Skip to main content
Top
Published in: Netherlands Heart Journal 6/2015

Open Access 01-06-2015 | Review Article

Noninvasive reconstruction of cardiac electrical activity: update on current methods, applications and challenges

Authors: M.J.M. Cluitmans, R.L.M. Peeters, R.L. Westra, P.G.A. Volders

Published in: Netherlands Heart Journal | Issue 6/2015

Login to get access

Abstract

Electrical activity at the level of the heart muscle can be noninvasively reconstructed from body-surface electrocardiograms (ECGs) and patient-specific torso-heart geometry. This modality, coined electrocardiographic imaging, could fill the gap between the noninvasive (low-resolution) 12-lead ECG and invasive (high-resolution) electrophysiology studies. Much progress has been made to establish electrocardiographic imaging, and clinical studies appear with increasing frequency. However, many assumptions and model choices are involved in its execution, and only limited validation has been performed. In this article, we will discuss the technical details, clinical applications and current limitations of commonly used methods in electrocardiographic imaging. It is important for clinicians to realise the influence of certain assumptions and model choices for correct and careful interpretation of the results. This, in combination with more extensive validation, will allow for exploitation of the full potential of noninvasive electrocardiographic imaging as a powerful clinical tool to expedite diagnosis, guide therapy and improve risk stratification.
Literature
1.
go back to reference Durrer D, Dam RT van, Freud GE, et al. Total excitation of the isolated human heart. Circulation. 1970;41(6):899–912.CrossRefPubMed Durrer D, Dam RT van, Freud GE, et al. Total excitation of the isolated human heart. Circulation. 1970;41(6):899–912.CrossRefPubMed
2.
go back to reference Martin RO, Pilkington TC. Unconstrained inverse electrocardiography: epicardial potentials. IEEE Trans Biomed Eng. 1972;19(4):276–85.PubMed Martin RO, Pilkington TC. Unconstrained inverse electrocardiography: epicardial potentials. IEEE Trans Biomed Eng. 1972;19(4):276–85.PubMed
3.
go back to reference Martin RO, Pilkington TC, Morrow MN. Statistically constrained inverse electrocardiography. IEEE Trans Biomed Eng. 1975;22(6):487–92.PubMed Martin RO, Pilkington TC, Morrow MN. Statistically constrained inverse electrocardiography. IEEE Trans Biomed Eng. 1975;22(6):487–92.PubMed
4.
go back to reference Barr RC, Ramsey RM, Spach MS. Relating epicardial to body surface potential distributions by means of transfer coefficients based on geometry measurements. IEEE Trans Biomed Eng. 1977;24(1):1–11.PubMed Barr RC, Ramsey RM, Spach MS. Relating epicardial to body surface potential distributions by means of transfer coefficients based on geometry measurements. IEEE Trans Biomed Eng. 1977;24(1):1–11.PubMed
5.
go back to reference Franzone PC, Taccardi B, Viganotti C. An approach to inverse calculation of epicardial potentials from body surface maps. Adv Cardiol. 1978;21:50–4.PubMed Franzone PC, Taccardi B, Viganotti C. An approach to inverse calculation of epicardial potentials from body surface maps. Adv Cardiol. 1978;21:50–4.PubMed
6.
go back to reference Yamashita Y, Takahashi T. Use of the finite element method to determine epicardial from body surface potentials under a realistic torso model. IEEE Trans Biomed Eng. 1984;31(9):611–21.PubMed Yamashita Y, Takahashi T. Use of the finite element method to determine epicardial from body surface potentials under a realistic torso model. IEEE Trans Biomed Eng. 1984;31(9):611–21.PubMed
7.
go back to reference Cuppen JJ, Oosterom A van. Model studies with the inversely calculated isochrones of ventricular depolarization. IEEE Trans Biomed Eng. 1984;31(10):652–9.PubMed Cuppen JJ, Oosterom A van. Model studies with the inversely calculated isochrones of ventricular depolarization. IEEE Trans Biomed Eng. 1984;31(10):652–9.PubMed
8.
go back to reference Messinger-Rapport BJ, Rudy Y. The inverse problem in electrocardiography: a model study of the effects of geometry and conductivity parameters on the reconstruction of epicardial potentials. IEEE Trans Biomed Eng. 1986;33(7):667–76.PubMed Messinger-Rapport BJ, Rudy Y. The inverse problem in electrocardiography: a model study of the effects of geometry and conductivity parameters on the reconstruction of epicardial potentials. IEEE Trans Biomed Eng. 1986;33(7):667–76.PubMed
9.
