Skip to main content
Top
Published in: Discover Oncology 2/2016

01-04-2016 | Original Paper

Anti-Tumoral Effects of Anti-Progestins in a Patient-Derived Breast Cancer Xenograft Model

Authors: Nathalie Esber, Clément Cherbonnier, Michèle Resche-Rigon, Abdallah Hamze, Mouad Alami, Jérôme Fagart, Hugues Loosfelt, Marc Lombès, Nathalie Chabbert-Buffet

Published in: Discover Oncology | Issue 2/2016

Login to get access

Abstract

Breast cancer is a hormone-dependent disease in which estrogen signaling targeting drugs fail in about 10 % due to resistance. Strong evidences highlighted the mitogen role of progesterone, its ligands, and the corresponding progesterone receptor (PR) isoforms in mammary carcinoma. Several PR antagonists have been synthesized; however, some of them are non-selective and led to side or toxic effects. Herein, we evaluated the anti-tumor activity of a commercially available PR modulator, ulipristal acetate (UPA), and a new selective and passive PR antagonist “APR19” in a novel preclinical approach based on patient-derived breast tumor (HBCx-34) xenografted in nude mice. As opposed to P4 that slightly reduces tumor volume, UPA and APR19 treatment for 42 days led to a significant 30 % reduction in tumor weight, accompanied by a significant 40 % retardation in tumor growth upon UPA exposure while a 1.5-fold increase in necrotic areas was observed in APR19-treated tumors. Interestingly, PR expression was upregulated by a 2.5-fold factor in UPA-treated tumors while APR19 significantly reduced expression of both PR and estrogen receptor α, indicating a potential distinct molecular mechanism among PR antagonists. Cell proliferation was clearly reduced in UPA group compared to vehicle conditions, as revealed by the significant reduction in Ki-67, Cyclin D1, and proliferating cell nuclear antigen (PCNA) expression. Likewise, an increase in activated, cleaved poly(ADP-ribose) polymerase (PARP) expression was also demonstrated upon UPA exposure. Collectively, our findings provide direct in vivo evidence for anti-progestin-mediated control of human breast cancer growth, given their anti-proliferative and pro-apoptotic activities, supporting a potential role in breast cancer therapy.
Appendix
Available only for authorised users
Literature
2.
go back to reference Bakker GH, Setyono-Han B, Henkelman MS, de Jong FH, Lamberts SW, van der Schoot P, Klijn JG (1987) Comparison of the actions of the antiprogestin mifepristone (RU486), the progestin megestrol acetate, the LHRH analog buserelin, and ovariectomy in treatment of rat mammary tumors. Cancer Treatment Reports 71(11):1021–1027PubMed Bakker GH, Setyono-Han B, Henkelman MS, de Jong FH, Lamberts SW, van der Schoot P, Klijn JG (1987) Comparison of the actions of the antiprogestin mifepristone (RU486), the progestin megestrol acetate, the LHRH analog buserelin, and ovariectomy in treatment of rat mammary tumors. Cancer Treatment Reports 71(11):1021–1027PubMed
3.
go back to reference Bissery MC, Chabot GG (1991) History and new development of screening and evaluation methods of anticancer drugs used in vivo and in vitro. Bull Cancer 78(7):587–602PubMed Bissery MC, Chabot GG (1991) History and new development of screening and evaluation methods of anticancer drugs used in vivo and in vitro. Bull Cancer 78(7):587–602PubMed
4.
go back to reference Brewster AM, Hortobagyi GN, Broglio KR, Kau SW, Santa-Maria CA, Arun B, Buzdar AU et al (2008) Residual risk of breast cancer recurrence 5 years after adjuvant therapy. J Natl Cancer Inst 100(16):1179–1183. doi:10.1093/jnci/djn233 CrossRefPubMed Brewster AM, Hortobagyi GN, Broglio KR, Kau SW, Santa-Maria CA, Arun B, Buzdar AU et al (2008) Residual risk of breast cancer recurrence 5 years after adjuvant therapy. J Natl Cancer Inst 100(16):1179–1183. doi:10.​1093/​jnci/​djn233 CrossRefPubMed
6.
