Skip to main content
Top
Published in: World Journal of Pediatrics 2/2020

01-04-2020 | Streptococci | Original Article

Intestinal microbiome analysis demonstrates azithromycin post-treatment effects improve when combined with lactulose

Authors: Elpiniki Nikolaou, Elena Kamilari, Dragana Savkov, Artemy Sergeev, Irina Zakharova, Paris Vogazianos, Marios Tomazou, Athos Antoniades, Christos Shammas

Published in: World Journal of Pediatrics | Issue 2/2020

Login to get access

Abstract

Background

Next-generation sequencing has revolutionized our perspective on the gut microbiome composition, revealing the true extent of the adverse effects of antibiotics. The impact of antibiotic treatment on gut microbiota must be considered and researched to provide grounds for establishing new treatment strategies that are less devastating on commensal bacteria. This study investigates the impact on gut microbiome when a commonly used antibiotic, azithromycin is administered, as well as uncovers the benefits induced when it is used in combination with lactulose, a prebiotic known to enhance the proliferation of commensal microbes.

Methods

16S rRNA gene sequencing analysis of stool samples obtained from 87 children treated with azithromycin in combination with or without lactulose have been determined. Children’s gut microbial profile was established at the pre- and post-treatment stage.

Results

Azithromycin caused an increase in the relative abundance of opportunistic pathogens such as Streptococcus that was evident 60 days after treatment. While few days after treatment, children who also received lactulose started to show a higher relative abundance of saccharolytic bacteria such as Lactobacillus, Enterococcus, Anaerostipes, Blautia and Roseburia, providing a protective role against opportunistic pathogens. In addition, azithromycin-prebiotic combination was able to provide a phylogenetic profile more similar to the pre-treatment stage.