go back to reference Rudy Y, Messinger-Rapport BJ. The inverse problem in electrocardiography: solutions in terms of epicardial potentials. Crit Rev Biomed Eng. 1988;16(3):215–68.PubMed Rudy Y, Messinger-Rapport BJ. The inverse problem in electrocardiography: solutions in terms of epicardial potentials. Crit Rev Biomed Eng. 1988;16(3):215–68.PubMed
10.
go back to reference Messinger-Rapport BJ, Rudy Y. Regularization of the inverse problem in electrocardiography: a model study. Math Biosci. 1988;89(1):79–118. Messinger-Rapport BJ, Rudy Y. Regularization of the inverse problem in electrocardiography: a model study. Math Biosci. 1988;89(1):79–118.
11.
go back to reference Gulrajani RM, Savard P, Roberge FA. The inverse problem in electrocardiography: solutions in terms of equivalent sources. Crit Rev Biomed Eng. 1988;16(3):171–214.PubMed Gulrajani RM, Savard P, Roberge FA. The inverse problem in electrocardiography: solutions in terms of equivalent sources. Crit Rev Biomed Eng. 1988;16(3):171–214.PubMed
12.
go back to reference Barr RC, Spach MS. Inverse calculation of QRS-T epicardial potentials from body surface potential distributions for normal and ectopic beats in the intact dog. Circ Res. 1978;42(5):661–75.PubMed Barr RC, Spach MS. Inverse calculation of QRS-T epicardial potentials from body surface potential distributions for normal and ectopic beats in the intact dog. Circ Res. 1978;42(5):661–75.PubMed
13.
go back to reference Messinger-Rapport BJ, Rudy Y. Noninvasive recovery of epicardial potentials in a realistic heart-torso geometry. Normal sinus rhythm. Circ Res. 1990;66(4):1023–39.PubMed Messinger-Rapport BJ, Rudy Y. Noninvasive recovery of epicardial potentials in a realistic heart-torso geometry. Normal sinus rhythm. Circ Res. 1990;66(4):1023–39.PubMed
14.
go back to reference Oster HS, Taccardi B, Lux RL, et al. Noninvasive electrocardiographic imaging: reconstruction of epicardial potentials, electrograms, and isochrones and localization of single and multiple electrocardiac events. Circulation. 1997;96(3):1012–24.CrossRefPubMed Oster HS, Taccardi B, Lux RL, et al. Noninvasive electrocardiographic imaging: reconstruction of epicardial potentials, electrograms, and isochrones and localization of single and multiple electrocardiac events. Circulation. 1997;96(3):1012–24.CrossRefPubMed
15.
go back to reference Ramanathan C, Ghanem RN, Jia P, et al. Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia. Nat Med. 2004;10(4):422–8.PubMedCentralPubMed Ramanathan C, Ghanem RN, Jia P, et al. Noninvasive electrocardiographic imaging for cardiac electrophysiology and arrhythmia. Nat Med. 2004;10(4):422–8.PubMedCentralPubMed
16.
go back to reference Sapp JL, Dawoud F, Clements JC, et al. Inverse solution mapping of epicardial potentials: quantitative comparison with epicardial contact mapping. Circ Arrhythm Electrophysiol. 2012;5(5):1001–9.PubMed Sapp JL, Dawoud F, Clements JC, et al. Inverse solution mapping of epicardial potentials: quantitative comparison with epicardial contact mapping. Circ Arrhythm Electrophysiol. 2012;5(5):1001–9.PubMed
17.
go back to reference MacLeod RS, Brooks DH. Recent progress in inverse problems in electrocardiology. IEEE Eng Med Biol Mag. 1998;17(1):73–83.PubMed MacLeod RS, Brooks DH. Recent progress in inverse problems in electrocardiology. IEEE Eng Med Biol Mag. 1998;17(1):73–83.PubMed
18.
go back to reference Rudy Y. Noninvasive electrocardiographic imaging of arrhythmogenic substrates in humans. Circ Res. 2013;112(5):863–74.PubMedCentralPubMed Rudy Y. Noninvasive electrocardiographic imaging of arrhythmogenic substrates in humans. Circ Res. 2013;112(5):863–74.PubMedCentralPubMed
19.
go back to reference Oosterom A van. The inverse problem of bioelectricity: an evaluation. Med Biol Eng Comput. 2012;50(9):891–902.PubMed Oosterom A van. The inverse problem of bioelectricity: an evaluation. Med Biol Eng Comput. 2012;50(9):891–902.PubMed
20.