go back to reference Chabbert-Buffet N, Meduri G, Bouchard P, Spitz IM (2005) Selective progesterone receptor modulators and progesterone antagonists: mechanisms of action and clinical applications. Hum Reprod Update 11(3):293–307CrossRefPubMed Chabbert-Buffet N, Meduri G, Bouchard P, Spitz IM (2005) Selective progesterone receptor modulators and progesterone antagonists: mechanisms of action and clinical applications. Hum Reprod Update 11(3):293–307CrossRefPubMed
8.
go back to reference Cottu P, Bieche I, Assayag F, El Botty R, Chateau-Joubert S, Thuleau A, Bagarre T et al (2014) Acquired resistance to endocrine treatments is associated with tumor-specific molecular changes in patient-derived luminal breast cancer xenografts. Clin Cancer Res 20(16):4314–4325. doi:10.1158/1078-0432.ccr-13-3230 CrossRefPubMed Cottu P, Bieche I, Assayag F, El Botty R, Chateau-Joubert S, Thuleau A, Bagarre T et al (2014) Acquired resistance to endocrine treatments is associated with tumor-specific molecular changes in patient-derived luminal breast cancer xenografts. Clin Cancer Res 20(16):4314–4325. doi:10.​1158/​1078-0432.​ccr-13-3230 CrossRefPubMed
9.
go back to reference Cottu P, Marangoni E, Assayag F, de Cremoux P, Vincent-Salomon A, Guyader C, de Plater L et al (2012) Modeling of response to endocrine therapy in a panel of human luminal breast cancer xenografts. Breast Cancer Res Treat 133(2):595–606. doi:10.1007/s10549-011-1815-5 CrossRefPubMed Cottu P, Marangoni E, Assayag F, de Cremoux P, Vincent-Salomon A, Guyader C, de Plater L et al (2012) Modeling of response to endocrine therapy in a panel of human luminal breast cancer xenografts. Breast Cancer Res Treat 133(2):595–606. doi:10.​1007/​s10549-011-1815-5 CrossRefPubMed
10.
go back to reference Cui X, Schiff R, Arpino G, Osborne CK, Lee AV (2005) Biology of progesterone receptor loss in breast cancer and its implications for endocrine therapy. J Clin Oncol 23(30):7721–7735CrossRefPubMed Cui X, Schiff R, Arpino G, Osborne CK, Lee AV (2005) Biology of progesterone receptor loss in breast cancer and its implications for endocrine therapy. J Clin Oncol 23(30):7721–7735CrossRefPubMed
11.
go back to reference Donnez J, Tomaszewski J, Vazquez F, Bouchard P, Lemieszczuk B, Baro F, Nouri K et al (2012) Ulipristal acetate versus leuprolide acetate for uterine fibroids. N Engl J Med 366(5):421–432. doi:10.1056/NEJMoa1103180 CrossRefPubMed Donnez J, Tomaszewski J, Vazquez F, Bouchard P, Lemieszczuk B, Baro F, Nouri K et al (2012) Ulipristal acetate versus leuprolide acetate for uterine fibroids. N Engl J Med 366(5):421–432. doi:10.​1056/​NEJMoa1103180 CrossRefPubMed
12.
go back to reference El Etreby MF, Liang Y, Wrenn RW, Schoenlein PV (1998) Additive effect of mifepristone and tamoxifen on apoptotic pathways in MCF-7 human breast cancer cells. Breast Cancer Res Treat 51(2):149–168CrossRefPubMed El Etreby MF, Liang Y, Wrenn RW, Schoenlein PV (1998) Additive effect of mifepristone and tamoxifen on apoptotic pathways in MCF-7 human breast cancer cells. Breast Cancer Res Treat 51(2):149–168CrossRefPubMed
13.
go back to reference Engman M, Skoog L, Soderqvist G, Gemzell-Danielsson K (2008) The effect of mifepristone on breast cell proliferation in premenopausal women evaluated through fine needle aspiration cytology. Hum Reprod 23(9):2072–2079. doi:10.1093/humrep/den228 CrossRefPubMed Engman M, Skoog L, Soderqvist G, Gemzell-Danielsson K (2008) The effect of mifepristone on breast cell proliferation in premenopausal women evaluated through fine needle aspiration cytology. Hum Reprod 23(9):2072–2079. doi:10.​1093/​humrep/​den228 CrossRefPubMed
16.
