Skip to main content
Top
Published in: Current Cardiovascular Imaging Reports 5/2019

01-05-2019 | Artificial Intelligence | Cardiac Nuclear Imaging (A Cuocolo and M Petretta, Section Editors)

Artificial Intelligence in Nuclear Cardiology: Adding Value to Prognostication

Authors: Karthik Seetharam, Sirish Shresthra, James D. Mills, Partho P. Sengupta

Published in: Current Cardiovascular Imaging Reports | Issue 5/2019

Login to get access

Abstract

Purpose of the Review

Radionuclide myocardial perfusion imaging (MPI) continues to be an accurate and reproducible method of diagnosing obstructive coronary artery disease (CAD) with predictive, prognostic, and economic value. We review the evolutionary potential of machine learning (ML), a subset of artificial intelligence, as an adjunct to MPI.

Recent Findings

Applying the broad scope of ML, including the integration of deep learning, can leverage the knowledge representation and automated reasoning to detect and extrapolate patterns from high-dimensional features of MPI. There is growing evidence to suggest superior abilities of ML over parametric statistical models for predicting the presence of obstructive CAD, the need for revascularization, and the occurrence of major adverse cardiac events including cardiac death.

Summary

ML is uniquely positioned to provide the next great advancement in the field of nuclear cardiology for improving patient-specific risk stratification.
Literature
2.
go back to reference Slomka PJ, Dey D, Sitek A, Motwani M, Berman DS, Germano G. Cardiac imaging: working towards fully-automated machine analysis & interpretation. Expert Rev Med Devices. 2017;14(3):197–212.CrossRefPubMedPubMedCentral Slomka PJ, Dey D, Sitek A, Motwani M, Berman DS, Germano G. Cardiac imaging: working towards fully-automated machine analysis & interpretation. Expert Rev Med Devices. 2017;14(3):197–212.CrossRefPubMedPubMedCentral
4.
go back to reference Shrestha S, Sengupta PP. Machine learning for nuclear cardiology: the way forward. J Nucl Cardiol. 2018. Shrestha S, Sengupta PP. Machine learning for nuclear cardiology: the way forward. J Nucl Cardiol. 2018.
5.
go back to reference Shaw LJ, Iskandrian AE. Prognostic value of gated myocardial perfusion SPECT. J Nucl Cardiol. 2004;11(2):171–85.CrossRefPubMed Shaw LJ, Iskandrian AE. Prognostic value of gated myocardial perfusion SPECT. J Nucl Cardiol. 2004;11(2):171–85.CrossRefPubMed
7.
go back to reference Hachamovitch R, Hayes SW, Friedman JD, Cohen I, Berman DS. Stress myocardial perfusion single-photon emission computed tomography is clinically effective and cost effective in risk stratification of patients with a high likelihood of coronary artery disease (CAD) but no known CAD. J Am Coll Cardiol. 2004;43(2):200–8.CrossRefPubMed Hachamovitch R, Hayes SW, Friedman JD, Cohen I, Berman DS. Stress myocardial perfusion single-photon emission computed tomography is clinically effective and cost effective in risk stratification of patients with a high likelihood of coronary artery disease (CAD) but no known CAD. J Am Coll Cardiol. 2004;43(2):200–8.CrossRefPubMed
8.
go back to reference Berman DS, Kang X, Gransar H, Gerlach J, Friedman JD, Hayes SW, et al. Quantitative assessment of myocardial perfusion abnormality on SPECT myocardial perfusion imaging is more reproducible than expert visual analysis. J Nucl Cardiol. 2009;16(1):45–53.CrossRefPubMedPubMedCentral Berman DS, Kang X, Gransar H, Gerlach J, Friedman JD, Hayes SW, et al. Quantitative assessment of myocardial perfusion abnormality on SPECT myocardial perfusion imaging is more reproducible than expert visual analysis. J Nucl Cardiol. 2009;16(1):45–53.CrossRefPubMedPubMedCentral
9.
go back to reference Xu Y, Hayes S, Ali I, Ruddy TD, Wells RG, Berman DS, et al. Automatic and visual reproducibility of perfusion and function measures for myocardial perfusion SPECT. J Nucl Cardiol. 2010;17(6):1050–7.CrossRefPubMedPubMedCentral Xu Y, Hayes S, Ali I, Ruddy TD, Wells RG, Berman DS, et al. Automatic and visual reproducibility of perfusion and function measures for myocardial perfusion SPECT. J Nucl Cardiol. 2010;17(6):1050–7.CrossRefPubMedPubMedCentral