Conclusion

It is suggested that during azithromycin treatment, lactulose is able to reinstate the microbiome equilibrium much faster as it promotes saccharolytic microbes and provides a homeostatic effect that minimizes the opportunistic pathogen colonization.
Appendix
Available only for authorised users
Literature
1.
go back to reference Youngster I, Avorn J, Belleudi V, Cantarutti A, Diez-Domingo J, Kirchmayer U, et al. Antibiotic use in children-a cross-national analysis of 6 countries. J Pediatr. 2017;182:239–44.e1.CrossRef Youngster I, Avorn J, Belleudi V, Cantarutti A, Diez-Domingo J, Kirchmayer U, et al. Antibiotic use in children-a cross-national analysis of 6 countries. J Pediatr. 2017;182:239–44.e1.CrossRef
3.
go back to reference Rau M, Rehman A, Dittrich M, Groen AK, Hermanns HM, Seyfried F, et al. Fecal SCFAs and SCFA-producing bacteria in gut microbiome of human NAFLD as a putative link to systemic T-cell activation and advanced disease. United Eur Gastroenterol J. 2018;6:1496–507.CrossRef Rau M, Rehman A, Dittrich M, Groen AK, Hermanns HM, Seyfried F, et al. Fecal SCFAs and SCFA-producing bacteria in gut microbiome of human NAFLD as a putative link to systemic T-cell activation and advanced disease. United Eur Gastroenterol J. 2018;6:1496–507.CrossRef
4.
go back to reference Hollister EB, Riehle K, Luna RA, Weidler EM, Rubio-Gonzales M, Mistretta TA, et al. Structure and function of the healthy pre-adolescent pediatric gut microbiome. Microbiome. 2015;3:36.CrossRefPubMedPubMedCentral Hollister EB, Riehle K, Luna RA, Weidler EM, Rubio-Gonzales M, Mistretta TA, et al. Structure and function of the healthy pre-adolescent pediatric gut microbiome. Microbiome. 2015;3:36.CrossRefPubMedPubMedCentral
5.
go back to reference Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H, et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med. 2016;8:343ra82. Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H, et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med. 2016;8:343ra82.
6.
go back to reference Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4554–611.CrossRefPubMed Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4554–611.CrossRefPubMed
7.
go back to reference Jernberg C, Lofmark S, Edlund C, Jansson JK. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 2007;1:56–66.CrossRefPubMed Jernberg C, Lofmark S, Edlund C, Jansson JK. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 2007;1:56–66.CrossRefPubMed
8.
go back to reference Hong W, Si T, Zhen Y, Xiu Y, Guo Z. Impact of early-life antibiotic use on gut microbiota of infants. J Microb Biochem Technol. 2017;9:227–31. Hong W, Si T, Zhen Y, Xiu Y, Guo Z. Impact of early-life antibiotic use on gut microbiota of infants. J Microb Biochem Technol. 2017;9:227–31.
10.
go back to reference Korpela K, Salonen A, Virta LJ, Kekkonen RA, Forslund K, Bork P, et al. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nat Commun. 2016;7:10410.CrossRefPubMedPubMedCentral Korpela K, Salonen A, Virta LJ, Kekkonen RA, Forslund K, Bork P, et al. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nat Commun. 2016;7:10410.CrossRefPubMedPubMedCentral
11.
go back to reference Oldenburg CE, Sie A, Coulibaly B, Ouermi L, Dah C, Tapsoba C, et al. Effect of commonly used pediatric antibiotics on gut microbial diversity in preschool children in Burkina Faso: a randomized clinical trial. Open Forum Infect Dis. 2018;5:ofy289. Oldenburg CE, Sie A, Coulibaly B, Ouermi L, Dah C, Tapsoba C, et al. Effect of commonly used pediatric antibiotics on gut microbial diversity in preschool children in Burkina Faso: a randomized clinical trial. Open Forum Infect Dis. 2018;5:ofy289.
12.
go back to reference Doan T, Arzika AM, Ray KJ, Cotter SY, Kim J, Maliki R, et al. Gut microbial diversity in antibiotic-naive children after systemic antibiotic exposure: a randomized controlled trial. Clin Infect Dis. 2017;64:1147–53.CrossRefPubMedPubMedCentral Doan T, Arzika AM, Ray KJ, Cotter SY, Kim J, Maliki R, et al. Gut microbial diversity in antibiotic-naive children after systemic antibiotic exposure: a randomized controlled trial. Clin Infect Dis. 2017;64:1147–53.CrossRefPubMedPubMedCentral
13.