go back to reference Glasier AF, Cameron ST, Fine PM, Logan SJ, Casale W, Van Horn J, Sogor L et al (2010) Ulipristal acetate versus levonorgestrel for emergency contraception: a randomised non-inferiority trial and meta-analysis. Lancet 375(9714):555–562. doi:10.1016/s0140-6736(10)60101-8 CrossRefPubMed Glasier AF, Cameron ST, Fine PM, Logan SJ, Casale W, Van Horn J, Sogor L et al (2010) Ulipristal acetate versus levonorgestrel for emergency contraception: a randomised non-inferiority trial and meta-analysis. Lancet 375(9714):555–562. doi:10.​1016/​s0140-6736(10)60101-8 CrossRefPubMed
18.
go back to reference Han SJ, Tsai SY, Tsai MJ, O’Malley BW (2007) Distinct temporal and spatial activities of RU486 on progesterone receptor function in reproductive organs of ovariectomized mice. Endocrinology 148(5):2471–2486CrossRefPubMed Han SJ, Tsai SY, Tsai MJ, O’Malley BW (2007) Distinct temporal and spatial activities of RU486 on progesterone receptor function in reproductive organs of ovariectomized mice. Endocrinology 148(5):2471–2486CrossRefPubMed
19.
go back to reference Hopp TA, Weiss HL, Hilsenbeck SG, Cui Y, Allred DC, Horwitz KB, Fuqua SA (2004) Breast cancer patients with progesterone receptor PR-A-rich tumors have poorer disease-free survival rates. Clin Cancer Res 10(8):2751–2760CrossRefPubMed Hopp TA, Weiss HL, Hilsenbeck SG, Cui Y, Allred DC, Horwitz KB, Fuqua SA (2004) Breast cancer patients with progesterone receptor PR-A-rich tumors have poorer disease-free survival rates. Clin Cancer Res 10(8):2751–2760CrossRefPubMed
21.
go back to reference Huniadi CA, Pop OL, Antal TA, Stamatian F (2013) The effects of ulipristal on Bax/Bcl-2, cytochrome c, Ki-67 and cyclooxygenase-2 expression in a rat model with surgically induced endometriosis. Eur J Obstet Gynecol Reprod Biol 169(2):360–365. doi:10.1016/j.ejogrb.2013.03.022 CrossRefPubMed Huniadi CA, Pop OL, Antal TA, Stamatian F (2013) The effects of ulipristal on Bax/Bcl-2, cytochrome c, Ki-67 and cyclooxygenase-2 expression in a rat model with surgically induced endometriosis. Eur J Obstet Gynecol Reprod Biol 169(2):360–365. doi:10.​1016/​j.​ejogrb.​2013.​03.​022 CrossRefPubMed
22.
go back to reference Kamangar F, Dores GM, Anderson WF (2006) Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol 24(14):2137–2150. doi:10.1200/jco.2005.05.2308 CrossRefPubMed Kamangar F, Dores GM, Anderson WF (2006) Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol 24(14):2137–2150. doi:10.​1200/​jco.​2005.​05.​2308 CrossRefPubMed
23.
go back to reference Kariagina A, Aupperlee MD, Haslam SZ (2008) Progesterone receptor isoform functions in normal breast development and breast cancer. Crit Rev Eukaryot Gene Expr 18(1):11–33CrossRefPubMedPubMedCentral Kariagina A, Aupperlee MD, Haslam SZ (2008) Progesterone receptor isoform functions in normal breast development and breast cancer. Crit Rev Eukaryot Gene Expr 18(1):11–33CrossRefPubMedPubMedCentral
25.
go back to reference Khan JA, Tikad A, Fay M, Hamze A, Fagart J, Chabbert-Buffet N, Meduri G et al (2013) A new strategy for selective targeting of progesterone receptor with passive antagonists. Mol Endocrinol 27(6):909–924. doi:10.1210/me.2012-1328 CrossRefPubMed Khan JA, Tikad A, Fay M, Hamze A, Fagart J, Chabbert-Buffet N, Meduri G et al (2013) A new strategy for selective targeting of progesterone receptor with passive antagonists. Mol Endocrinol 27(6):909–924. doi:10.​1210/​me.​2012-1328 CrossRefPubMed
26.
go back to reference Klijn JG, Setyono Han B, Foekens JA (2000) Progesterone antagonists and progesterone receptor modulators in the treatment of breast cancer. Steroids 65(10–11):825–830CrossRefPubMed Klijn JG, Setyono Han B, Foekens JA (2000) Progesterone antagonists and progesterone receptor modulators in the treatment of breast cancer. Steroids 65(10–11):825–830CrossRefPubMed
29.