10.
go back to reference Liu YH. Quantification of nuclear cardiac images: the Yale approach. J Nucl Cardiol. 2007;14(4):483–91.CrossRefPubMed Liu YH. Quantification of nuclear cardiac images: the Yale approach. J Nucl Cardiol. 2007;14(4):483–91.CrossRefPubMed
11.
go back to reference Shameer K, Johnson KW, Glicksberg BS, Dudley JT, Sengupta PP. Machine learning in cardiovascular medicine: are we there yet? Heart. 2018;104(14):1156–64.CrossRefPubMed Shameer K, Johnson KW, Glicksberg BS, Dudley JT, Sengupta PP. Machine learning in cardiovascular medicine: are we there yet? Heart. 2018;104(14):1156–64.CrossRefPubMed
12.
go back to reference Arsanjani R, Xu Y, Dey D, Fish M, Dorbala S, Hayes S, et al. Improved accuracy of myocardial perfusion SPECT for the detection of coronary artery disease using a support vector machine algorithm. J Nucl Med. 2013;54(4):549–55.CrossRefPubMedPubMedCentral Arsanjani R, Xu Y, Dey D, Fish M, Dorbala S, Hayes S, et al. Improved accuracy of myocardial perfusion SPECT for the detection of coronary artery disease using a support vector machine algorithm. J Nucl Med. 2013;54(4):549–55.CrossRefPubMedPubMedCentral
13.
go back to reference Arsanjani R, Xu Y, Dey D, Vahistha V, Shalev A, Nakanishi R, et al. Improved accuracy of myocardial perfusion SPECT for detection of coronary artery disease by machine learning in a large population. J Nucl Cardiol. 2013;20(4):553–62.CrossRefPubMedPubMedCentral Arsanjani R, Xu Y, Dey D, Vahistha V, Shalev A, Nakanishi R, et al. Improved accuracy of myocardial perfusion SPECT for detection of coronary artery disease by machine learning in a large population. J Nucl Cardiol. 2013;20(4):553–62.CrossRefPubMedPubMedCentral
14.
go back to reference Arsanjani R, Dey D, Khachatryan T, Shalev A, Hayes SW, Fish M, et al. Prediction of revascularization after myocardial perfusion SPECT by machine learning in a large population. J Nucl Cardiol. 2015;22(5):877–84.CrossRefPubMed Arsanjani R, Dey D, Khachatryan T, Shalev A, Hayes SW, Fish M, et al. Prediction of revascularization after myocardial perfusion SPECT by machine learning in a large population. J Nucl Cardiol. 2015;22(5):877–84.CrossRefPubMed
15.
go back to reference • Haro Alonso D, Wernick MN, Yang Y, Germano G, Berman DS, Slomka P. Prediction of cardiac death after adenosine myocardial perfusion SPECT based on machine learning. J Nucl Cardiol. 2018; Alonso et al utilized a machine learning algorithm to predict cardiac death by integrating clinical and imaging data in more than 8,000 patients. The ML algorithm demonstrated higher accuracy than conventional statistical techniques. • Haro Alonso D, Wernick MN, Yang Y, Germano G, Berman DS, Slomka P. Prediction of cardiac death after adenosine myocardial perfusion SPECT based on machine learning. J Nucl Cardiol. 2018; Alonso et al utilized a machine learning algorithm to predict cardiac death by integrating clinical and imaging data in more than 8,000 patients. The ML algorithm demonstrated higher accuracy than conventional statistical techniques.
16.
go back to reference Betancur J, Otaki Y, Motwani M, Fish MB, Lemley M, Dey D, et al. Prognostic value of combined clinical and myocardial perfusion imaging data using machine learning. JACC Cardiovasc Imaging. 2018;11(7):1000–9.CrossRefPubMed Betancur J, Otaki Y, Motwani M, Fish MB, Lemley M, Dey D, et al. Prognostic value of combined clinical and myocardial perfusion imaging data using machine learning. JACC Cardiovasc Imaging. 2018;11(7):1000–9.CrossRefPubMed
17.
go back to reference Betancur J, Rubeaux M, Fuchs TA, Otaki Y, Arnson Y, Slipczuk L, et al. Automatic valve plane localization in myocardial perfusion SPECT/CT by machine learning: anatomic and clinical validation. J Nucl Med. 2017;58(6):961–7.CrossRefPubMedPubMedCentral Betancur J, Rubeaux M, Fuchs TA, Otaki Y, Arnson Y, Slipczuk L, et al. Automatic valve plane localization in myocardial perfusion SPECT/CT by machine learning: anatomic and clinical validation. J Nucl Med. 2017;58(6):961–7.CrossRefPubMedPubMedCentral