go back to reference Arrieta MC, Stiemsma LT, Amenyogbe N, Brown EM, Finlay B. The intestinal microbiome in early life: health and disease. Frontiers Immunol. 2014;5:427.CrossRef Arrieta MC, Stiemsma LT, Amenyogbe N, Brown EM, Finlay B. The intestinal microbiome in early life: health and disease. Frontiers Immunol. 2014;5:427.CrossRef
14.
go back to reference Azad MB, Bridgman SL, Becker AB, Kozyrskyj AL. Infant antibiotic exposure and the development of childhood overweight and central adiposity. Int J Obes (Lond). 2014;38:1290–8.CrossRef Azad MB, Bridgman SL, Becker AB, Kozyrskyj AL. Infant antibiotic exposure and the development of childhood overweight and central adiposity. Int J Obes (Lond). 2014;38:1290–8.CrossRef
15.
go back to reference Korpela K, Salonen A, Virta LJ, Kekkonen RA, de Vos WM. Association of early-life antibiotic use and protective effects of breastfeeding: role of the intestinal microbiota. JAMA Pediatr. 2016;170:750–7.CrossRefPubMed Korpela K, Salonen A, Virta LJ, Kekkonen RA, de Vos WM. Association of early-life antibiotic use and protective effects of breastfeeding: role of the intestinal microbiota. JAMA Pediatr. 2016;170:750–7.CrossRefPubMed
16.
go back to reference Scheithauer TP, Dallinga-Thie GM, de Vos WM, Nieuwdorp M, van Raalte DH. Causality of small and large intestinal microbiota in weight regulation and insulin resistance. Mol Metab. 2016;5:759–70.CrossRefPubMedPubMedCentral Scheithauer TP, Dallinga-Thie GM, de Vos WM, Nieuwdorp M, van Raalte DH. Causality of small and large intestinal microbiota in weight regulation and insulin resistance. Mol Metab. 2016;5:759–70.CrossRefPubMedPubMedCentral
17.
go back to reference Zhao X, Jiang Z, Yang F, Wang Y, Gao X, Wang Y, et al. Sensitive and simplified detection of antibiotic influence on the dynamic and versatile changes of fecal short-chain fatty acids. PLoS One. 2016;11:e0167032.CrossRefPubMedPubMedCentral Zhao X, Jiang Z, Yang F, Wang Y, Gao X, Wang Y, et al. Sensitive and simplified detection of antibiotic influence on the dynamic and versatile changes of fecal short-chain fatty acids. PLoS One. 2016;11:e0167032.CrossRefPubMedPubMedCentral
18.
go back to reference den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54:2325–40.CrossRef den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54:2325–40.CrossRef
19.
go back to reference Cardelle-Cobas A, Fernandez M, Salazar N, Martinez-Villaluenga C, Villamiel M, Ruas-Madiedo P, et al. Bifidogenic effect and stimulation of short chain fatty acid production in human faecal slurry cultures by oligosaccharides derived from lactose and lactulose. J Dairy Res. 2009;76:317–25.CrossRefPubMed Cardelle-Cobas A, Fernandez M, Salazar N, Martinez-Villaluenga C, Villamiel M, Ruas-Madiedo P, et al. Bifidogenic effect and stimulation of short chain fatty acid production in human faecal slurry cultures by oligosaccharides derived from lactose and lactulose. J Dairy Res. 2009;76:317–25.CrossRefPubMed
20.
go back to reference Markowiak P, Slizewska K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients. 2017;9:E1021.CrossRefPubMed Markowiak P, Slizewska K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients. 2017;9:E1021.CrossRefPubMed
21.
go back to reference Stojancevic M, Bojic G, Salami HA, Mikov M. The influence of intestinal tract and probiotics on the fate of orally administered drugs. Curr Issues Mol Biol. 2014;16:55–68.PubMed Stojancevic M, Bojic G, Salami HA, Mikov M. The influence of intestinal tract and probiotics on the fate of orally administered drugs. Curr Issues Mol Biol. 2014;16:55–68.PubMed
22.
go back to reference Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.CrossRefPubMedPubMedCentral Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.CrossRefPubMedPubMedCentral
23.
go back to reference DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069–72.CrossRefPubMedPubMedCentral DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069–72.CrossRefPubMedPubMedCentral
24.
go back to reference Macklin MT, Mann HB. Fallacies inherent in the proband method of analysis of human pedigrees for inheritance of recessive traits; two methods of correction of the formula. Am J Dis Child. 1947;74:456–67.CrossRef Macklin MT, Mann HB. Fallacies inherent in the proband method of analysis of human pedigrees for inheritance of recessive traits; two methods of correction of the formula. Am J Dis Child. 1947;74:456–67.CrossRef