go back to reference Graaf AWM van der, Bhagirath P, Ramanna H, et al. Noninvasive imaging of cardiac excitation: current status and future perspective. Ann Noninvasive Electrocardiol. 2014;19(2):105–13.PubMed Graaf AWM van der, Bhagirath P, Ramanna H, et al. Noninvasive imaging of cardiac excitation: current status and future perspective. Ann Noninvasive Electrocardiol. 2014;19(2):105–13.PubMed
21.
go back to reference Oosterom A van. A comparison of electrocardiographic imaging based on two source types. Europace. 2014;16(Suppl. 4):iv120–iv128. Oosterom A van. A comparison of electrocardiographic imaging based on two source types. Europace. 2014;16(Suppl. 4):iv120–iv128.
22.
go back to reference Oostendorp TF, Dessel PFHM van, Coronel R, et al. Noninvasive detection of epicardial and endocardial activity of the heart. Neth Heart J. 2011;19(11):488–91.PubMedCentralPubMed Oostendorp TF, Dessel PFHM van, Coronel R, et al. Noninvasive detection of epicardial and endocardial activity of the heart. Neth Heart J. 2011;19(11):488–91.PubMedCentralPubMed
23.
go back to reference Ramanathan C, Jia P, Ghanem R, et al. Activation and repolarization of the normal human heart under complete physiological conditions. Proc Natl Acad Sci USA. 2006;103(16):6309–14.PubMedCentralPubMed Ramanathan C, Jia P, Ghanem R, et al. Activation and repolarization of the normal human heart under complete physiological conditions. Proc Natl Acad Sci USA. 2006;103(16):6309–14.PubMedCentralPubMed
24.
go back to reference Rudy Y. Cardiac repolarization: insights from mathematical modeling and electrocardiographic imaging (ECGI). Heart Rhythm. 2009;6(11, Suppl. 1):49–55. Rudy Y. Cardiac repolarization: insights from mathematical modeling and electrocardiographic imaging (ECGI). Heart Rhythm. 2009;6(11, Suppl. 1):49–55.
25.
go back to reference Cuculich PS, Wang Y, Lindsay BD, et al. Noninvasive characterization of epicardial activation in humans with diverse atrial fibrillation patterns. Circulation. 2010;122(14):1364–72.CrossRefPubMedCentralPubMed Cuculich PS, Wang Y, Lindsay BD, et al. Noninvasive characterization of epicardial activation in humans with diverse atrial fibrillation patterns. Circulation. 2010;122(14):1364–72.CrossRefPubMedCentralPubMed
26.
go back to reference Wang Y, Cuculich PS, Zhang J, et al. Noninvasive electroanatomic mapping of human ventricular arrhythmias with electrocardiographic imaging. Sci Transl Med. 2011;3(98):98ra84.PubMedCentralPubMed Wang Y, Cuculich PS, Zhang J, et al. Noninvasive electroanatomic mapping of human ventricular arrhythmias with electrocardiographic imaging. Sci Transl Med. 2011;3(98):98ra84.PubMedCentralPubMed
27.
go back to reference Cuculich PS, Zhang J, Wang Y, et al. The electrophysiological cardiac ventricular substrate in patients after myocardial infarction: noninvasive characterization with electrocardiographic imaging. J Am Coll Cardiol. 2011;58(18):1893–902.PubMedCentralPubMed Cuculich PS, Zhang J, Wang Y, et al. The electrophysiological cardiac ventricular substrate in patients after myocardial infarction: noninvasive characterization with electrocardiographic imaging. J Am Coll Cardiol. 2011;58(18):1893–902.PubMedCentralPubMed
28.
go back to reference Marrus SB, Andrews CM, Cooper DH, et al. Repolarization changes underlying long-term cardiac memory due to right ventricular pacing: noninvasive mapping with ECGI. Circ Arrhythm Electrophysiol. 2012;5:773–81.PubMedCentralPubMed Marrus SB, Andrews CM, Cooper DH, et al. Repolarization changes underlying long-term cardiac memory due to right ventricular pacing: noninvasive mapping with ECGI. Circ Arrhythm Electrophysiol. 2012;5:773–81.PubMedCentralPubMed
29.
go back to reference Zhang J, Desouza KA, Cuculich PS, et al. Continuous ECGI mapping of spontaneous VT initiation, continuation, and termination with antitachycardia pacing. Heart Rhythm. 2012;10(8):1244–5.CrossRefPubMedCentralPubMed Zhang J, Desouza KA, Cuculich PS, et al. Continuous ECGI mapping of spontaneous VT initiation, continuation, and termination with antitachycardia pacing. Heart Rhythm. 2012;10(8):1244–5.CrossRefPubMedCentralPubMed
30.
