Skip to main content
Top
Published in: Translational Stroke Research 2/2015

01-04-2015 | Original Article

Warfarin Pretreatment Reduces Cell Death and MMP-9 Activity in Experimental Intracerebral Hemorrhage

Authors: Frieder Schlunk, Elena Schulz, Arne Lauer, Kazim Yigitkanli, Waltraud Pfeilschifter, Helmuth Steinmetz, Eng H. Lo, Christian Foerch

Published in: Translational Stroke Research | Issue 2/2015

Login to get access

Abstract

Little is known about the pathophysiology of oral anticoagulation-associated intracerebral hemorrhage (OAC-ICH). We compared hematoma volume, number of terminal deoxynucleotidyl dUTP nick-end labeling (TUNEL)-positive cells (indicating cell death), MMP-9 levels, and perilesional edema formation between warfarin-treated mice and controls. Intracerebral hemorrhage was induced by an injection of collagenase into the right striatum. Twenty-four hours later, hematoma volume was measured using a photometric hemoglobin assay. Cell death was quantified using TUNEL staining. MMP-9 levels were determined by zymography, and edema formation was assessed via the wet–dry method. Warfarin increased hematoma volume by 2.6-fold. The absolute number of TUNEL-positive cells in the perihematomal zone was lower in warfarin-treated animals (300.5 ± 39.8 cells/mm2) than in controls (430.5 ± 38.9 cells/mm2; p = 0.034), despite the larger bleeding volume. MMP-9 levels were reduced in anticoagulated mice as compared to controls (p = 0.018). Perilesional edema formation was absent in warfarin mice and modestly present in controls. Our results suggest differences in the pathophysiology of OAC-ICH compared to intracerebral hemorrhage occurring under normal coagulation. A likely explanation is that thrombin, a strong inductor of apoptotic cell death and blood–brain barrier disruption, is produced to a lesser extent in OAC-ICH. In humans, however, we assume that the detrimental effects of a larger hematoma volume in OAC-ICH by far outweigh potential protective effects of thrombin deficiency.
Literature
1.
go back to reference Steiner T, Rosand J, Diringer M. Intracerebral hemorrhage associated with oral anticoagulant therapy: current practices and unresolved questions. Stroke. 2006;37:256–62.CrossRefPubMed Steiner T, Rosand J, Diringer M. Intracerebral hemorrhage associated with oral anticoagulant therapy: current practices and unresolved questions. Stroke. 2006;37:256–62.CrossRefPubMed
2.
go back to reference Sjalander A, Engstrom G, Berntorp E, Svensson P. Risk of haemorrhagic stroke in patients with oral anticoagulation compared with the general population. J Intern Med. 2003;254:434–8.CrossRefPubMed Sjalander A, Engstrom G, Berntorp E, Svensson P. Risk of haemorrhagic stroke in patients with oral anticoagulation compared with the general population. J Intern Med. 2003;254:434–8.CrossRefPubMed
3.
go back to reference Rosand J, Eckman MH, Knudsen KA, Singer DE, Greenberg SM. The effect of warfarin and intensity of anticoagulation on outcome of intracerebral hemorrhage. Arch Intern Med. 2004;164:880–4.CrossRefPubMed Rosand J, Eckman MH, Knudsen KA, Singer DE, Greenberg SM. The effect of warfarin and intensity of anticoagulation on outcome of intracerebral hemorrhage. Arch Intern Med. 2004;164:880–4.CrossRefPubMed
5.
go back to reference Flaherty ML, Haverbusch M, Sekar P, et al. Location and outcome of anticoagulant-associated intracerebral hemorrhage. Neurocrit Care. 2006;5:197–201.CrossRefPubMed Flaherty ML, Haverbusch M, Sekar P, et al. Location and outcome of anticoagulant-associated intracerebral hemorrhage. Neurocrit Care. 2006;5:197–201.CrossRefPubMed
6.
go back to reference Flibotte JJ, Hagan N, O’Donnell J, Greenberg SM, Rosand J. Warfarin, hematoma expansion, and outcome of intracerebral hemorrhage. Neurology. 2004;63:1059–64.CrossRefPubMed Flibotte JJ, Hagan N, O’Donnell J, Greenberg SM, Rosand J. Warfarin, hematoma expansion, and outcome of intracerebral hemorrhage. Neurology. 2004;63:1059–64.CrossRefPubMed
7.
go back to reference Levine JM, Snider R, Finkelstein D, et al. Early edema in warfarin-related intracerebral hemorrhage. Neurocrit Care. 2007;7:58–63.CrossRefPubMed Levine JM, Snider R, Finkelstein D, et al. Early edema in warfarin-related intracerebral hemorrhage. Neurocrit Care. 2007;7:58–63.CrossRefPubMed
8.
