Skip to main content
Top
Published in: Discover Oncology 6/2018

Open Access 01-12-2018 | Original Paper

Enhancement by Nano-Diamino-Tetrac of Antiproliferative Action of Gefitinib on Colorectal Cancer Cells: Mediation by EGFR Sialylation and PI3K Activation

Authors: Tung-Cheng Chang, Yu-Tang Chin, André Wendindondé Nana, Shwu-Huey Wang, Yu-Min Liao, Yi-Ru Chen, Ya-Jung Shih, Chun A. Changou, Yu-Chen SH Yang, Kuan Wang, Jacqueline Whang-Peng, Liang-Shun Wang, Steven C. Stain, Ai Shih, Hung-Yun Lin, Chih-Hsiung Wu, Paul J. Davis

Published in: Discover Oncology | Issue 6/2018

Login to get access

Abstract

Drug resistance complicates the clinical use of gefitinib. Tetraiodothyroacetic acid (tetrac) and nano-diamino-tetrac (NDAT) have been shown in vitro and in xenografts to have antiproliferative/angiogenic properties and to potentiate antiproliferative activity of other anticancer agents. In the current study, we investigated the effects of NDAT on the anticancer activities of gefitinib in human colorectal cancer cells. β-Galactoside α-2,6-sialyltransferase 1 (ST6Gal1) catalyzes EGFR sialylation that is associated with gefitinib resistance in colorectal cancers, and this was also investigated. Gefitinib inhibited cell proliferation of HT-29 cells (K-ras wild-type), and NDAT significantly enhanced the antiproliferative action of gefitinib. Gefitinib inhibited cell proliferation of HCT116 cells (K-ras mutant) only in high concentration, and this was further enhanced by NDAT. NDAT enhancedd gefitinib-induced antiproliferation in gefitinib-resistant colorectal cancer cells by inhibiting ST6Gal1 activity and PI3K activation. Furthermore, NDAT enhanced gefitinib-induced anticancer activity additively in colorectal cancer HCT116 cell xenograft-bearing nude mice. Results suggest that NDAT may have an application with gefitinib as combination colorectal cancer therapy.
Literature
1.
go back to reference Paria BC, Das SK, Mead RA, Dey SK (1994) Expression of epidermal growth factor receptor in the preimplantation uterus and blastocyst of the western spotted skunk. Biol Reprod 51(2):205–213CrossRef Paria BC, Das SK, Mead RA, Dey SK (1994) Expression of epidermal growth factor receptor in the preimplantation uterus and blastocyst of the western spotted skunk. Biol Reprod 51(2):205–213CrossRef
2.
go back to reference Spano JP, Fagard R, Soria JC, Rixe O, Khayat D and Milano G (2005) Epidermal growth factor receptor signaling in colorectal cancer: preclinical data and therapeutic perspectives. Ann Oncol 16(2):189–194CrossRef Spano JP, Fagard R, Soria JC, Rixe O, Khayat D and Milano G (2005) Epidermal growth factor receptor signaling in colorectal cancer: preclinical data and therapeutic perspectives. Ann Oncol 16(2):189–194CrossRef
3.
go back to reference Kuramochi H, Nakajima G, Kaneko Y, Nakamura A, Inoue Y, Yamamoto M, Hayashi K (2012) Amphiregulin and Epiregulin mRNA expression in primary colorectal cancer and corresponding liver metastases. BMC Cancer 12:88CrossRef Kuramochi H, Nakajima G, Kaneko Y, Nakamura A, Inoue Y, Yamamoto M, Hayashi K (2012) Amphiregulin and Epiregulin mRNA expression in primary colorectal cancer and corresponding liver metastases. BMC Cancer 12:88CrossRef
4.