go back to reference Graaf AWM van der, Bhagirath P, Driel VJHM van, et al. Computing volume potentials for noninvasive imaging of cardiac excitation. Ann Noninvasive Electrocardiol. 2014;20(2):132–9. Graaf AWM van der, Bhagirath P, Driel VJHM van, et al. Computing volume potentials for noninvasive imaging of cardiac excitation. Ann Noninvasive Electrocardiol. 2014;20(2):132–9.
31.
go back to reference Huiskamp G, Oosterom A van. The depolarization sequence of the human heart surface computed from measured body surface potentials. IEEE Trans Biomed Eng. 1988;35(12):1047–58.PubMed Huiskamp G, Oosterom A van. The depolarization sequence of the human heart surface computed from measured body surface potentials. IEEE Trans Biomed Eng. 1988;35(12):1047–58.PubMed
32.
go back to reference Oosterom A van, Huiskamp GJ. The effect of torso inhomogeneities on body surface potentials quantified using “tailored” geometry. J Electrocardiol. 1989;22(1):53–72.PubMed Oosterom A van, Huiskamp GJ. The effect of torso inhomogeneities on body surface potentials quantified using “tailored” geometry. J Electrocardiol. 1989;22(1):53–72.PubMed
33.
go back to reference Dam PM van, Oostendorp TF, Linnenbank AC, et al. Non-invasive imaging of cardiac activation and recovery. Ann Biomed Eng. 2009;37(9):1739–56.PubMedCentralPubMed Dam PM van, Oostendorp TF, Linnenbank AC, et al. Non-invasive imaging of cardiac activation and recovery. Ann Biomed Eng. 2009;37(9):1739–56.PubMedCentralPubMed
34.
go back to reference Dam PM van, Oostendorp TF, Oosterom A van. Application of the fastest route algorithm in the interactive simulation of the effect of local ischemia on the ECG. Med Biol Eng Comput. 2009;47(1):11–20.PubMed Dam PM van, Oostendorp TF, Oosterom A van. Application of the fastest route algorithm in the interactive simulation of the effect of local ischemia on the ECG. Med Biol Eng Comput. 2009;47(1):11–20.PubMed
35.
go back to reference Dam PM van, Tung R, Shivkumar K, et al. Quantitative localization of premature ventricular contractions using myocardial activation ECGI from the standard 12-lead electrocardiogram. J Electrocardiol. 2013;46(6):574–9.PubMed Dam PM van, Tung R, Shivkumar K, et al. Quantitative localization of premature ventricular contractions using myocardial activation ECGI from the standard 12-lead electrocardiogram. J Electrocardiol. 2013;46(6):574–9.PubMed
36.
go back to reference Ploux S, Lumens J, Whinnett Z, et al. Noninvasive electrocardiographic mapping to improve patient selection for cardiac resynchronization therapy: beyond QRS duration and left bundle branch block morphology. J Am Coll Cardiol. 2013;61(24):2435–43.PubMed Ploux S, Lumens J, Whinnett Z, et al. Noninvasive electrocardiographic mapping to improve patient selection for cardiac resynchronization therapy: beyond QRS duration and left bundle branch block morphology. J Am Coll Cardiol. 2013;61(24):2435–43.PubMed
37.
go back to reference Berger T, Pfeifer B, Hanser FF, et al. Single-beat noninvasive imaging of ventricular endocardial and epicardial activation in patients undergoing CRT. PLoS ONE. 2011;6(1):e16255.CrossRefPubMedCentralPubMed Berger T, Pfeifer B, Hanser FF, et al. Single-beat noninvasive imaging of ventricular endocardial and epicardial activation in patients undergoing CRT. PLoS ONE. 2011;6(1):e16255.CrossRefPubMedCentralPubMed
38.
go back to reference Han C, Liu Z, Zhang X, et al. Noninvasive three-dimensional cardiac activation imaging from body surface potential maps: a computational and experimental study on a rabbit model. IEEE Trans Med Imaging. 2008;27(11):1622–30.PubMedCentralPubMed Han C, Liu Z, Zhang X, et al. Noninvasive three-dimensional cardiac activation imaging from body surface potential maps: a computational and experimental study on a rabbit model. IEEE Trans Med Imaging. 2008;27(11):1622–30.PubMedCentralPubMed
39.