25.
go back to reference Kruskal WH, Wallis WA. Use of ranks in one-criterion variance analysis. J Am Stat Assoc. 1952;47:583–621.CrossRef Kruskal WH, Wallis WA. Use of ranks in one-criterion variance analysis. J Am Stat Assoc. 1952;47:583–621.CrossRef
26.
go back to reference Wilcoxon F. Individual comparisons of grouped data by ranking methods. J Econ Entomol. 1946;39:269.CrossRefPubMed Wilcoxon F. Individual comparisons of grouped data by ranking methods. J Econ Entomol. 1946;39:269.CrossRefPubMed
27.
go back to reference Friedman M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc. 1937;32:675–701.CrossRef Friedman M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc. 1937;32:675–701.CrossRef
28.
30.
go back to reference Engleberg NC, Johnson J 4th, Bluestein J, Madden K, Rinaldi MG. Phaeohyphomycotic cyst caused by a recently described species, Phaeoannellomyces elegans. J Clin Microbiol. 1987;25:605–8.CrossRefPubMedPubMedCentral Engleberg NC, Johnson J 4th, Bluestein J, Madden K, Rinaldi MG. Phaeohyphomycotic cyst caused by a recently described species, Phaeoannellomyces elegans. J Clin Microbiol. 1987;25:605–8.CrossRefPubMedPubMedCentral
31.
32.
go back to reference Dudek-Wicher RK, Junka A, Bartoszewicz M. The influence of antibiotics and dietary components on gut microbiota. Prz Gastroenterol. 2018;13:85–92.PubMedPubMedCentral Dudek-Wicher RK, Junka A, Bartoszewicz M. The influence of antibiotics and dietary components on gut microbiota. Prz Gastroenterol. 2018;13:85–92.PubMedPubMedCentral
33.
go back to reference Ovetchkine P, Rieder MJ, Canadian Paediatric Society, Drug Therapy and Hazardous Substances Committee. Azithromycin use in paediatrics: a practical overview. Paediatr Child Health. 2013;18:311–6 (in English, French).CrossRefPubMedPubMedCentral Ovetchkine P, Rieder MJ, Canadian Paediatric Society, Drug Therapy and Hazardous Substances Committee. Azithromycin use in paediatrics: a practical overview. Paediatr Child Health. 2013;18:311–6 (in English, French).CrossRefPubMedPubMedCentral
34.
go back to reference Parker EPK, Praharaj I, John J, Kaliappan SP, Kampmann B, Kang G, et al. Changes in the intestinal microbiota following the administration of azithromycin in a randomised placebo-controlled trial among infants in south India. Sci Rep. 2017;7:9168.CrossRefPubMedPubMedCentral Parker EPK, Praharaj I, John J, Kaliappan SP, Kampmann B, Kang G, et al. Changes in the intestinal microbiota following the administration of azithromycin in a randomised placebo-controlled trial among infants in south India. Sci Rep. 2017;7:9168.CrossRefPubMedPubMedCentral
35.
go back to reference Lode H, Borner K, Koeppe P, Schaberg T. Azithromycin–review of key chemical, pharmacokinetic and microbiological features. J Antimicrob Chemother. 1996;37(Suppl C):1–8.CrossRefPubMed Lode H, Borner K, Koeppe P, Schaberg T. Azithromycin–review of key chemical, pharmacokinetic and microbiological features. J Antimicrob Chemother. 1996;37(Suppl C):1–8.CrossRefPubMed
37.
38.
go back to reference Jarvis WR, Martone WJ. Predominant pathogens in hospital infections. J Antimicrob Chemother. 1992;29(Suppl A):19–24.CrossRefPubMed Jarvis WR, Martone WJ. Predominant pathogens in hospital infections. J Antimicrob Chemother. 1992;29(Suppl A):19–24.CrossRefPubMed
39.
go back to reference Rezai MS, Pourmousa R, Dadashzadeh R, Ahangarkani F. Multidrug resistance pattern of bacterial agents isolated from patient with chronic sinusitis. Caspian J Intern Med. 2016;7:114–9.PubMedPubMedCentral Rezai MS, Pourmousa R, Dadashzadeh R, Ahangarkani F. Multidrug resistance pattern of bacterial agents isolated from patient with chronic sinusitis. Caspian J Intern Med. 2016;7:114–9.PubMedPubMedCentral
40.
go back to reference Mashima I, Nakazawa F. The interaction between Streptococcus spp. and Veillonella tobetsuensis in the early stages of oral biofilm formation. J Bacteriol. 2015;197:2104–11.CrossRefPubMedPubMedCentral Mashima I, Nakazawa F. The interaction between Streptococcus spp. and Veillonella tobetsuensis in the early stages of oral biofilm formation. J Bacteriol. 2015;197:2104–11.CrossRefPubMedPubMedCentral
