Skip to main content
Top
Published in: Journal of Maxillofacial and Oral Surgery 1/2021

01-03-2021 | Review Paper

Surface Roughness of Dental Implant and Osseointegration

Author: Geraldo Roberto Martins Matos

Published in: Journal of Maxillofacial and Oral Surgery | Issue 1/2021

Login to get access

Abstract

Introduction

Dental implants are a usual treatment for the loss of teeth. The success of this therapy is due to the predictability, safety and longevity of the bone–implant interface. Dental implant surface characteristics like roughness, chemical constitution, and mechanical factors can contribute to the early osseointegration. The aim of the present article is to perform a review of the literature on surface roughness of dental implant and osseointegration.

Methodology

This work is a narrative review of some aspects of surface roughness of dental implant and osseointegration.

Conclusion

Despite technological advancement in the biomaterials field, the ideal surface roughness for osseointegration still remains unclear. In this study about surface nanoroughness of dental implant and osseointegration, the clinical relevance is yet unknown. Innovative findings on nanoroughness are valuable in the fields of dental implantology, maxillofacial or orthopedic implant surfaces and also on cardiovascular implants in permanent contact with patient’s blood.
Literature
1.
go back to reference Albrektsson T, Wennerberg A (2019) On osseointegration in relation to implant surfaces. Clin Implant Dent Relat Res. 21:4–7PubMedCrossRef Albrektsson T, Wennerberg A (2019) On osseointegration in relation to implant surfaces. Clin Implant Dent Relat Res. 21:4–7PubMedCrossRef
2.
go back to reference American Academy of Implant Dentistry (1986) Glossary of implant terms. J Oral Implantol 12:284–294 American Academy of Implant Dentistry (1986) Glossary of implant terms. J Oral Implantol 12:284–294
3.
go back to reference Albrektsson T, Zarb GA (1993) Current interpretations of the osseointegrated response: clinical significance. Int J Prosthodont 6:95–105PubMed Albrektsson T, Zarb GA (1993) Current interpretations of the osseointegrated response: clinical significance. Int J Prosthodont 6:95–105PubMed
4.
go back to reference Matos GRM, Godoy MF (2015) Factors associated with long-term stability of dental implants. Full Dent Sci 6:194–198 Matos GRM, Godoy MF (2015) Factors associated with long-term stability of dental implants. Full Dent Sci 6:194–198
5.
go back to reference Chrcanovic BR, Albrektsson T, Wennerberg A (2014) Reasons for failures of oral implants. J Oral Rehabil 41:443–476PubMedCrossRef Chrcanovic BR, Albrektsson T, Wennerberg A (2014) Reasons for failures of oral implants. J Oral Rehabil 41:443–476PubMedCrossRef
6.
go back to reference Smeets R, Henningsen A, Jung O, Heiland M, Hammächer C, Stein JM (2014) Definition, etiology, prevention and treatment of peri-implantitis: a review. Head Face Med 10:34PubMedPubMedCentralCrossRef Smeets R, Henningsen A, Jung O, Heiland M, Hammächer C, Stein JM (2014) Definition, etiology, prevention and treatment of peri-implantitis: a review. Head Face Med 10:34PubMedPubMedCentralCrossRef
7.
go back to reference Gómez-de Diego R, Mang-de la Rosa R, Romero-Pérez M-J, Cutando-Soriano A, López-Valverde-Centeno A (2014) Indications and contraindications of dental implants in medically compromised patients: update. Med Oral Patol Oral Cir Bucal 19:483–489CrossRef Gómez-de Diego R, Mang-de la Rosa R, Romero-Pérez M-J, Cutando-Soriano A, López-Valverde-Centeno A (2014) Indications and contraindications of dental implants in medically compromised patients: update. Med Oral Patol Oral Cir Bucal 19:483–489CrossRef