go back to reference Cakulev I, Sahadevan J, Arruda M, et al. Confirmation of novel noninvasive high-density electrocardiographic mapping with electrophysiology study: implications for therapy. Circ Arrhythm Electrophysiol. 2013;6(1):68–75.PubMed Cakulev I, Sahadevan J, Arruda M, et al. Confirmation of novel noninvasive high-density electrocardiographic mapping with electrophysiology study: implications for therapy. Circ Arrhythm Electrophysiol. 2013;6(1):68–75.PubMed
40.
go back to reference Intini A, Goldstein RN, Jia P, et al. Electrocardiographic imaging (ECGI), a novel diagnostic modality used for mapping of focal left ventricular tachycardia in a young athlete. Heart Rhythm. 2005;2(11):1250–2.CrossRefPubMedCentralPubMed Intini A, Goldstein RN, Jia P, et al. Electrocardiographic imaging (ECGI), a novel diagnostic modality used for mapping of focal left ventricular tachycardia in a young athlete. Heart Rhythm. 2005;2(11):1250–2.CrossRefPubMedCentralPubMed
41.
go back to reference Burnes JE, Taccardi B, Ershler PR, et al. Noninvasive electrocardiogram imaging of substrate and intramural ventricular tachycardia in infarcted hearts. J Am Coll Cardiol. 2001;38(7):2071–8.PubMedCentralPubMed Burnes JE, Taccardi B, Ershler PR, et al. Noninvasive electrocardiogram imaging of substrate and intramural ventricular tachycardia in infarcted hearts. J Am Coll Cardiol. 2001;38(7):2071–8.PubMedCentralPubMed
42.
go back to reference Han C, Pogwizd SM, Killingsworth CR, et al. Noninvasive imaging of three-dimensional cardiac activation sequence during pacing and ventricular tachycardia. Heart Rhythm. 2011;8(8):1266–72.CrossRefPubMedCentralPubMed Han C, Pogwizd SM, Killingsworth CR, et al. Noninvasive imaging of three-dimensional cardiac activation sequence during pacing and ventricular tachycardia. Heart Rhythm. 2011;8(8):1266–72.CrossRefPubMedCentralPubMed
43.
go back to reference Aliot EM, Stevenson WG, Almendral-Garrote JM, et al. EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias. Heart Rhythm. 2009;6(6):886–933.CrossRefPubMed Aliot EM, Stevenson WG, Almendral-Garrote JM, et al. EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias. Heart Rhythm. 2009;6(6):886–933.CrossRefPubMed
44.
go back to reference Shah AJ, Hocini M, Xhaet O, et al. Validation of novel 3D electrocardiographic mapping of atrial tachycardias by invasive mapping and ablation: a multicenter study. J Am Coll Cardiol. 2013;62(10):889–97.PubMed Shah AJ, Hocini M, Xhaet O, et al. Validation of novel 3D electrocardiographic mapping of atrial tachycardias by invasive mapping and ablation: a multicenter study. J Am Coll Cardiol. 2013;62(10):889–97.PubMed
45.
go back to reference Wang Y, Cuculich PS, Woodard PK, et al. Focal atrial tachycardia after pulmonary vein isolation: noninvasive mapping with electrocardiographic imaging (ECGI). Heart Rhythm. 2007;4(8):1081–4.CrossRefPubMedCentralPubMed Wang Y, Cuculich PS, Woodard PK, et al. Focal atrial tachycardia after pulmonary vein isolation: noninvasive mapping with electrocardiographic imaging (ECGI). Heart Rhythm. 2007;4(8):1081–4.CrossRefPubMedCentralPubMed
46.
go back to reference Roten L, Pedersen M, Pascale P, et al. Noninvasive electrocardiographic mapping for prediction of tachycardia mechanism and origin of atrial tachycardia following bilateral pulmonary transplantation. J Cardiovasc Electrophysiol. 2012;23(5):553–5.PubMed Roten L, Pedersen M, Pascale P, et al. Noninvasive electrocardiographic mapping for prediction of tachycardia mechanism and origin of atrial tachycardia following bilateral pulmonary transplantation. J Cardiovasc Electrophysiol. 2012;23(5):553–5.PubMed
47.