41.
go back to reference van den Bogert B, Erkus O, Boekhorst J, de Goffau M, Smid EJ, Zoetendal EG, et al. Diversity of human small intestinal Streptococcus and Veillonella populations. FEMS Microbiol Ecol. 2013;85:376–88.CrossRefPubMed van den Bogert B, Erkus O, Boekhorst J, de Goffau M, Smid EJ, Zoetendal EG, et al. Diversity of human small intestinal Streptococcus and Veillonella populations. FEMS Microbiol Ecol. 2013;85:376–88.CrossRefPubMed
42.
go back to reference David LA, Weil A, Ryan ET, Calderwood SB, Harris JB, Chowdhury F, et al. Gut microbial succession follows acute secretory diarrhea in humans. mBio. 2015;6:e00381-15.CrossRefPubMedPubMedCentral David LA, Weil A, Ryan ET, Calderwood SB, Harris JB, Chowdhury F, et al. Gut microbial succession follows acute secretory diarrhea in humans. mBio. 2015;6:e00381-15.CrossRefPubMedPubMedCentral
43.
go back to reference Hsiao A, Ahmed AM, Subramanian S, Griffin NW, Drewry LL, Petri WA Jr, et al. Members of the human gut microbiota involved in recovery from Vibrio cholerae infection. Nature. 2014;515:423–6.CrossRefPubMedPubMedCentral Hsiao A, Ahmed AM, Subramanian S, Griffin NW, Drewry LL, Petri WA Jr, et al. Members of the human gut microbiota involved in recovery from Vibrio cholerae infection. Nature. 2014;515:423–6.CrossRefPubMedPubMedCentral
44.
go back to reference Liguori G, Lamas B, Richard ML, Brandi G, da Costa G, Hoffmann TW, et al. Fungal dysbiosis in mucosa-associated microbiota of Crohn's disease patients. J Crohns Colitis. 2016;10:296–305.CrossRefPubMed Liguori G, Lamas B, Richard ML, Brandi G, da Costa G, Hoffmann TW, et al. Fungal dysbiosis in mucosa-associated microbiota of Crohn's disease patients. J Crohns Colitis. 2016;10:296–305.CrossRefPubMed
45.
go back to reference Gevers D, Kugathasan S, Denson LA, Vazquez-Baeza Y, Van Treuren W, Ren B, et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe. 2014;15:382–92.CrossRefPubMedPubMedCentral Gevers D, Kugathasan S, Denson LA, Vazquez-Baeza Y, Van Treuren W, Ren B, et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe. 2014;15:382–92.CrossRefPubMedPubMedCentral
46.
go back to reference Chen W, Liu F, Ling Z, Tong X, Xiang C. Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS One. 2012;7:e39743.CrossRefPubMedPubMedCentral Chen W, Liu F, Ling Z, Tong X, Xiang C. Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS One. 2012;7:e39743.CrossRefPubMedPubMedCentral
47.
go back to reference Machiels K, Joossens M, Sabino J, De Preter V, Arijs I, Eeckhaut V, et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut. 2014;63:1275–83.CrossRefPubMed Machiels K, Joossens M, Sabino J, De Preter V, Arijs I, Eeckhaut V, et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut. 2014;63:1275–83.CrossRefPubMed
48.
go back to reference Kumari R, Ahuja V, Paul J. Fluctuations in butyrate-producing bacteria in ulcerative colitis patients of North India. World J Gastroenterol. 2013;19:3404–14.CrossRefPubMedPubMedCentral Kumari R, Ahuja V, Paul J. Fluctuations in butyrate-producing bacteria in ulcerative colitis patients of North India. World J Gastroenterol. 2013;19:3404–14.CrossRefPubMedPubMedCentral
49.
go back to reference Wang T, Cai G, Qiu Y, Fei N, Zhang M, Pang X, et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 2012;6:320–9.CrossRefPubMed Wang T, Cai G, Qiu Y, Fei N, Zhang M, Pang X, et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 2012;6:320–9.CrossRefPubMed
50.
go back to reference Brahe LK, Astrup A, Larsen LH. Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases? Obes Rev. 2013;14:950–9.CrossRefPubMed Brahe LK, Astrup A, Larsen LH. Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases? Obes Rev. 2013;14:950–9.CrossRefPubMed
51.
go back to reference Lin HV, Frassetto A, Kowalik EJ Jr, Nawrocki AR, Lu MM, Kosinski JR, et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One. 2012;7:e35240.CrossRefPubMedPubMedCentral Lin HV, Frassetto A, Kowalik EJ Jr, Nawrocki AR, Lu MM, Kosinski JR, et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One. 2012;7:e35240.CrossRefPubMedPubMedCentral
52.