go back to reference Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5:53–63.CrossRefPubMed Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol. 2006;5:53–63.CrossRefPubMed
9.
go back to reference Hua Y, Keep RF, Hoff JT, Xi G. Brain injury after intracerebral hemorrhage: the role of thrombin and iron. Stroke. 2007;38:759–62.CrossRefPubMed Hua Y, Keep RF, Hoff JT, Xi G. Brain injury after intracerebral hemorrhage: the role of thrombin and iron. Stroke. 2007;38:759–62.CrossRefPubMed
10.
go back to reference Donovan FM, Pike CJ, Cotman CW, Cunningham DD. Thrombin induces apoptosis in cultured neurons and astrocytes via a pathway requiring tyrosine kinase and RhoA activities. J Neurosci. 1997;17:5316–26.PubMed Donovan FM, Pike CJ, Cotman CW, Cunningham DD. Thrombin induces apoptosis in cultured neurons and astrocytes via a pathway requiring tyrosine kinase and RhoA activities. J Neurosci. 1997;17:5316–26.PubMed
12.
go back to reference Xue M, Del Bigio MR. Acute tissue damage after injections of thrombin and plasmin into rat striatum. Stroke. 2001;32:2164–9.CrossRefPubMed Xue M, Del Bigio MR. Acute tissue damage after injections of thrombin and plasmin into rat striatum. Stroke. 2001;32:2164–9.CrossRefPubMed
13.
go back to reference Wang J, Tsirka SE. Neuroprotection by inhibition of matrix metalloproteinases in a mouse model of intracerebral haemorrhage. Brain. 2005;128:1622–33.CrossRefPubMed Wang J, Tsirka SE. Neuroprotection by inhibition of matrix metalloproteinases in a mouse model of intracerebral haemorrhage. Brain. 2005;128:1622–33.CrossRefPubMed
14.
go back to reference Illanes S, Zhou W, Schwarting S, Heiland S, Veltkamp R. Comparative effectiveness of hemostatic therapy in experimental warfarin-associated intracerebral hemorrhage. Stroke. 2011;42:191–5.CrossRefPubMed Illanes S, Zhou W, Schwarting S, Heiland S, Veltkamp R. Comparative effectiveness of hemostatic therapy in experimental warfarin-associated intracerebral hemorrhage. Stroke. 2011;42:191–5.CrossRefPubMed
15.
go back to reference Schlunk F, Van Cott EM, Hayakawa K, Pfeilschifter W, Lo EH, Foerch C. Recombinant activated coagulation factor VII and prothrombin complex concentrates are equally effective in reducing hematoma volume in experimental warfarin-associated intracerebral hemorrhage. Stroke. 2012;43:246–9.CrossRefPubMedCentralPubMed Schlunk F, Van Cott EM, Hayakawa K, Pfeilschifter W, Lo EH, Foerch C. Recombinant activated coagulation factor VII and prothrombin complex concentrates are equally effective in reducing hematoma volume in experimental warfarin-associated intracerebral hemorrhage. Stroke. 2012;43:246–9.CrossRefPubMedCentralPubMed
16.
go back to reference Illanes S, Zhou W, Heiland S, Markus Z, Veltkamp R. Kinetics of hematoma expansion in murine warfarin-associated intracerebral hemorrhage. Brain Res. 2010;1320:135–42.CrossRefPubMed Illanes S, Zhou W, Heiland S, Markus Z, Veltkamp R. Kinetics of hematoma expansion in murine warfarin-associated intracerebral hemorrhage. Brain Res. 2010;1320:135–42.CrossRefPubMed
17.
go back to reference Foerch C, Arai K, Van Cott EM, van Leyen K, Lo EH. Rapid reversal of anticoagulation reduces hemorrhage volume in a mouse model of warfarin-associated intracerebral hemorrhage. J Cereb Blood Flow Metab. 2009;29:1015–21.CrossRefPubMedCentralPubMed Foerch C, Arai K, Van Cott EM, van Leyen K, Lo EH. Rapid reversal of anticoagulation reduces hemorrhage volume in a mouse model of warfarin-associated intracerebral hemorrhage. J Cereb Blood Flow Metab. 2009;29:1015–21.CrossRefPubMedCentralPubMed
18.
go back to reference Xue M, Del Bigio MR. Injections of blood, thrombin, and plasminogen more severely damage neonatal mouse brain than mature mouse brain. Brain Pathol. 2005;15:273–80.CrossRefPubMed Xue M, Del Bigio MR. Injections of blood, thrombin, and plasminogen more severely damage neonatal mouse brain than mature mouse brain. Brain Pathol. 2005;15:273–80.CrossRefPubMed
19.
go back to reference Lee KR, Kawai N, Kim S, Sagher O, Hoff JT. Mechanisms of edema formation after intracerebral hemorrhage: effects of thrombin on cerebral blood flow, blood-brain barrier permeability, and cell survival in a rat model. J Neurosurg. 1997;86:272–8.CrossRefPubMed Lee KR, Kawai N, Kim S, Sagher O, Hoff JT. Mechanisms of edema formation after intracerebral hemorrhage: effects of thrombin on cerebral blood flow, blood-brain barrier permeability, and cell survival in a rat model. J Neurosurg. 1997;86:272–8.CrossRefPubMed