go back to reference Jia P, Ramanathan C, Ghanem RN, et al. Electrocardiographic imaging of cardiac resynchronization therapy in heart failure: observation of variable electrophysiologic responses. Heart Rhythm. 2006;3(3):296–310.CrossRefPubMedCentralPubMed Jia P, Ramanathan C, Ghanem RN, et al. Electrocardiographic imaging of cardiac resynchronization therapy in heart failure: observation of variable electrophysiologic responses. Heart Rhythm. 2006;3(3):296–310.CrossRefPubMedCentralPubMed
48.
go back to reference Varma N, Jia P, Rudy Y. Electrocardiographic imaging of patients with heart failure with left bundle branch block and response to cardiac resynchronization therapy. J Electrocardiol. 2007;40(6 Suppl):174–8. Varma N, Jia P, Rudy Y. Electrocardiographic imaging of patients with heart failure with left bundle branch block and response to cardiac resynchronization therapy. J Electrocardiol. 2007;40(6 Suppl):174–8.
49.
go back to reference Haissaguerre M, Hocini M, Denis A, et al. Driver domains in persistent atrial fibrillation. Circulation. 2014;130(7):530–8.CrossRefPubMed Haissaguerre M, Hocini M, Denis A, et al. Driver domains in persistent atrial fibrillation. Circulation. 2014;130(7):530–8.CrossRefPubMed
50.
go back to reference Adabag AS, Luepker RV, Roger VL, et al. Sudden cardiac death: epidemiology and risk factors. Nat Rev Cardiol. 2010;7(4):216–25.PubMed Adabag AS, Luepker RV, Roger VL, et al. Sudden cardiac death: epidemiology and risk factors. Nat Rev Cardiol. 2010;7(4):216–25.PubMed
52.
go back to reference Ghanem RN, Jia P, Ramanathan C, et al. Noninvasive electrocardiographic imaging (ECGI): comparison to intraoperative mapping in patients. Heart Rhythm. 2005;2(4):339–54.CrossRefPubMedCentralPubMed Ghanem RN, Jia P, Ramanathan C, et al. Noninvasive electrocardiographic imaging (ECGI): comparison to intraoperative mapping in patients. Heart Rhythm. 2005;2(4):339–54.CrossRefPubMedCentralPubMed
53.
go back to reference Ghanem RN, Burnes JE, Waldo AL, et al. Imaging dispersion of myocardial repolarization, II: noninvasive reconstruction of epicardial measures. Circulation. 2001;104(11):1306–12.CrossRefPubMed Ghanem RN, Burnes JE, Waldo AL, et al. Imaging dispersion of myocardial repolarization, II: noninvasive reconstruction of epicardial measures. Circulation. 2001;104(11):1306–12.CrossRefPubMed
54.
go back to reference Ghosh S, Cooper DH, Vijayakumar R, et al. Early repolarization associated with sudden death: insights from noninvasive electrocardiographic imaging. Heart Rhythm. 2010;7(4):534–7.CrossRefPubMedCentralPubMed Ghosh S, Cooper DH, Vijayakumar R, et al. Early repolarization associated with sudden death: insights from noninvasive electrocardiographic imaging. Heart Rhythm. 2010;7(4):534–7.CrossRefPubMedCentralPubMed
55.
go back to reference Vijayakumar R, Silva JNA, Desouza KA, et al. Electrophysiologic substrate in congenital Long QT syndrome: noninvasive mapping with electrocardiographic imaging (ECGI). Circulation. 2014;130(22):1936–43.CrossRefPubMed Vijayakumar R, Silva JNA, Desouza KA, et al. Electrophysiologic substrate in congenital Long QT syndrome: noninvasive mapping with electrocardiographic imaging (ECGI). Circulation. 2014;130(22):1936–43.CrossRefPubMed
56.
go back to reference Title LM, Iles SE, Gardner MJ, et al. Quantitative assessment of myocardial ischemia by electrocardiographic and scintigraphic imaging. J Electrocardiol. 2003;36(Suppl):17–26.PubMed Title LM, Iles SE, Gardner MJ, et al. Quantitative assessment of myocardial ischemia by electrocardiographic and scintigraphic imaging. J Electrocardiol. 2003;36(Suppl):17–26.PubMed
57.
go back to reference Zorzi A, Migliore F, Elmaghawry M, et al. Electrocardiographic predictors of electroanatomic scar size in arrhythmogenic right ventricular cardiomyopathy: implications for arrhythmic risk stratification. J Cardiovasc Electrophysiol. 2013;24(12):1321–7.PubMed Zorzi A, Migliore F, Elmaghawry M, et al. Electrocardiographic predictors of electroanatomic scar size in arrhythmogenic right ventricular cardiomyopathy: implications for arrhythmic risk stratification. J Cardiovasc Electrophysiol. 2013;24(12):1321–7.PubMed
58.
go back to reference Jiang Y, Qian C, Hanna R, et al. Optimization of the electrode positions of multichannel ECG for the reconstruction of ischemic areas by solving the inverse electrocardiographic problem. Int J Bioelectromagn. 2009;11(1):27–37. Jiang Y, Qian C, Hanna R, et al. Optimization of the electrode positions of multichannel ECG for the reconstruction of ischemic areas by solving the inverse electrocardiographic problem. Int J Bioelectromagn. 2009;11(1):27–37.
