape as CT predictors of intracerebral hemorrhage growth. Stroke. 2009;40:1325–31.PubMedCrossRef
42.
go back to reference Boulouis G, Dumas A, Betensky RA, Brouwers HB, Fotiadis P, et al. Anatomic pattern of intracerebral hemorrhage expansion: relation to CT angiography spot sign and hematoma center. Stroke. 2014;45:1154–6.PubMedCentralPubMedCrossRef Boulouis G, Dumas A, Betensky RA, Brouwers HB, Fotiadis P, et al. Anatomic pattern of intracerebral hemorrhage expansion: relation to CT angiography spot sign and hematoma center. Stroke. 2014;45:1154–6.PubMedCentralPubMedCrossRef
43.
go back to reference Brouwers HB, Falcone GJ, McNamara KA, Ayres AM, Oleinik A, et al. CTA spot sign predicts hematoma expansion in patients with delayed presentation after intracerebral hemorrhage. Neurocrit Care. 2012;17:421–8.PubMedCentralPubMedCrossRef Brouwers HB, Falcone GJ, McNamara KA, Ayres AM, Oleinik A, et al. CTA spot sign predicts hematoma expansion in patients with delayed presentation after intracerebral hemorrhage. Neurocrit Care. 2012;17:421–8.PubMedCentralPubMedCrossRef
44.
go back to reference Romero JM, Heit JJ, Delgado Almandoz JE, Goldstein JN, Lu J, et al. Spot sign score predicts rapid bleeding in spontaneous intracerebral hemorrhage. Emerg Radiol. 2012;19:195–202.PubMedCentralPubMedCrossRef Romero JM, Heit JJ, Delgado Almandoz JE, Goldstein JN, Lu J, et al. Spot sign score predicts rapid bleeding in spontaneous intracerebral hemorrhage. Emerg Radiol. 2012;19:195–202.PubMedCentralPubMedCrossRef
45.
go back to reference Komiyama M, Yasui T, Tamura K, Nagata Y, Fu Y, et al. Simultaneous bleeding from multiple lenticulostriate arteries in hypertensive intracerebral haemorrhage. Neuroradiology. 1995;37:129–30.PubMedCrossRef Komiyama M, Yasui T, Tamura K, Nagata Y, Fu Y, et al. Simultaneous bleeding from multiple lenticulostriate arteries in hypertensive intracerebral haemorrhage. Neuroradiology. 1995;37:129–30.PubMedCrossRef
46.
go back to reference Greenberg SM, Nandigam RN, Delgado P, Betensky RA, Rosand J, et al. Microbleeds versus macrobleeds: evidence for distinct entities. Stroke. 2009;40:2382–6.PubMedCentralPubMedCrossRef Greenberg SM, Nandigam RN, Delgado P, Betensky RA, Rosand J, et al. Microbleeds versus macrobleeds: evidence for distinct entities. Stroke. 2009;40:2382–6.PubMedCentralPubMedCrossRef
47.
48.
go back to reference Kirkman MA, Allan SM, Parry-Jones AR. Experimental intracerebral hemorrhage: avoiding pitfalls in translational research. J Cereb Blood Flow Metab. 2011;31:2135–51.PubMedCentralPubMedCrossRef Kirkman MA, Allan SM, Parry-Jones AR. Experimental intracerebral hemorrhage: avoiding pitfalls in translational research. J Cereb Blood Flow Metab. 2011;31:2135–51.PubMedCentralPubMedCrossRef
49.
go back to reference Rosenberg GA, Mun-Bryce S, Wesley M, Kornfeld M. Collagenase-induced intracerebral hemorrhage in rats. Stroke. 1990;21:801–7.PubMedCrossRef Rosenberg GA, Mun-Bryce S, Wesley M, Kornfeld M. Collagenase-induced intracerebral hemorrhage in rats. Stroke. 1990;21:801–7.PubMedCrossRef
50.
go back to reference Won SY, Schlunk F, Dinkel J, Karatas H, Leung W, et al. Imaging of contrast medium extravasation in anticoagulation-associated intracerebral hemorrhage with dual-energy computed tomography. Stroke. 2013;44:2883–90.PubMedCentralPubMedCrossRef Won SY, Schlunk F, Dinkel J, Karatas H, Leung W, et al. Imaging of contrast medium extravasation in anticoagulation-associated intracerebral hemorrhage with dual-energy computed tomography. Stroke. 2013;44:2883–90.PubMedCentralPubMedCrossRef
51.
go back to reference Schlunk F, Schulz E, Lauer A, Yigitkanli K, Pfeilschifter W, et al. Warfarin Pretreatment Reduces Cell Death and MMP-9 Activity in Experimental Intracerebral Hemorrhage. Transl Stroke Res. 2014;6(2):133–9. doi:10.1007/s12975-014-0377-3. Schlunk F, Schulz E, Lauer A, Yigitkanli K, Pfeilschifter W, et al. Warfarin Pretreatment Reduces Cell Death and MMP-9 Activity in Experimental Intracerebral Hemorrhage. Transl Stroke Res. 2014;6(2):133–9. doi:10.​1007/​s12975-014-0377-3.