8.
go back to reference Dohan EDM, Coelho PG, Kang BS, Sul YT, Albrektsson T (2010) Classification of osseointegrated implant surfaces: materials, chemistry and topography. Trends Biotechnol 28:198–206CrossRef Dohan EDM, Coelho PG, Kang BS, Sul YT, Albrektsson T (2010) Classification of osseointegrated implant surfaces: materials, chemistry and topography. Trends Biotechnol 28:198–206CrossRef
9.
go back to reference Junker R, Dimakis A, Thoneick M, Jansen JA (2009) Effects of implant surface coatings and composition on bone integration: a systematic review. Clin Oral Implants Res 20:185–206PubMedCrossRef Junker R, Dimakis A, Thoneick M, Jansen JA (2009) Effects of implant surface coatings and composition on bone integration: a systematic review. Clin Oral Implants Res 20:185–206PubMedCrossRef
10.
go back to reference Bagno A, Di Bello C (2004) Surface treatments and roughness properties of Ti-based biomaterials. J Mater Sci Mater Med 15:935–949PubMedCrossRef Bagno A, Di Bello C (2004) Surface treatments and roughness properties of Ti-based biomaterials. J Mater Sci Mater Med 15:935–949PubMedCrossRef
11.
go back to reference Hotchkiss KM, Sowers KT, Olivares-Navarrete R (2019) Novel in vitro comparative model of osteogenic and inflammatory cell response to dental implants. Dent Mater 35:176–184PubMedCrossRef Hotchkiss KM, Sowers KT, Olivares-Navarrete R (2019) Novel in vitro comparative model of osteogenic and inflammatory cell response to dental implants. Dent Mater 35:176–184PubMedCrossRef
12.
go back to reference Wennerberg A, Albrektsson T (2009) Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res. 20(Suppl. 4):172–184PubMedCrossRef Wennerberg A, Albrektsson T (2009) Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res. 20(Suppl. 4):172–184PubMedCrossRef
13.
go back to reference Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y (2007) Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 23:844–854PubMedCrossRef Le Guéhennec L, Soueidan A, Layrolle P, Amouriq Y (2007) Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 23:844–854PubMedCrossRef
14.
go back to reference Ma Q-L, Zhao L-Z, Liu R-R et al (2014) Improved implant osseointegration of a nanostructured titanium surface via mediation of macrophage polarization. Biomaterials 35:9853–9867PubMedCrossRef Ma Q-L, Zhao L-Z, Liu R-R et al (2014) Improved implant osseointegration of a nanostructured titanium surface via mediation of macrophage polarization. Biomaterials 35:9853–9867PubMedCrossRef
15.
go back to reference Zhao G, Schwartz Z, Wieland M et al (2005) High surface energy enhances cell response to titanium substrate microstructure. J Biomed Mater Res A. 74:49–58PubMedCrossRef Zhao G, Schwartz Z, Wieland M et al (2005) High surface energy enhances cell response to titanium substrate microstructure. J Biomed Mater Res A. 74:49–58PubMedCrossRef
16.
go back to reference Berglundh T, Abrahamsson I, Albouy J-P, Lindhe J (2007) Bone healing at implants with a fluoride-modified surface: an experimental study in dogs. Clin Oral Implants Res 18:147–152PubMedCrossRef Berglundh T, Abrahamsson I, Albouy J-P, Lindhe J (2007) Bone healing at implants with a fluoride-modified surface: an experimental study in dogs. Clin Oral Implants Res 18:147–152PubMedCrossRef
17.