go back to reference Yan F, Cao H, Cover TL, Whitehead R, Washington MK, Polk DB. Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology. 2007;132:562–75.CrossRefPubMed Yan F, Cao H, Cover TL, Whitehead R, Washington MK, Polk DB. Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology. 2007;132:562–75.CrossRefPubMed
53.
54.
go back to reference Luhrs H, Gerke T, Schauber J, Dusel G, Melcher R, Scheppach W, et al. Cytokine-activated degradation of inhibitory kappaB protein alpha is inhibited by the short-chain fatty acid butyrate. Int J Colorect Dis. 2001;16:195–201.CrossRef Luhrs H, Gerke T, Schauber J, Dusel G, Melcher R, Scheppach W, et al. Cytokine-activated degradation of inhibitory kappaB protein alpha is inhibited by the short-chain fatty acid butyrate. Int J Colorect Dis. 2001;16:195–201.CrossRef
55.
go back to reference Segain JP, Raingeard de la Blétière D, Bourreille A, Leray V, Gervois N, Rosales C, et al. Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn's disease. Gut. 2000;47:397–403.CrossRefPubMedPubMedCentral Segain JP, Raingeard de la Blétière D, Bourreille A, Leray V, Gervois N, Rosales C, et al. Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn's disease. Gut. 2000;47:397–403.CrossRefPubMedPubMedCentral
56.
go back to reference Wachtershauser A, Stein J. Rationale for the luminal provision of butyrate in intestinal diseases. Eur J Nutr. 2000;39:164–71.CrossRefPubMed Wachtershauser A, Stein J. Rationale for the luminal provision of butyrate in intestinal diseases. Eur J Nutr. 2000;39:164–71.CrossRefPubMed
57.
go back to reference Mortensen PB, Clausen MR. Short-chain fatty acids in the human colon: relation to gastrointestinal health and disease. Scand J Gastroenterol Suppl. 1996;216:132–48.CrossRefPubMed Mortensen PB, Clausen MR. Short-chain fatty acids in the human colon: relation to gastrointestinal health and disease. Scand J Gastroenterol Suppl. 1996;216:132–48.CrossRefPubMed
58.
go back to reference McIntyre A, Gibson PR, Young GP. Butyrate production from dietary fibre and protection against large bowel cancer in a rat model. Gut. 1993;34:386–91.CrossRefPubMedPubMedCentral McIntyre A, Gibson PR, Young GP. Butyrate production from dietary fibre and protection against large bowel cancer in a rat model. Gut. 1993;34:386–91.CrossRefPubMedPubMedCentral
59.
go back to reference Lievin-Le Moal V, Servin AL. Anti-infective activities of lactobacillus strains in the human intestinal microbiota: from probiotics to gastrointestinal anti-infectious biotherapeutic agents. Clin Microbiol Rev. 2014;27:167–99.CrossRefPubMedPubMedCentral Lievin-Le Moal V, Servin AL. Anti-infective activities of lactobacillus strains in the human intestinal microbiota: from probiotics to gastrointestinal anti-infectious biotherapeutic agents. Clin Microbiol Rev. 2014;27:167–99.CrossRefPubMedPubMedCentral
60.
go back to reference Banerjee P, Merkel GJ, Bhunia AK. Lactobacillus delbrueckii ssp. bulgaricus B-30892 can inhibit cytotoxic effects and adhesion of pathogenic Clostridium difficile to Caco-2 cells. Gut Pathog. 2009;1:8.CrossRefPubMedPubMedCentral Banerjee P, Merkel GJ, Bhunia AK. Lactobacillus delbrueckii ssp. bulgaricus B-30892 can inhibit cytotoxic effects and adhesion of pathogenic Clostridium difficile to Caco-2 cells. Gut Pathog. 2009;1:8.CrossRefPubMedPubMedCentral
61.
go back to reference Carasi P, Racedo SM, Jacquot C, Elie AM, Serradell ML, Urdaci MC. Enterococcus durans EP1 a promising anti-inflammatory probiotic able to stimulate sIgA and to increase Faecalibacterium prausnitzii abundance. Front Immunol. 2017;8:88.PubMedPubMedCentral Carasi P, Racedo SM, Jacquot C, Elie AM, Serradell ML, Urdaci MC. Enterococcus durans EP1 a promising anti-inflammatory probiotic able to stimulate sIgA and to increase Faecalibacterium prausnitzii abundance. Front Immunol. 2017;8:88.PubMedPubMedCentral
62.
go back to reference Salminen S, Salminen E. Lactulose, lactic acid bacteria, intestinal microecology and mucosal protection. Scand J Gastroenterol Suppl. 1997;222:45–8.CrossRefPubMed Salminen S, Salminen E. Lactulose, lactic acid bacteria, intestinal microecology and mucosal protection. Scand J Gastroenterol Suppl. 1997;222:45–8.CrossRefPubMed
63.