go back to reference Kanwar SS, Nautiyal J, Majumdar AP (2010) EGFR(S) inhibitors in the treatment of gastro-intestinal cancers: what's new? Curr Drug Targets 11(6):682–698CrossRef Kanwar SS, Nautiyal J, Majumdar AP (2010) EGFR(S) inhibitors in the treatment of gastro-intestinal cancers: what's new? Curr Drug Targets 11(6):682–698CrossRef
5.
go back to reference Hu T, Li C (2010) Convergence between Wnt-beta-catenin and EGFR signaling in cancer. Mol Cancer 9:236CrossRef Hu T, Li C (2010) Convergence between Wnt-beta-catenin and EGFR signaling in cancer. Mol Cancer 9:236CrossRef
6.
go back to reference Barbolina MV, Burkhalter RJ, Stack MS (2011) Diverse mechanisms for activation of Wnt signalling in the ovarian tumour microenvironment. Biochem J 437(1):1–12CrossRef Barbolina MV, Burkhalter RJ, Stack MS (2011) Diverse mechanisms for activation of Wnt signalling in the ovarian tumour microenvironment. Biochem J 437(1):1–12CrossRef
7.
go back to reference Shitoh K, Koinuma K, Furukawa T, Okada M, Nagai H (2004) Mutation of beta-catenin does not coexist with K-ras mutation in colorectal tumorigenesis. Dig Dis Sci 49(10):1631–1633CrossRef Shitoh K, Koinuma K, Furukawa T, Okada M, Nagai H (2004) Mutation of beta-catenin does not coexist with K-ras mutation in colorectal tumorigenesis. Dig Dis Sci 49(10):1631–1633CrossRef
8.
go back to reference Conlin A, Smith G, Carey FA, Wolf CR, Steele RJ (2005) The prognostic significance of K-ras, p53, and APC mutations in colorectal carcinoma. Gut 54(9):1283–1286CrossRef Conlin A, Smith G, Carey FA, Wolf CR, Steele RJ (2005) The prognostic significance of K-ras, p53, and APC mutations in colorectal carcinoma. Gut 54(9):1283–1286CrossRef
9.
go back to reference Li J, Kleeff J, Giese N, Buchler MW, Korc M, Friess H (2004) Gefitinib ('Iressa', ZD1839), a selective epidermal growth factor receptor tyrosine kinase inhibitor, inhibits pancreatic cancer cell growth, invasion, and colony formation. Int J Oncol 25(1):203–210PubMed Li J, Kleeff J, Giese N, Buchler MW, Korc M, Friess H (2004) Gefitinib ('Iressa', ZD1839), a selective epidermal growth factor receptor tyrosine kinase inhibitor, inhibits pancreatic cancer cell growth, invasion, and colony formation. Int J Oncol 25(1):203–210PubMed
10.
go back to reference Park JJ, Yi JY, Jin YB, Lee YJ, Lee JS, Lee YS, Ko YG, Lee M (2012) Sialylation of epidermal growth factor receptor regulates receptor activity and chemosensitivity to gefitinib in colon cancer cells. Biochem Pharmacol 83(7):849–857CrossRef Park JJ, Yi JY, Jin YB, Lee YJ, Lee JS, Lee YS, Ko YG, Lee M (2012) Sialylation of epidermal growth factor receptor regulates receptor activity and chemosensitivity to gefitinib in colon cancer cells. Biochem Pharmacol 83(7):849–857CrossRef
11.
go back to reference Janmaat ML, Giaccone G (2003) Small-molecule epidermal growth factor receptor tyrosine kinase inhibitors. Oncologist 8(6):576–586CrossRef Janmaat ML, Giaccone G (2003) Small-molecule epidermal growth factor receptor tyrosine kinase inhibitors. Oncologist 8(6):576–586CrossRef
12.