go back to reference Coelho PG, Jimbo R, Tovar N, Bonfante EA (2015) Osseointegration: hierarchical designing encompassing the macrometer, micrometer, and nanometer length scales. Dent Mater 31:37–52PubMedCrossRef Coelho PG, Jimbo R, Tovar N, Bonfante EA (2015) Osseointegration: hierarchical designing encompassing the macrometer, micrometer, and nanometer length scales. Dent Mater 31:37–52PubMedCrossRef
18.
go back to reference Buser D, Janner SFM, Wittneben J-G, Brägger U, Ramseier CA, Salvi GE (2012) 10-Year survival and success rates of 511 titanium implants with a sandblasted and acid-etched surface: a retrospective study in 303 partially edentulous patients. Clin Implant Dent Relat Res. 14:839–851PubMedCrossRef Buser D, Janner SFM, Wittneben J-G, Brägger U, Ramseier CA, Salvi GE (2012) 10-Year survival and success rates of 511 titanium implants with a sandblasted and acid-etched surface: a retrospective study in 303 partially edentulous patients. Clin Implant Dent Relat Res. 14:839–851PubMedCrossRef
19.
go back to reference Esposito M, Ardebili Y, Worthington HV (2014) Interventions for replacing missing teeth: different types of dental implants. Cochrane Database Syst Rev. 7:CD003815 Esposito M, Ardebili Y, Worthington HV (2014) Interventions for replacing missing teeth: different types of dental implants. Cochrane Database Syst Rev. 7:CD003815
21.
go back to reference Rupp F, Scheideler L, Rehbein D, Axmann D, Geis-Gerstorfer J (2004) Roughness induced dynamic changes of wettability of acid etched titanium implant modifications. Biomaterials 25:1429–1438PubMedCrossRef Rupp F, Scheideler L, Rehbein D, Axmann D, Geis-Gerstorfer J (2004) Roughness induced dynamic changes of wettability of acid etched titanium implant modifications. Biomaterials 25:1429–1438PubMedCrossRef
22.
go back to reference Wennerberg A, Albrektsson T, Chrcanovic B (2018) Long-term clinical outcome of implants with different surface modifications. Eur J Oral Implantol. 11(suppl 1):S123–S136PubMed Wennerberg A, Albrektsson T, Chrcanovic B (2018) Long-term clinical outcome of implants with different surface modifications. Eur J Oral Implantol. 11(suppl 1):S123–S136PubMed
23.
go back to reference Fischer K, Stenberg T (2012) Prospective 10-year cohort study based on a randomized controlled trial (RCT) on implant supported full-arch maxillary prostheses. Part 1: sandblasted and acid-etched implants and mucosal tissue. Clin Implant Dent Relat Res 14:808–815PubMedCrossRef Fischer K, Stenberg T (2012) Prospective 10-year cohort study based on a randomized controlled trial (RCT) on implant supported full-arch maxillary prostheses. Part 1: sandblasted and acid-etched implants and mucosal tissue. Clin Implant Dent Relat Res 14:808–815PubMedCrossRef
25.
go back to reference Mendonça G, Mendonça DBS, Aragão FJL, Cooper LF (2008) Advancing dental implant surface technology: from micron- to nanotopography. Biomaterials 29:3822–3835PubMedCrossRef Mendonça G, Mendonça DBS, Aragão FJL, Cooper LF (2008) Advancing dental implant surface technology: from micron- to nanotopography. Biomaterials 29:3822–3835PubMedCrossRef
26.
go back to reference Wennerberg A, Galli S, Albrektsson T (2011) Current knowledge about the hydrophilic and nanostructured SLActive surface. Clin Cosmet Investig Dent 3:59–67PubMedPubMedCentralCrossRef Wennerberg A, Galli S, Albrektsson T (2011) Current knowledge about the hydrophilic and nanostructured SLActive surface. Clin Cosmet Investig Dent 3:59–67PubMedPubMedCentralCrossRef
27.