go back to reference Mukherjee S, John S. Lactulose. StatPearls [Internet]. Treasure Island: StatPearls Publishing; 2019. Mukherjee S, John S. Lactulose. StatPearls [Internet]. Treasure Island: StatPearls Publishing; 2019.
64.
go back to reference Clausen MR, Mortensen PB. Lactulose, disaccharides and colonic flora. Clin Conseq Drugs. 1997;53:930–42. Clausen MR, Mortensen PB. Lactulose, disaccharides and colonic flora. Clin Conseq Drugs. 1997;53:930–42.
65.
go back to reference Rai R, Saraswat VA, Dhiman RK. Gut microbiota: its role in hepatic encephalopathy. J Clin Exp Hepatol. 2015;5(Suppl 1):S29–36.CrossRefPubMed Rai R, Saraswat VA, Dhiman RK. Gut microbiota: its role in hepatic encephalopathy. J Clin Exp Hepatol. 2015;5(Suppl 1):S29–36.CrossRefPubMed
66.
go back to reference Ruszkowski J, Witkowski JM. Lactulose: Patient- and dose-dependent prebiotic properties in humans. Anaerobe. 2019;59:100–6.CrossRefPubMed Ruszkowski J, Witkowski JM. Lactulose: Patient- and dose-dependent prebiotic properties in humans. Anaerobe. 2019;59:100–6.CrossRefPubMed
67.
go back to reference Aguirre M, Jonkers DM, Troost FJ, Roeselers G, Venema K. In vitro characterization of the impact of different substrates on metabolite production, energy extraction and composition of gut microbiota from lean and obese subjects. PLoS One. 2014;9:e113864.CrossRefPubMedPubMedCentral Aguirre M, Jonkers DM, Troost FJ, Roeselers G, Venema K. In vitro characterization of the impact of different substrates on metabolite production, energy extraction and composition of gut microbiota from lean and obese subjects. PLoS One. 2014;9:e113864.CrossRefPubMedPubMedCentral
68.
go back to reference Zhong H, Penders J, Shi Z, Ren H, Cai K, Fang C, et al. Impact of early events and lifestyle on the gut microbiota and metabolic phenotypes in young school-age children. Microbiome. 2019;7:2.CrossRefPubMedPubMedCentral Zhong H, Penders J, Shi Z, Ren H, Cai K, Fang C, et al. Impact of early events and lifestyle on the gut microbiota and metabolic phenotypes in young school-age children. Microbiome. 2019;7:2.CrossRefPubMedPubMedCentral
69.
go back to reference Cheng M, Ning K. Stereotypes about enterotype: the old and new Ideas. Genom Proteom Bioinform. 2019;17:4–12.CrossRef Cheng M, Ning K. Stereotypes about enterotype: the old and new Ideas. Genom Proteom Bioinform. 2019;17:4–12.CrossRef
70.
go back to reference Costea PI, Hildebrand F, Arumugam M, Backhed F, Blaser MJ, Bushman FD, et al. Publisher correction: enterotypes in the landscape of gut microbial community composition. Nat Microbiol. 2018;3:388.CrossRefPubMed Costea PI, Hildebrand F, Arumugam M, Backhed F, Blaser MJ, Bushman FD, et al. Publisher correction: enterotypes in the landscape of gut microbial community composition. Nat Microbiol. 2018;3:388.CrossRefPubMed
71.
73.
go back to reference Jernberg C, Lofmark S, Edlund C, Jansson JK. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology. 2010;156(Pt 11):3216–23.CrossRefPubMed Jernberg C, Lofmark S, Edlund C, Jansson JK. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology. 2010;156(Pt 11):3216–23.CrossRefPubMed
74.
go back to reference Wei S, Mortensen MS, Stokholm J, Brejnrod AD, Thorsen J, Rasmussen MA, et al. Short- and long-term impacts of azithromycin treatment on the gut microbiota in children: a double-blind, randomized, placebo-controlled trial. EBioMedicine. 2018;38:265–72.CrossRefPubMedPubMedCentral Wei S, Mortensen MS, Stokholm J, Brejnrod AD, Thorsen J, Rasmussen MA, et al. Short- and long-term impacts of azithromycin treatment on the gut microbiota in children: a double-blind, randomized, placebo-controlled trial. EBioMedicine. 2018;38:265–72.CrossRefPubMedPubMedCentral
Metadata
Title
Intestinal microbiome analysis demonstrates azithromycin post-treatment effects improve when combined with lactulose
Authors
Elpiniki Nikolaou
Elena Kamilari
Dragana Savkov
Artemy Sergeev
Irina Zakharova
Paris Vogazianos
Marios Tomazou
Athos Antoniades
Christos Shammas
Publication date
01-04-2020
Publisher
Springer Singapore
Published in
World Journal of Pediatrics / Issue 2/2020
Print ISSN: 1708-8569
Electronic ISSN: 1867-0687
DOI
https://doi.org/10.1007/s12519-019-00315-6

Other articles of this Issue 2/2020

World Journal of Pediatrics 2/2020 Go to the issue