59.
go back to reference Messnarz B, Seger M, Modre R, et al. A comparison of noninvasive reconstruction of epicardial versus transmembrane potentials in consideration of the null space. IEEE Trans Biomed Eng. 2004;51(9):1609–18.PubMed Messnarz B, Seger M, Modre R, et al. A comparison of noninvasive reconstruction of epicardial versus transmembrane potentials in consideration of the null space. IEEE Trans Biomed Eng. 2004;51(9):1609–18.PubMed
60.
go back to reference Pullan A, Cheng L, Nash M, et al. The inverse problem of electrocardiography. In: Macfarlane P, Oosterom A van, Pahlm O, et al., editors. Comprehensive electrocardiology. London: Springer; 2010. pp. 299–344.CrossRef Pullan A, Cheng L, Nash M, et al. The inverse problem of electrocardiography. In: Macfarlane P, Oosterom A van, Pahlm O, et al., editors. Comprehensive electrocardiology. London: Springer; 2010. pp. 299–344.CrossRef
61.
go back to reference Modre R, Tilg B, Fischer G, et al. Noninvasive myocardial activation time imaging: a novel inverse algorithm applied to clinical ECG mapping data. IEEE Trans Biomed Eng. 2002;49(10):1153–61.PubMed Modre R, Tilg B, Fischer G, et al. Noninvasive myocardial activation time imaging: a novel inverse algorithm applied to clinical ECG mapping data. IEEE Trans Biomed Eng. 2002;49(10):1153–61.PubMed
62.
go back to reference Nielsen BF, Lysaker M, Tveito A. On the use of the resting potential and level set methods for identifying ischemic heart disease: an inverse problem. J Comput Phys. 2007;220(2):772–90. Nielsen BF, Lysaker M, Tveito A. On the use of the resting potential and level set methods for identifying ischemic heart disease: an inverse problem. J Comput Phys. 2007;220(2):772–90.
63.
go back to reference Potse M, Dubé B, Richer J, et al. A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart. IEEE Trans Biomed Eng. 2006;53(12):2425–35.PubMed Potse M, Dubé B, Richer J, et al. A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart. IEEE Trans Biomed Eng. 2006;53(12):2425–35.PubMed
64.
go back to reference Nielsen BF, Cai X, Lysaker M. On the possibility for computing the transmembrane potential in the heart with a one shot method: an inverse problem. Math Biosci. 2007;210(2):523–53.PubMed Nielsen BF, Cai X, Lysaker M. On the possibility for computing the transmembrane potential in the heart with a one shot method: an inverse problem. Math Biosci. 2007;210(2):523–53.PubMed
65.
go back to reference Wang D, Kirby RM, Macleod RS, et al. Inverse electrocardiographic source localization of ischemia: an optimization framework and finite element solution. J Comput Phys. 2013;250:403–24.PubMedCentralPubMed Wang D, Kirby RM, Macleod RS, et al. Inverse electrocardiographic source localization of ischemia: an optimization framework and finite element solution. J Comput Phys. 2013;250:403–24.PubMedCentralPubMed
66.
go back to reference Stenroos M, Haueisen J. Boundary element computations in the forward and inverse problems of electrocardiography: comparison of collocation and Galerkin weightings. IEEE Trans Biomed Eng. 2008;55(9):2124–33.PubMed Stenroos M, Haueisen J. Boundary element computations in the forward and inverse problems of electrocardiography: comparison of collocation and Galerkin weightings. IEEE Trans Biomed Eng. 2008;55(9):2124–33.PubMed
67.
go back to reference Ramanathan C, Rudy Y. Electrocardiographic imaging: II. Effect of torso inhomogeneities on noninvasive reconstruction of epicardial potentials, electrograms, and isochrones. J Cardiovasc Electrophysiol. 2001;12(2):241–52.PubMed Ramanathan C, Rudy Y. Electrocardiographic imaging: II. Effect of torso inhomogeneities on noninvasive reconstruction of epicardial potentials, electrograms, and isochrones. J Cardiovasc Electrophysiol. 2001;12(2):241–52.PubMed
68.