go back to reference Dohan Ehrenfest DM, Vazquez L, Park Y-J, Sammartino G, Bernard J-P (2011) Identification card and codification of the chemical and morphological characteristics of 14 dental implant surfaces. J Oral Implantol 37:525–542PubMedCrossRef Dohan Ehrenfest DM, Vazquez L, Park Y-J, Sammartino G, Bernard J-P (2011) Identification card and codification of the chemical and morphological characteristics of 14 dental implant surfaces. J Oral Implantol 37:525–542PubMedCrossRef
28.
go back to reference Webster TJ, Ejiofor JU (2004) Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials 25:4731–4739PubMedCrossRef Webster TJ, Ejiofor JU (2004) Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials 25:4731–4739PubMedCrossRef
29.
go back to reference Alghamdi HS (2018) Methods to improve osseointegration of dental implants in low quality (type-IV) bone: an overview. J Funct Biomater. 9:pii:E7CrossRef Alghamdi HS (2018) Methods to improve osseointegration of dental implants in low quality (type-IV) bone: an overview. J Funct Biomater. 9:pii:E7CrossRef
30.
31.
go back to reference Elias CN, Meirelles LA (2010) Improving osseointegration of dental implants. Expert Rev Med Devices 7:241–256PubMedCrossRef Elias CN, Meirelles LA (2010) Improving osseointegration of dental implants. Expert Rev Med Devices 7:241–256PubMedCrossRef
32.
go back to reference Wennerberg A, Albrektsson T, Lindhe J (2003) Surface topography of titanium implants. Clin Periodontol Implant Dent 4:821–825 Wennerberg A, Albrektsson T, Lindhe J (2003) Surface topography of titanium implants. Clin Periodontol Implant Dent 4:821–825
33.
go back to reference Elias CN, Rocha FA, Nascimento AL, Coelho PG (2012) Influence of implant shape, surface morphology, surgical technique and bone quality on the primary stability of dental implants. J Mech Behav Biomed Mater 16:169–180PubMedCrossRef Elias CN, Rocha FA, Nascimento AL, Coelho PG (2012) Influence of implant shape, surface morphology, surgical technique and bone quality on the primary stability of dental implants. J Mech Behav Biomed Mater 16:169–180PubMedCrossRef
34.
go back to reference Andrukhov O, Huber R, Shi B et al (2016) Proliferation, behavior, and differentiation of osteoblasts on surfaces of different microroughness. Dent Mater 32:1374–1384PubMedCrossRef Andrukhov O, Huber R, Shi B et al (2016) Proliferation, behavior, and differentiation of osteoblasts on surfaces of different microroughness. Dent Mater 32:1374–1384PubMedCrossRef
35.
go back to reference Chrcanovic BR, Albrektsson T, Wennerberg A (2016) Turned versus anodised dental implants: a meta-analysis. J Oral Maxillofac Surg 74:1949–1964PubMedCrossRef Chrcanovic BR, Albrektsson T, Wennerberg A (2016) Turned versus anodised dental implants: a meta-analysis. J Oral Maxillofac Surg 74:1949–1964PubMedCrossRef
36.
go back to reference Siegel RW, Fougere GE (1995) Mechanical properties of nanophase metals. Nanostruct Mater 6:205–216CrossRef Siegel RW, Fougere GE (1995) Mechanical properties of nanophase metals. Nanostruct Mater 6:205–216CrossRef
37.
go back to reference Song Y, Ju Y, Morita Y, Song G (2013) Effect of the nanostructure of porous alumina on growth behavior of MG63 osteoblast-like cells. J Biosci Bioeng 116:509–515PubMedCrossRef Song Y, Ju Y, Morita Y, Song G (2013) Effect of the nanostructure of porous alumina on growth behavior of MG63 osteoblast-like cells. J Biosci Bioeng 116:509–515PubMedCrossRef
38.