go back to reference Chen J, Bi H, Hou J, Zhang X, Zhang C, Yue L, Wen X, Liu D, Shi H, Yuan J, Liu J, Liu B (2013) Atorvastatin overcomes gefitinib resistance in KRAS mutant human non-small cell lung carcinoma cells. Cell Death Dis 4:e814CrossRef Chen J, Bi H, Hou J, Zhang X, Zhang C, Yue L, Wen X, Liu D, Shi H, Yuan J, Liu J, Liu B (2013) Atorvastatin overcomes gefitinib resistance in KRAS mutant human non-small cell lung carcinoma cells. Cell Death Dis 4:e814CrossRef
13.
go back to reference Li H, Schmid-Bindert G, Wang D, Zhao Y, Yang X, Su B, Zhou C (2011) Blocking the PI3K/AKT and MEK/ERK signaling pathways can overcome gefitinib-resistance in non-small cell lung cancer cell lines. Adv Med Sci 56(2):275–284CrossRef Li H, Schmid-Bindert G, Wang D, Zhao Y, Yang X, Su B, Zhou C (2011) Blocking the PI3K/AKT and MEK/ERK signaling pathways can overcome gefitinib-resistance in non-small cell lung cancer cell lines. Adv Med Sci 56(2):275–284CrossRef
14.
go back to reference Dragowska WH, Weppler SA, Qadir MA, Wong LY, Franssen Y, Baker JH, Kapanen AI, Kierkels GJ, Masin D, Minchinton AI, Gelmon KA, Bally MB (2011) The combination of gefitinib and RAD001 inhibits growth of HER2 overexpressing breast cancer cells and tumors irrespective of trastuzumab sensitivity. BMC Cancer 11:420CrossRef Dragowska WH, Weppler SA, Qadir MA, Wong LY, Franssen Y, Baker JH, Kapanen AI, Kierkels GJ, Masin D, Minchinton AI, Gelmon KA, Bally MB (2011) The combination of gefitinib and RAD001 inhibits growth of HER2 overexpressing breast cancer cells and tumors irrespective of trastuzumab sensitivity. BMC Cancer 11:420CrossRef
15.
go back to reference Pao W, Wang TY, Riely GJ, Miller VA, Pan Q, Ladanyi M, Zakowski MF, Heelan RT, Kris MG, Varmus HE (2005) KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med 2(1):e17CrossRef Pao W, Wang TY, Riely GJ, Miller VA, Pan Q, Ladanyi M, Zakowski MF, Heelan RT, Kris MG, Varmus HE (2005) KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med 2(1):e17CrossRef
16.
go back to reference Ono M, Kuwano M (2006) Molecular mechanisms of epidermal growth factor receptor (EGFR) activation and response to gefitinib and other EGFR-targeting drugs. Clin Cancer Res 12(24):7242–7251CrossRef Ono M, Kuwano M (2006) Molecular mechanisms of epidermal growth factor receptor (EGFR) activation and response to gefitinib and other EGFR-targeting drugs. Clin Cancer Res 12(24):7242–7251CrossRef
17.
go back to reference Zhang X, Nagahara H, Mimori K, Inoue H, Sawada T, Ohira M, Hirakawa K, Mori M (2008) Mutations of epidermal growth factor receptor in colon cancer indicate susceptibility or resistance to gefitinib. Oncol Rep 19(6):1541–1544PubMed Zhang X, Nagahara H, Mimori K, Inoue H, Sawada T, Ohira M, Hirakawa K, Mori M (2008) Mutations of epidermal growth factor receptor in colon cancer indicate susceptibility or resistance to gefitinib. Oncol Rep 19(6):1541–1544PubMed
18.
go back to reference Song J, Zhu J, Zhao Q, Tian B (2015) Gefitinib causes growth arrest and inhibition of metastasis in human chondrosarcoma cells. J BUON 20(3):894–901PubMed Song J, Zhu J, Zhao Q, Tian B (2015) Gefitinib causes growth arrest and inhibition of metastasis in human chondrosarcoma cells. J BUON 20(3):894–901PubMed
19.