go back to reference Leonhardt SA, Edwards DP (2002) Mechanism of action of progesterone antagonists. Exp Biol Med (Maywood) 227(11):969–980 Leonhardt SA, Edwards DP (2002) Mechanism of action of progesterone antagonists. Exp Biol Med (Maywood) 227(11):969–980
32.
go back to reference Liang Y, Hou M, Kallab AM, Barrett JT, El Etreby F, Schoenlein PV (2003) Induction of antiproliferation and apoptosis in estrogen receptor negative MDA-231 human breast cancer cells by mifepristone and 4-hydroxytamoxifen combination therapy: a role for TGFbeta1. Int J Oncol 23(2):369–380PubMed Liang Y, Hou M, Kallab AM, Barrett JT, El Etreby F, Schoenlein PV (2003) Induction of antiproliferation and apoptosis in estrogen receptor negative MDA-231 human breast cancer cells by mifepristone and 4-hydroxytamoxifen combination therapy: a role for TGFbeta1. Int J Oncol 23(2):369–380PubMed
33.
go back to reference Luo X, Yin P, Js Coon V, Cheng YH, Wiehle RD, Bulun SE (2010) The selective progesterone receptor modulator CDB4124 inhibits proliferation and induces apoptosis in uterine leiomyoma cells. Fertil Steril 93(8):2668–2673CrossRefPubMedPubMedCentral Luo X, Yin P, Js Coon V, Cheng YH, Wiehle RD, Bulun SE (2010) The selective progesterone receptor modulator CDB4124 inhibits proliferation and induces apoptosis in uterine leiomyoma cells. Fertil Steril 93(8):2668–2673CrossRefPubMedPubMedCentral
34.
go back to reference Madauss KP, Grygielko ET, Deng SJ, Sulpizio AC, Stanley TB, Wu C, Short SA et al (2007) A structural and in vitro characterization of asoprisnil: a selective progesterone receptor modulator. Mol Endocrinol 21(5):1066–1081CrossRefPubMed Madauss KP, Grygielko ET, Deng SJ, Sulpizio AC, Stanley TB, Wu C, Short SA et al (2007) A structural and in vitro characterization of asoprisnil: a selective progesterone receptor modulator. Mol Endocrinol 21(5):1066–1081CrossRefPubMed
36.
go back to reference Marangoni E, Vincent-Salomon A, Auger N, Degeorges A, Assayag F, de Cremoux P, de Plater L et al (2007) A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clin Cancer Res 13(13):3989–3998CrossRefPubMed Marangoni E, Vincent-Salomon A, Auger N, Degeorges A, Assayag F, de Cremoux P, de Plater L et al (2007) A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clin Cancer Res 13(13):3989–3998CrossRefPubMed
38.
go back to reference Michna H, Schneider MR, Nishino Y, el Etreby MF (1989) Antitumor activity of the antiprogestins ZK 98.299 and RU 38.486 in hormone dependent rat and mouse mammary tumors: mechanistic studies. Breast Cancer Res Treat 14(3):275–288CrossRefPubMed Michna H, Schneider MR, Nishino Y, el Etreby MF (1989) Antitumor activity of the antiprogestins ZK 98.299 and RU 38.486 in hormone dependent rat and mouse mammary tumors: mechanistic studies. Breast Cancer Res Treat 14(3):275–288CrossRefPubMed
39.
go back to reference Mote PA, Bartow S, Tran N, Clarke CL (2002) Loss of co-ordinate expression of progesterone receptors A and B is an early event in breast carcinogenesis. Breast Cancer Res Treat 72(2):163–172CrossRefPubMed Mote PA, Bartow S, Tran N, Clarke CL (2002) Loss of co-ordinate expression of progesterone receptors A and B is an early event in breast carcinogenesis. Breast Cancer Res Treat 72(2):163–172CrossRefPubMed
40.
go back to reference Mote PA, Gompel A, Howe C, Hilton HN, Sestak I, Cuzick J, Dowsett M et al (2015) Progesterone receptor A predominance is a discriminator of benefit from endocrine therapy in the ATAC trial. Breast Cancer Res Treat 151(2):309–318. doi:10.1007/s10549-015-3397-0 CrossRefPubMed Mote PA, Gompel A, Howe C, Hilton HN, Sestak I, Cuzick J, Dowsett M et al (2015) Progesterone receptor A predominance is a discriminator of benefit from endocrine therapy in the ATAC trial. Breast Cancer Res Treat 151(2):309–318. doi:10.​1007/​s10549-015-3397-0 CrossRefPubMed
41.