52.
go back to reference Lauer A, Cianchetti FA, Van Cott EM, Schlunk F, Schulz E, et al. Anticoagulation with the oral direct thrombin inhibitor dabigatran does not enlarge hematoma volume in experimental intracerebral hemorrhage. Circulation. 2011;124:1654–62.PubMedCentralPubMedCrossRef Lauer A, Cianchetti FA, Van Cott EM, Schlunk F, Schulz E, et al. Anticoagulation with the oral direct thrombin inhibitor dabigatran does not enlarge hematoma volume in experimental intracerebral hemorrhage. Circulation. 2011;124:1654–62.PubMedCentralPubMedCrossRef
53.
54.
go back to reference Schlunk F, Van Cott EM, Hayakawa K, Pfeilschifter W, Lo EH, et al. Recombinant activated coagulation factor VII and prothrombin complex concentrates are equally effective in reducing hematoma volume in experimental warfarin-associated intracerebral hemorrhage. Stroke. 2012;43:246–9.PubMedCentralPubMedCrossRef Schlunk F, Van Cott EM, Hayakawa K, Pfeilschifter W, Lo EH, et al. Recombinant activated coagulation factor VII and prothrombin complex concentrates are equally effective in reducing hematoma volume in experimental warfarin-associated intracerebral hemorrhage. Stroke. 2012;43:246–9.PubMedCentralPubMedCrossRef
55.
go back to reference Lei B, Sheng H, Wang H, Lascola CD, Warner DS, et al. Intrastriatal injection of autologous blood or clostridial collagenase as murine models of intracerebral hemorrhage. J Vis Exp. 2014. doi:10.3791/51439. Lei B, Sheng H, Wang H, Lascola CD, Warner DS, et al. Intrastriatal injection of autologous blood or clostridial collagenase as murine models of intracerebral hemorrhage. J Vis Exp. 2014. doi:10.​3791/​51439.
57.
go back to reference Li G, Fan RM, Chen JL, Wang CM, Zeng YC, et al. Neuroprotective effects of argatroban and C5a receptor antagonist (PMX53) following intracerebral haemorrhage. Clin Exp Immunol. 2014;175:285–95.PubMedCentralPubMedCrossRef Li G, Fan RM, Chen JL, Wang CM, Zeng YC, et al. Neuroprotective effects of argatroban and C5a receptor antagonist (PMX53) following intracerebral haemorrhage. Clin Exp Immunol. 2014;175:285–95.PubMedCentralPubMedCrossRef
58.
go back to reference Marinkovic I, Strbian D, Mattila OS, Abo-Ramadan U, Tatlisumak T. A novel combined model of intracerebral and intraventricular hemorrhage using autologous blood-injection in rats. Neuroscience. 2014;272:286–94.PubMedCrossRef Marinkovic I, Strbian D, Mattila OS, Abo-Ramadan U, Tatlisumak T. A novel combined model of intracerebral and intraventricular hemorrhage using autologous blood-injection in rats. Neuroscience. 2014;272:286–94.PubMedCrossRef
59.
go back to reference Liu J, Gao BB, Clermont AC, Blair P, Chilcote TJ, et al. Hyperglycemia-induced cerebral hematoma expansion is mediated by plasma kallikrein. Nat Med. 2011;17:206–10.PubMedCentralPubMedCrossRef Liu J, Gao BB, Clermont AC, Blair P, Chilcote TJ, et al. Hyperglycemia-induced cerebral hematoma expansion is mediated by plasma kallikrein. Nat Med. 2011;17:206–10.PubMedCentralPubMedCrossRef
60.
go back to reference James ML, Warner DS, Laskowitz DT. Preclinical models of intracerebral hemorrhage: a translational perspective. Neurocrit Care. 2008;9:139–52.PubMedCrossRef James ML, Warner DS, Laskowitz DT. Preclinical models of intracerebral hemorrhage: a translational perspective. Neurocrit Care. 2008;9:139–52.PubMedCrossRef
61.
go back to reference Wang J, Fields J, Dore S. The development of an improved preclinical mouse model of intracerebral hemorrhage using double infusion of autologous whole blood. Brain Res. 2008;1222:214–21.PubMedCrossRef Wang J, Fields J, Dore S. The development of an improved preclinical mouse model of intracerebral hemorrhage using double infusion of autologous whole blood. Brain Res. 2008;1222:214–21.PubMedCrossRef
62.
go back to reference Aviv RI, Huynh T, Huang Y, Ramsay D, Van Slyke P, et al. An in vivo, MRI-integrated real-time model of active contrast extravasation in acute intracerebral hemorrhage. AJNR Am J Neuroradiol. 2014;35:1693–9.PubMedCrossRef Aviv RI, Huynh T, Huang Y, Ramsay D, Van Slyke P, et al. An in vivo, MRI-integrated real-time model of active contrast extravasation in acute intracerebral hemorrhage. AJNR Am J Neuroradiol. 2014;35:1693–9.PubMedCrossRef
Metadata
Title
The Pathophysiology of Intracerebral Hemorrhage Formation and Expansion
Authors
Frieder Schlunk
Steven M. Greenberg
Publication date
01-08-2015
Publisher
Springer US
Published in
Translational Stroke Research / Issue 4/2015
Print ISSN: 1868-4483
Electronic ISSN: 1868-601X
DOI
https://doi.org/10.1007/s12975-015-0410-1

Other articles of this Issue 4/2015

Translational Stroke Research 4/2015 Go to the issue