go back to reference Tebbutt N, Pedersen MW, Johns TG (2013) Targeting the ERBB family in cancer: couples therapy. Nat Rev Cancer 13(9):663–673CrossRef Tebbutt N, Pedersen MW, Johns TG (2013) Targeting the ERBB family in cancer: couples therapy. Nat Rev Cancer 13(9):663–673CrossRef
20.
go back to reference Toda D, Ota T, Tsukuda K, Watanabe K, Fujiyama T, Murakami M, Naito M, Shimizu N (2006) Gefitinib decreases the synthesis of matrix metalloproteinase and the adhesion to extracellular matrix proteins of colon cancer cells. Anticancer Res 26(1A):129–134PubMed Toda D, Ota T, Tsukuda K, Watanabe K, Fujiyama T, Murakami M, Naito M, Shimizu N (2006) Gefitinib decreases the synthesis of matrix metalloproteinase and the adhesion to extracellular matrix proteins of colon cancer cells. Anticancer Res 26(1A):129–134PubMed
21.
go back to reference Koizumi F, Kanzawa F, Ueda Y, Koh Y, Tsukiyama S, Taguchi F, Tamura T, Saijo N, Nishio K (2004) Synergistic interaction between the EGFR tyrosine kinase inhibitor gefitinib (“Iressa”) and the DNA topoisomerase I inhibitor CPT-11 (irinotecan) in human colorectal cancer cells. Int J Cancer 108(3):464–472CrossRef Koizumi F, Kanzawa F, Ueda Y, Koh Y, Tsukiyama S, Taguchi F, Tamura T, Saijo N, Nishio K (2004) Synergistic interaction between the EGFR tyrosine kinase inhibitor gefitinib (“Iressa”) and the DNA topoisomerase I inhibitor CPT-11 (irinotecan) in human colorectal cancer cells. Int J Cancer 108(3):464–472CrossRef
22.
go back to reference Giaccone G, Gonzalez-Larriba JL, van Oosterom AT, Alfonso R, Smit EF, Martens M, Peters GJ, van der Vijgh WJ, Smith R, Averbuch S, Fandi A (2004) Combination therapy with gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor, gemcitabine and cisplatin in patients with advanced solid tumors. Ann Oncol 15(5):831–838CrossRef Giaccone G, Gonzalez-Larriba JL, van Oosterom AT, Alfonso R, Smit EF, Martens M, Peters GJ, van der Vijgh WJ, Smith R, Averbuch S, Fandi A (2004) Combination therapy with gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor, gemcitabine and cisplatin in patients with advanced solid tumors. Ann Oncol 15(5):831–838CrossRef
23.
go back to reference Lin HY, Glinsky GV, Mousa SA, Davis PJ (2015) Thyroid hormone and anti-apoptosis in tumor cells. Oncotarget 6(17):14735–14743CrossRef Lin HY, Glinsky GV, Mousa SA, Davis PJ (2015) Thyroid hormone and anti-apoptosis in tumor cells. Oncotarget 6(17):14735–14743CrossRef
24.
go back to reference Davis PJ, Glinsky GV, Lin HY, Leith JT, Hercbergs A, Tang HY, Ashur-Fabian O, Incerpi S, Mousa SA (2014) Cancer cell gene expression modulated from plasma membrane integrin αvβ3 by thyroid hormone and nanoparticulate tetrac. Front Endocrinol 5:240 Davis PJ, Glinsky GV, Lin HY, Leith JT, Hercbergs A, Tang HY, Ashur-Fabian O, Incerpi S, Mousa SA (2014) Cancer cell gene expression modulated from plasma membrane integrin αvβ3 by thyroid hormone and nanoparticulate tetrac. Front Endocrinol 5:240
25.