go back to reference Mote PA, Leary JA, Avery KA, Sandelin K, Chenevix-Trench G, Kirk JA, Clarke CL (2004) Germ-line mutations in BRCA1 or BRCA2 in the normal breast are associated with altered expression of estrogen-responsive proteins and the predominance of progesterone receptor A. Genes Chromosom Cancer 39(3):236–248CrossRefPubMed Mote PA, Leary JA, Avery KA, Sandelin K, Chenevix-Trench G, Kirk JA, Clarke CL (2004) Germ-line mutations in BRCA1 or BRCA2 in the normal breast are associated with altered expression of estrogen-responsive proteins and the predominance of progesterone receptor A. Genes Chromosom Cancer 39(3):236–248CrossRefPubMed
42.
go back to reference Nemati F, Livartowski A, De Cremoux P, Bourgeois Y, Arvelo F, Pouillart P, Poupon MF (2000) Distinctive potentiating effects of cisplatin and/or ifosfamide combined with etoposide in human small cell lung carcinoma xenografts. Clin Cancer Res 6(5):2075–2086PubMed Nemati F, Livartowski A, De Cremoux P, Bourgeois Y, Arvelo F, Pouillart P, Poupon MF (2000) Distinctive potentiating effects of cisplatin and/or ifosfamide combined with etoposide in human small cell lung carcinoma xenografts. Clin Cancer Res 6(5):2075–2086PubMed
45.
go back to reference Olopade OI, Adeyanju MO, Safa AR, Hagos F, Mick R, Thompson CB, Recant WM (1997) Overexpression of BCL-x protein in primary breast cancer is associated with high tumor grade and nodal metastases. Cancer Journal from Scientific American 3(4):230–237PubMed Olopade OI, Adeyanju MO, Safa AR, Hagos F, Mick R, Thompson CB, Recant WM (1997) Overexpression of BCL-x protein in primary breast cancer is associated with high tumor grade and nodal metastases. Cancer Journal from Scientific American 3(4):230–237PubMed
46.
go back to reference Oue T, Fukuzawa M, Kamata S, Okada A (1995) Immunohistochemical analysis of proliferating cell nuclear antigen expression in human neuroblastoma. J Pediatr Surg 30(4):528–532CrossRefPubMed Oue T, Fukuzawa M, Kamata S, Okada A (1995) Immunohistochemical analysis of proliferating cell nuclear antigen expression in human neuroblastoma. J Pediatr Surg 30(4):528–532CrossRefPubMed
47.
48.
go back to reference Poole AJ, Li Y, Kim Y, Lin SC, Lee WH, Lee EY (2006) Prevention of Brca1-mediated mammary tumorigenesis in mice by a progesterone antagonist. Science 314(5804):1467–1470CrossRefPubMed Poole AJ, Li Y, Kim Y, Lin SC, Lee WH, Lee EY (2006) Prevention of Brca1-mediated mammary tumorigenesis in mice by a progesterone antagonist. Science 314(5804):1467–1470CrossRefPubMed
49.
51.
go back to reference Richer JK, Jacobsen BM, Manning NG, Abel MG, Wolf DM, Horwitz KB (2002) Differential gene regulation by the two progesterone receptor isoforms in human breast cancer cells. J Biol Chem 277(7):5209–5218CrossRefPubMed Richer JK, Jacobsen BM, Manning NG, Abel MG, Wolf DM, Horwitz KB (2002) Differential gene regulation by the two progesterone receptor isoforms in human breast cancer cells. J Biol Chem 277(7):5209–5218CrossRefPubMed
53.
go back to reference Schneider CC, Gibb RK, Taylor DD, Wan T, Gercel-Taylor C (1998) Inhibition of endometrial cancer cell lines by mifepristone (RU 486). J Soc Gynecol Investig 5(6):334–338CrossRefPubMed Schneider CC, Gibb RK, Taylor DD, Wan T, Gercel-Taylor C (1998) Inhibition of endometrial cancer cell lines by mifepristone (RU 486). J Soc Gynecol Investig 5(6):334–338CrossRefPubMed
55.