18.
go back to reference •• Betancur J, Commandeur F, Motlagh M, Sharir T, Einstein AJ, Bokhari S, et al. Deep learning for Prediction of Obstructive Disease From Fast Myocardial Perfusion SPECT: a multicenter study. JACC Cardiovasc Imaging. 2018;11(11):1654–63 It is a large multi-institutional study using deep learning to predict obstructive coronary artery disease in large patient population. There are limited studies showing the role of deep learning in nuclear cardiology. CrossRefPubMed •• Betancur J, Commandeur F, Motlagh M, Sharir T, Einstein AJ, Bokhari S, et al. Deep learning for Prediction of Obstructive Disease From Fast Myocardial Perfusion SPECT: a multicenter study. JACC Cardiovasc Imaging. 2018;11(11):1654–63 It is a large multi-institutional study using deep learning to predict obstructive coronary artery disease in large patient population. There are limited studies showing the role of deep learning in nuclear cardiology. CrossRefPubMed
19.
go back to reference Nakajima K, Kudo T, Nakata T, Kiso K, Kasai T, Taniguchi Y, et al. Diagnostic accuracy of an artificial neural network compared with statistical quantitation of myocardial perfusion images: a Japanese multicenter study. Eur J Nucl Med Mol Imaging. 2017;44(13):2280–9.CrossRefPubMedPubMedCentral Nakajima K, Kudo T, Nakata T, Kiso K, Kasai T, Taniguchi Y, et al. Diagnostic accuracy of an artificial neural network compared with statistical quantitation of myocardial perfusion images: a Japanese multicenter study. Eur J Nucl Med Mol Imaging. 2017;44(13):2280–9.CrossRefPubMedPubMedCentral
20.
go back to reference Guner LA, Karabacak NI, Akdemir OU, Karagoz PS, Kocaman SA, Cengel A, et al. An open-source framework of neural networks for diagnosis of coronary artery disease from myocardial perfusion SPECT. J Nucl Cardiol. 2010;17(3):405–13.CrossRefPubMed Guner LA, Karabacak NI, Akdemir OU, Karagoz PS, Kocaman SA, Cengel A, et al. An open-source framework of neural networks for diagnosis of coronary artery disease from myocardial perfusion SPECT. J Nucl Cardiol. 2010;17(3):405–13.CrossRefPubMed
21.
go back to reference Zhu B, Liu JZ, Cauley SF, Rosen BR, Rosen MS. Image reconstruction by domain-transform manifold learning. Nature. 2018;555(7697):487–92.CrossRefPubMed Zhu B, Liu JZ, Cauley SF, Rosen BR, Rosen MS. Image reconstruction by domain-transform manifold learning. Nature. 2018;555(7697):487–92.CrossRefPubMed
22.
go back to reference Tilkemeier PL, Mahmarian JJ, Wolinsky DG, Denton EA. ImageGuide Update. J Nucl Cardiol. 2015;22(5):994–7.CrossRefPubMed Tilkemeier PL, Mahmarian JJ, Wolinsky DG, Denton EA. ImageGuide Update. J Nucl Cardiol. 2015;22(5):994–7.CrossRefPubMed
Metadata
Title
Artificial Intelligence in Nuclear Cardiology: Adding Value to Prognostication
Authors
Karthik Seetharam
Sirish Shresthra
James D. Mills
Partho P. Sengupta
Publication date
01-05-2019
Publisher
Springer US
Published in
Current Cardiovascular Imaging Reports / Issue 5/2019
Print ISSN: 1941-9066
Electronic ISSN: 1941-9074
DOI
https://doi.org/10.1007/s12410-019-9490-8

Other articles of this Issue 5/2019

Current Cardiovascular Imaging Reports 5/2019 Go to the issue

Cardiac Computed Tomography (B Chow and G Small, Section Editors)

Coronary Computed Tomography Angiography Improving Outcomes in Patients with Chest Pain

Cardiac Nuclear Imaging (A Cuocolo and M Petretta, Section Editors)

Radionuclide Imaging of Atherothrombotic Diseases

Cardiac Magnetic Resonance (V Püntmann and E Nagel, Section Editors)

Coronary Vessel Wall Imaging: State of the Art and Future Directions

Cardiac Magnetic Resonance (E Nagel and V Puntmann, Section Editors)

Cardiac MRI: a Promising Diagnostic Tool to Detect Cancer Therapeutics–Related Cardiac Dysfunction