go back to reference Glinskii AB, Glinsky GV, Lin HY, Tang HY, Sun M, Davis FB, Luidens MK, Mousa SA, Hercbergs AH, Davis PJ (2009) Modification of survival pathway gene expression in human breast cancer cells by tetraiodothyroacetic acid (tetrac). Cell Cycle 8(21):3562–3570CrossRef Glinskii AB, Glinsky GV, Lin HY, Tang HY, Sun M, Davis FB, Luidens MK, Mousa SA, Hercbergs AH, Davis PJ (2009) Modification of survival pathway gene expression in human breast cancer cells by tetraiodothyroacetic acid (tetrac). Cell Cycle 8(21):3562–3570CrossRef
26.
go back to reference Lin HY, Landersdorfer CB, London D, Meng R, Lim CU, Lin C, Lin S, Tang HY, Brown D, Van Scoy B, Kulawy R, Queimado L, Drusano GL, Louie A, Davis FB, Mousa SA et al (2011) Pharmacodynamic modeling of anti-cancer activity of tetraiodothyroacetic acid in a perfused cell culture system. PLoS Comput Biol 7(2):e1001073CrossRef Lin HY, Landersdorfer CB, London D, Meng R, Lim CU, Lin C, Lin S, Tang HY, Brown D, Van Scoy B, Kulawy R, Queimado L, Drusano GL, Louie A, Davis FB, Mousa SA et al (2011) Pharmacodynamic modeling of anti-cancer activity of tetraiodothyroacetic acid in a perfused cell culture system. PLoS Comput Biol 7(2):e1001073CrossRef
27.
go back to reference Yalcin M, Dyskin E, Lansing L, Bharali DJ, Mousa SS, Bridoux A, Hercbergs AH, Lin HY, Davis FB, Glinsky GV, Glinskii A, Ma J, Davis PJ, Mousa SA (2010) Tetraiodothyroacetic acid (tetrac) and nanoparticulate tetrac arrest growth of medullary carcinoma of the thyroid. J Clin Endocrinol Metab 95(4):1972–1980CrossRef Yalcin M, Dyskin E, Lansing L, Bharali DJ, Mousa SS, Bridoux A, Hercbergs AH, Lin HY, Davis FB, Glinsky GV, Glinskii A, Ma J, Davis PJ, Mousa SA (2010) Tetraiodothyroacetic acid (tetrac) and nanoparticulate tetrac arrest growth of medullary carcinoma of the thyroid. J Clin Endocrinol Metab 95(4):1972–1980CrossRef
28.
go back to reference Blanke CD (2005) Gefitinib in colorectal cancer: if wishes were horses. J Clin Oncol 23(24):5446–5449CrossRef Blanke CD (2005) Gefitinib in colorectal cancer: if wishes were horses. J Clin Oncol 23(24):5446–5449CrossRef
29.
go back to reference Lin HY, Chin YT, Yang YC, Lai HY, Wang-Peng J, Liu LF, Tang HY, Davis PJ (2016) Thyroid hormone, cancer, and apoptosis. Compr Physiol 6(3):1221–1237CrossRef Lin HY, Chin YT, Yang YC, Lai HY, Wang-Peng J, Liu LF, Tang HY, Davis PJ (2016) Thyroid hormone, cancer, and apoptosis. Compr Physiol 6(3):1221–1237CrossRef
30.
go back to reference Janmaat ML, Rodriguez JA, Gallegos-Ruiz M, Kruyt FA, Giaccone G (2006) Enhanced cytotoxicity induced by gefitinib and specific inhibitors of the Ras or phosphatidyl inositol-3 kinase pathways in non-small cell lung cancer cells. Int J Cancer 118(1):209–214CrossRef Janmaat ML, Rodriguez JA, Gallegos-Ruiz M, Kruyt FA, Giaccone G (2006) Enhanced cytotoxicity induced by gefitinib and specific inhibitors of the Ras or phosphatidyl inositol-3 kinase pathways in non-small cell lung cancer cells. Int J Cancer 118(1):209–214CrossRef
31.