go back to reference Li X, Wang L, Fan Y, Feng Q, Cui FZ, Watari F (2013) Nanostructured scaffolds for bone tissue engineering. J Biomed Mater Res A. 101:2424–2435PubMedCrossRef Li X, Wang L, Fan Y, Feng Q, Cui FZ, Watari F (2013) Nanostructured scaffolds for bone tissue engineering. J Biomed Mater Res A. 101:2424–2435PubMedCrossRef
39.
go back to reference Wennerberg A, Svanborg Melin L, Berner S, Andersson M (2013) Spontaneously formed nanostructures on titanium surfaces. Clin Oral Implants Res. 24:203–209PubMedCrossRef Wennerberg A, Svanborg Melin L, Berner S, Andersson M (2013) Spontaneously formed nanostructures on titanium surfaces. Clin Oral Implants Res. 24:203–209PubMedCrossRef
40.
go back to reference Jindal S, Bansal R, Singh BP et al (2014) Enhanced osteoblast proliferation and corrosion resistance of commercially pure titanium through surface nanostructuring by ultrasonic shot peening and stress relieving. J Oral Implantol. 40 Spec No:347–355PubMedCrossRef Jindal S, Bansal R, Singh BP et al (2014) Enhanced osteoblast proliferation and corrosion resistance of commercially pure titanium through surface nanostructuring by ultrasonic shot peening and stress relieving. J Oral Implantol. 40 Spec No:347–355PubMedCrossRef
41.
go back to reference Wennerberg A, Jimbo R, Stübinger S, Obrecht M, Dard M, Berner S (2014) Nanostructures and hydrophilicity influence osseointegration: a biomechanical study in the rabbit tibia. Clin Oral Impl Res 25:1041–1050CrossRef Wennerberg A, Jimbo R, Stübinger S, Obrecht M, Dard M, Berner S (2014) Nanostructures and hydrophilicity influence osseointegration: a biomechanical study in the rabbit tibia. Clin Oral Impl Res 25:1041–1050CrossRef
42.
go back to reference Traini T, Murmura G, Sinjari B et al (2018) The surface anodization of titanium dental implants improves blood clot formation followed by osseointegration. Coatings 8:252CrossRef Traini T, Murmura G, Sinjari B et al (2018) The surface anodization of titanium dental implants improves blood clot formation followed by osseointegration. Coatings 8:252CrossRef
43.
go back to reference Subramani K, Lavenus S, Rozé J, Louarn G, Layrolle P (2018) Impact of nanotechnology on dental implants. In: Subramani K, Ahmed W (eds) Emerging nanotechnologies in dentistry, 2nd edn. Elsevier, New York, pp 71–83 Subramani K, Lavenus S, Rozé J, Louarn G, Layrolle P (2018) Impact of nanotechnology on dental implants. In: Subramani K, Ahmed W (eds) Emerging nanotechnologies in dentistry, 2nd edn. Elsevier, New York, pp 71–83
44.
go back to reference Yazdani J, Ahmadian E, Sharifi S, Shahi S, Maleki Dizaj S (2018) A short view on nanohydroxyapatite as coating of dental implants. Biomed Pharmacother 105:553–557PubMedCrossRef Yazdani J, Ahmadian E, Sharifi S, Shahi S, Maleki Dizaj S (2018) A short view on nanohydroxyapatite as coating of dental implants. Biomed Pharmacother 105:553–557PubMedCrossRef
45.
go back to reference Rupp F, Liang L, Geis-Gerstorfer J, Scheideler L, Hüttig F (2018) Surface characteristics of dental implants: a review. Dent Mater 34:40–57PubMedCrossRef Rupp F, Liang L, Geis-Gerstorfer J, Scheideler L, Hüttig F (2018) Surface characteristics of dental implants: a review. Dent Mater 34:40–57PubMedCrossRef
Metadata
Title
Surface Roughness of Dental Implant and Osseointegration
Author
Geraldo Roberto Martins Matos
Publication date
01-03-2021
Publisher
Springer India
Published in
Journal of Maxillofacial and Oral Surgery / Issue 1/2021
Print ISSN: 0972-8279
Electronic ISSN: 0974-942X
DOI
https://doi.org/10.1007/s12663-020-01437-5

Other articles of this Issue 1/2021

Journal of Maxillofacial and Oral Surgery 1/2021 Go to the issue