20.
go back to reference Xi G, Reiser G, Keep RF. The role of thrombin and thrombin receptors in ischemic, hemorrhagic and traumatic brain injury: deleterious or protective. J Neurochem. 2003;84:3–9.CrossRefPubMed Xi G, Reiser G, Keep RF. The role of thrombin and thrombin receptors in ischemic, hemorrhagic and traumatic brain injury: deleterious or protective. J Neurochem. 2003;84:3–9.CrossRefPubMed
21.
go back to reference Kawakita K, Kawai N, Kuroda Y, Yasashita S, Nagao S. Expression of matrix metalloproteinase-9 in thrombin-induced brain edema formation in rats. J Stroke Cerebrovasc Dis. 2006;15:88–95.CrossRefPubMed Kawakita K, Kawai N, Kuroda Y, Yasashita S, Nagao S. Expression of matrix metalloproteinase-9 in thrombin-induced brain edema formation in rats. J Stroke Cerebrovasc Dis. 2006;15:88–95.CrossRefPubMed
22.
go back to reference Xue M, Hollenberg MD, Yong VW. Combination of thrombin and matrix metalloproteinase-9 exacerbates neurotoxicity in cell culture and intracerebral hemorrhage in mice. J Neurosci. 2006;26:10281–91.CrossRefPubMed Xue M, Hollenberg MD, Yong VW. Combination of thrombin and matrix metalloproteinase-9 exacerbates neurotoxicity in cell culture and intracerebral hemorrhage in mice. J Neurosci. 2006;26:10281–91.CrossRefPubMed
23.
go back to reference Thirumangalakudi L, Rao HV, Grammas P. Involvement of PGE2 and PGDH but not COX- 2 in thrombin-induced cortical neuron apoptosis. Neurosci Lett. 2009;452:172–5.CrossRefPubMedCentralPubMed Thirumangalakudi L, Rao HV, Grammas P. Involvement of PGE2 and PGDH but not COX- 2 in thrombin-induced cortical neuron apoptosis. Neurosci Lett. 2009;452:172–5.CrossRefPubMedCentralPubMed
24.
go back to reference Rao HV, Thirumangalakudi L, Desmond P, Grammas P. Cyclin D1, cdk4, and Bim are involved in thrombin-induced apoptosis in cultured cortical neurons. J Neurochem. 2007;101:498–505.CrossRefPubMed Rao HV, Thirumangalakudi L, Desmond P, Grammas P. Cyclin D1, cdk4, and Bim are involved in thrombin-induced apoptosis in cultured cortical neurons. J Neurochem. 2007;101:498–505.CrossRefPubMed
25.
go back to reference Rosell A, Ortega-Aznar A, Alvarez-Sabin J, et al. Increased brain expression of matrix metalloproteinase-9 after ischemic and hemorrhagic human stroke. Stroke. 2006;37:1399–406.CrossRefPubMed Rosell A, Ortega-Aznar A, Alvarez-Sabin J, et al. Increased brain expression of matrix metalloproteinase-9 after ischemic and hemorrhagic human stroke. Stroke. 2006;37:1399–406.CrossRefPubMed
26.
go back to reference Wu H, Zhang Z, Li Y, et al. Time course of upregulation of inflammatory mediators in the hemorrhagic brain in rats: correlation with brain edema. Neurochem Int. 2010;57:248–53.CrossRefPubMedCentralPubMed Wu H, Zhang Z, Li Y, et al. Time course of upregulation of inflammatory mediators in the hemorrhagic brain in rats: correlation with brain edema. Neurochem Int. 2010;57:248–53.CrossRefPubMedCentralPubMed
27.
go back to reference Ichikawa K, Yanagihara C. Sedimentation level in acute intracerebral hematoma in a patient receiving anticoagulation therapy: an autopsy study. Neuroradiology. 1998;40:380–2.CrossRefPubMed Ichikawa K, Yanagihara C. Sedimentation level in acute intracerebral hematoma in a patient receiving anticoagulation therapy: an autopsy study. Neuroradiology. 1998;40:380–2.CrossRefPubMed
28.
go back to reference Gulati G, Hevelow M, George M, Behling E, Siegel J. International normalized ratio versus plasma levels of coagulation factors in patients on vitamin K antagonist therapy. Arch Pathol Lab Med. 2011;135:490–4.PubMed Gulati G, Hevelow M, George M, Behling E, Siegel J. International normalized ratio versus plasma levels of coagulation factors in patients on vitamin K antagonist therapy. Arch Pathol Lab Med. 2011;135:490–4.PubMed
Metadata
Title
Warfarin Pretreatment Reduces Cell Death and MMP-9 Activity in Experimental Intracerebral Hemorrhage
Authors
Frieder Schlunk
Elena Schulz
Arne Lauer
Kazim Yigitkanli
Waltraud Pfeilschifter
Helmuth Steinmetz
Eng H. Lo
Christian Foerch
Publication date
01-04-2015
Publisher
Springer US
Published in
Translational Stroke Research / Issue 2/2015
Print ISSN: 1868-4483
Electronic ISSN: 1868-601X
DOI
https://doi.org/10.1007/s12975-014-0377-3

Other articles of this Issue 2/2015

Translational Stroke Research 2/2015 Go to the issue