go back to reference MacLeod RS, Brooks DH. Recent progress in inverse problems in electrocardiology. IEEE Eng Med Biol Mag. 1998;17(1):73–83.PubMed MacLeod RS, Brooks DH. Recent progress in inverse problems in electrocardiology. IEEE Eng Med Biol Mag. 1998;17(1):73–83.PubMed
69.
go back to reference Hansen PC, O’Leary DP. The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J Sci Comput. 1993;14(6):1487–503. Hansen PC, O’Leary DP. The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J Sci Comput. 1993;14(6):1487–503.
70.
go back to reference Tikhonov AN, Arsenin VIA. Solutions of ill-posed problems. Scripta series in mathematics. Washington: Winston; 1977. Tikhonov AN, Arsenin VIA. Solutions of ill-posed problems. Scripta series in mathematics. Washington: Winston; 1977.
71.
go back to reference Golub G, Reinsch C. Singular value decomposition and least squares solutions. Numer Math. 1970;14:403–20. Golub G, Reinsch C. Singular value decomposition and least squares solutions. Numer Math. 1970;14:403–20.
72.
go back to reference Greensite F, Huiskamp G. An improved method for estimating epicardial potentials from the body surface. IEEE Trans Biomed Eng. 1998;45(1):98–104.PubMed Greensite F, Huiskamp G. An improved method for estimating epicardial potentials from the body surface. IEEE Trans Biomed Eng. 1998;45(1):98–104.PubMed
73.
go back to reference Ramanathan C, Jia P, Ghanem R, et al. Noninvasive electrocardiographic imaging (ECGI): application of the generalized minimal residual (GMRes) method. Ann Biomed Eng. 2003;31(8):981–94.PubMedCentralPubMed Ramanathan C, Jia P, Ghanem R, et al. Noninvasive electrocardiographic imaging (ECGI): application of the generalized minimal residual (GMRes) method. Ann Biomed Eng. 2003;31(8):981–94.PubMedCentralPubMed
74.
go back to reference Cluitmans M, Peeters R, Volders P, et al. Realistic training data improve noninvasive reconstruction of heart-surface potentials. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:6373–6.PubMed Cluitmans M, Peeters R, Volders P, et al. Realistic training data improve noninvasive reconstruction of heart-surface potentials. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:6373–6.PubMed
75.
go back to reference Milanic M, Jazbinšek V, Macleod RS, et al. Assessment of regularization techniques for electrocardiographic imaging. J Electrocardiol. 2014;47(1):20–8.PubMedCentralPubMed Milanic M, Jazbinšek V, Macleod RS, et al. Assessment of regularization techniques for electrocardiographic imaging. J Electrocardiol. 2014;47(1):20–8.PubMedCentralPubMed
76.
go back to reference Berger T, Fischer G, Pfeifer B, et al. Single-beat noninvasive imaging of cardiac electrophysiology of ventricular pre-excitation. J Am Coll Cardiol. 2006;48(10):2045–52.PubMed Berger T, Fischer G, Pfeifer B, et al. Single-beat noninvasive imaging of cardiac electrophysiology of ventricular pre-excitation. J Am Coll Cardiol. 2006;48(10):2045–52.PubMed
77.
go back to reference Ghosh S, Avari JN, Rhee EK, et al. Noninvasive electrocardiographic imaging (ECGI) of a univentricular heart with Wolff-Parkinson-White syndrome. Heart Rhythm. 2008;5(4):605–8.CrossRefPubMedCentralPubMed Ghosh S, Avari JN, Rhee EK, et al. Noninvasive electrocardiographic imaging (ECGI) of a univentricular heart with Wolff-Parkinson-White syndrome. Heart Rhythm. 2008;5(4):605–8.CrossRefPubMedCentralPubMed
Metadata
Title
Noninvasive reconstruction of cardiac electrical activity: update on current methods, applications and challenges
Authors
M.J.M. Cluitmans
R.L.M. Peeters
R.L. Westra
P.G.A. Volders
Publication date
01-06-2015
Publisher
Bohn Stafleu van Loghum
Published in
Netherlands Heart Journal / Issue 6/2015
Print ISSN: 1568-5888
Electronic ISSN: 1876-6250
DOI
https://doi.org/10.1007/s12471-015-0690-9

Other articles of this Issue 6/2015

Netherlands Heart Journal 6/2015 Go to the issue