go back to reference Yuan HH, Han Y, Bian WX, Liu L, Bai YX (2012) The effect of monoclonal antibody cetuximab (C225) in combination with tyrosine kinase inhibitor gefitinib (ZD1839) on colon cancer cell lines. Pathology 44(6):547–551CrossRef Yuan HH, Han Y, Bian WX, Liu L, Bai YX (2012) The effect of monoclonal antibody cetuximab (C225) in combination with tyrosine kinase inhibitor gefitinib (ZD1839) on colon cancer cell lines. Pathology 44(6):547–551CrossRef
32.
go back to reference Davis PJ, Goglia F, Leonard JL (2016) Nongenomic actions of thyroid hormone. Nat Rev Endocrinol 12(2):111–121CrossRef Davis PJ, Goglia F, Leonard JL (2016) Nongenomic actions of thyroid hormone. Nat Rev Endocrinol 12(2):111–121CrossRef
33.
go back to reference Baba Y, Fujii M, Tokumaru Y, Kato Y (2012) Present and future of EGFR inhibitors for head and neck squamous cell Cancer. J Oncol 2012:986725CrossRef Baba Y, Fujii M, Tokumaru Y, Kato Y (2012) Present and future of EGFR inhibitors for head and neck squamous cell Cancer. J Oncol 2012:986725CrossRef
34.
go back to reference Matsuo M, Sakurai H, Ueno Y, Ohtani O, Saiki I (2006) Activation of MEK/ERK and PI3K/Akt pathways by fibronectin requires integrin αv-mediated ADAM activity in hepatocellular carcinoma: a novel functional target for gefitinib. Cancer Sci 97(2):155–162CrossRef Matsuo M, Sakurai H, Ueno Y, Ohtani O, Saiki I (2006) Activation of MEK/ERK and PI3K/Akt pathways by fibronectin requires integrin αv-mediated ADAM activity in hepatocellular carcinoma: a novel functional target for gefitinib. Cancer Sci 97(2):155–162CrossRef
35.
go back to reference Liu Z, Klominek J (2004) Inhibition of proliferation, migration, and matrix metalloprotease production in malignant mesothelioma cells by tyrosine kinase inhibitors. Neoplasia 6(6):705–712CrossRef Liu Z, Klominek J (2004) Inhibition of proliferation, migration, and matrix metalloprotease production in malignant mesothelioma cells by tyrosine kinase inhibitors. Neoplasia 6(6):705–712CrossRef
36.
go back to reference Matsuo M, Sakurai H, Saiki I (2003) ZD1839, a selective epidermal growth factor receptor tyrosine kinase inhibitor, shows antimetastatic activity using a hepatocellular carcinoma model. Mol Cancer Ther 2(6):557–561PubMed Matsuo M, Sakurai H, Saiki I (2003) ZD1839, a selective epidermal growth factor receptor tyrosine kinase inhibitor, shows antimetastatic activity using a hepatocellular carcinoma model. Mol Cancer Ther 2(6):557–561PubMed
Metadata
Title
Enhancement by Nano-Diamino-Tetrac of Antiproliferative Action of Gefitinib on Colorectal Cancer Cells: Mediation by EGFR Sialylation and PI3K Activation
Authors
Tung-Cheng Chang
Yu-Tang Chin
André Wendindondé Nana
Shwu-Huey Wang
Yu-Min Liao
Yi-Ru Chen
Ya-Jung Shih
Chun A. Changou
Yu-Chen SH Yang
Kuan Wang
Jacqueline Whang-Peng
Liang-Shun Wang
Steven C. Stain
Ai Shih
Hung-Yun Lin
Chih-Hsiung Wu
Paul J. Davis
Publication date
01-12-2018
Publisher
Springer US
Published in
Discover Oncology / Issue 6/2018
Print ISSN: 1868-8497
Electronic ISSN: 2730-6011
DOI
https://doi.org/10.1007/s12672-018-0341-x

Other articles of this Issue 6/2018

Discover Oncology 6/2018 Go to the issue