go back to reference Wargon V, Riggio M, Giulianelli S, Sequeira GR, Rojas P, May M, Polo ML et al (2015) Progestin and antiprogestin responsiveness in breast cancer is driven by the PRA/PRB ratio via AIB1 or SMRT recruitment to the CCND1 and MYC promoters. Int J Cancer 136(11):2680–2692. doi:10.1002/ijc.29304 CrossRefPubMed Wargon V, Riggio M, Giulianelli S, Sequeira GR, Rojas P, May M, Polo ML et al (2015) Progestin and antiprogestin responsiveness in breast cancer is driven by the PRA/PRB ratio via AIB1 or SMRT recruitment to the CCND1 and MYC promoters. Int J Cancer 136(11):2680–2692. doi:10.​1002/​ijc.​29304 CrossRefPubMed
58.
go back to reference Wiehle RD, Christov K, Mehta R (2007) Anti-progestins suppress the growth of established tumors induced by 7,12-dimethylbenz(a)anthracene: comparison between RU486 and a new 21-substituted-19-nor-progestin. Oncol Rep 18(1):167–174PubMed Wiehle RD, Christov K, Mehta R (2007) Anti-progestins suppress the growth of established tumors induced by 7,12-dimethylbenz(a)anthracene: comparison between RU486 and a new 21-substituted-19-nor-progestin. Oncol Rep 18(1):167–174PubMed
59.
go back to reference Wiehle R, Lantvit D, Yamada T, Christov K (2011) CDB-4124, a progesterone receptor modulator, inhibits mammary carcinogenesis by suppressing cell proliferation and inducing apoptosis. Cancer Prev Res 4(3):414–424CrossRef Wiehle R, Lantvit D, Yamada T, Christov K (2011) CDB-4124, a progesterone receptor modulator, inhibits mammary carcinogenesis by suppressing cell proliferation and inducing apoptosis. Cancer Prev Res 4(3):414–424CrossRef
60.
go back to reference Xu Q, Takekida S, Ohara N, Chen W, Sitruk-Ware R, Johansson ED, Maruo T (2005) Progesterone receptor modulator CDB-2914 down-regulates proliferative cell nuclear antigen and Bcl-2 protein expression and up-regulates caspase-3 and poly(adenosine 5′-diphosphate-ribose) polymerase expression in cultured human uterine leiomyoma cells. J Clin Endocrinol Metab 90(2):953–961. doi:10.1210/jc.2004-1569 CrossRefPubMed Xu Q, Takekida S, Ohara N, Chen W, Sitruk-Ware R, Johansson ED, Maruo T (2005) Progesterone receptor modulator CDB-2914 down-regulates proliferative cell nuclear antigen and Bcl-2 protein expression and up-regulates caspase-3 and poly(adenosine 5′-diphosphate-ribose) polymerase expression in cultured human uterine leiomyoma cells. J Clin Endocrinol Metab 90(2):953–961. doi:10.​1210/​jc.​2004-1569 CrossRefPubMed
61.
go back to reference Yun BS, Seong SJ, Cha DH, Kim JY, Kim ML, Shim JY, Park JE (2015) Changes in proliferating and apoptotic markers of leiomyoma following treatment with a selective progesterone receptor modulator or gonadotropin-releasing hormone agonist. Eur J Obstet Gynecol Reprod Biol 191:62–67. doi:10.1016/j.ejogrb.2015.05.022 CrossRefPubMed Yun BS, Seong SJ, Cha DH, Kim JY, Kim ML, Shim JY, Park JE (2015) Changes in proliferating and apoptotic markers of leiomyoma following treatment with a selective progesterone receptor modulator or gonadotropin-releasing hormone agonist. Eur J Obstet Gynecol Reprod Biol 191:62–67. doi:10.​1016/​j.​ejogrb.​2015.​05.​022 CrossRefPubMed
Metadata
Title
Anti-Tumoral Effects of Anti-Progestins in a Patient-Derived Breast Cancer Xenograft Model
Authors
Nathalie Esber
Clément Cherbonnier
Michèle Resche-Rigon
Abdallah Hamze
Mouad Alami
Jérôme Fagart
Hugues Loosfelt
Marc Lombès
Nathalie Chabbert-Buffet
Publication date
01-04-2016
Publisher
Springer US
Published in
Discover Oncology / Issue 2/2016
Print ISSN: 1868-8497
Electronic ISSN: 2730-6011
DOI
https://doi.org/10.1007/s12672-016-0255-4

Other articles of this Issue 2/2016

Discover Oncology 2/2016 Go to the issue