Skip to main content
Top
Published in: Current Cardiovascular Imaging Reports 11/2015

01-11-2015 | Echocardiography (T Buck, Section Editor)

Vector Flow Mapping in Mitral Valve Disease: a Novel Method for the Assessment of Flow Mechanics and Their Potential Implications for Mitral Valve Repair

Authors: Daniel Rodríguez Muñoz, Cristina Lozano Granero, José Luis Zamorano

Published in: Current Cardiovascular Imaging Reports | Issue 11/2015

Login to get access

Abstract

In the last few years, the development of new techniques enabling visualization and quantification of flow behavior inside cardiac chambers has increased the interest in flow mechanics, blood-tissue interaction, and the potential application of these new data to diagnosis and guidance of treatment. Several studies have focused on flow dynamics inside the left ventricle and a differential aspect in it: the vortex ring. In this article, we briefly describe the key role of the mitral valve on the generation of physiologic flow dynamics. We also review how mitral valve disease and its treatment can influence the distribution of flow inside the left ventricle and its potential clinical impact.
Literature
1.•
go back to reference Sengupta PP, Pedrizzetti G, Kilner PJ, et al. Emerging trends in CV flow visualization. JACC Cardiovasc Imaging. 2012;5:305–16. First review on different methods for cardiovascular flow imaging. Good overview.CrossRefPubMed Sengupta PP, Pedrizzetti G, Kilner PJ, et al. Emerging trends in CV flow visualization. JACC Cardiovasc Imaging. 2012;5:305–16. First review on different methods for cardiovascular flow imaging. Good overview.CrossRefPubMed
2.•
go back to reference Rodriguez Muñoz D, Markl M, Moya Mur JL, et al. Intracardiac flow visualization: current status and future directions. Eur Heart J Cardiovasc Imaging. 2013;14:1029–38. Another review. Update on the previous reference and focus on potential clinical applications.PubMedCentralCrossRefPubMed Rodriguez Muñoz D, Markl M, Moya Mur JL, et al. Intracardiac flow visualization: current status and future directions. Eur Heart J Cardiovasc Imaging. 2013;14:1029–38. Another review. Update on the previous reference and focus on potential clinical applications.PubMedCentralCrossRefPubMed
3.
go back to reference Hong GR, Pedrizzetti G, Tonti G, et al. Characterization and quantification of vortex flow in the human left ventricle by contrast echocardiography using vector particle image velocimetry. J Am Coll Cardiol Img. 2008;1:705–17.CrossRef Hong GR, Pedrizzetti G, Tonti G, et al. Characterization and quantification of vortex flow in the human left ventricle by contrast echocardiography using vector particle image velocimetry. J Am Coll Cardiol Img. 2008;1:705–17.CrossRef
4.
go back to reference Rodriguez Muñoz D, Moya Mur JL, Fernández-Golfín C, et al. Left ventricular vortices as observed by vector flow mapping: main determinants and their relation to left ventricular filling. Echocardiography. 2015;32:96–105.CrossRefPubMed Rodriguez Muñoz D, Moya Mur JL, Fernández-Golfín C, et al. Left ventricular vortices as observed by vector flow mapping: main determinants and their relation to left ventricular filling. Echocardiography. 2015;32:96–105.CrossRefPubMed
5.
go back to reference Kheradvar A, Pedrizzetti G. Vortex formation in the cardiovascular system. London: Springer; 2012.CrossRef Kheradvar A, Pedrizzetti G. Vortex formation in the cardiovascular system. London: Springer; 2012.CrossRef
6.
go back to reference Bolger AF, Heiberg E, Karlsson M, et al. Transit of blood flow through the human left ventricle mapped by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2007;9:741–7.CrossRefPubMed Bolger AF, Heiberg E, Karlsson M, et al. Transit of blood flow through the human left ventricle mapped by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2007;9:741–7.CrossRefPubMed
7.
go back to reference Pedrizetti G, Domenechini F. Nature optimizes the swirling flow in the human left ventricle. Phys Rev Lett. 2005;95:108101.CrossRef Pedrizetti G, Domenechini F. Nature optimizes the swirling flow in the human left ventricle. Phys Rev Lett. 2005;95:108101.CrossRef
8.
go back to reference Charonko JJ, Kumar R, Stewart K, et al. Vortices formed on the mitral valve tips aid normal left ventricular filling. Ann Biomed Eng. 2013;41:1049–61.CrossRefPubMed Charonko JJ, Kumar R, Stewart K, et al. Vortices formed on the mitral valve tips aid normal left ventricular filling. Ann Biomed Eng. 2013;41:1049–61.CrossRefPubMed
9.••
go back to reference Martinez-Legazpi P, Bermejo J, Benito Y, et al. Contribution of the diastolic vortex ring to left ventricular filling. J Am Coll Cardiol. 2014;64:1711–21. Excellent study for clarification and quantification of vortex contribution to cardiac output.CrossRefPubMed Martinez-Legazpi P, Bermejo J, Benito Y, et al. Contribution of the diastolic vortex ring to left ventricular filling. J Am Coll Cardiol. 2014;64:1711–21. Excellent study for clarification and quantification of vortex contribution to cardiac output.CrossRefPubMed
11.
go back to reference Kheradvar A, Gharib M. On mitral valve dynamics and its connection to early diastolic flow. Ann Biomed Eng. 2009;37:1–13.CrossRefPubMed Kheradvar A, Gharib M. On mitral valve dynamics and its connection to early diastolic flow. Ann Biomed Eng. 2009;37:1–13.CrossRefPubMed
12.
go back to reference Belohlavek M. Vortex formation time: an emerging echocardiographic index of left ventricular filling efficiency. Eur Heart J Cardiovasc Imaging. 2012;13:367–9.PubMedCentralCrossRefPubMed Belohlavek M. Vortex formation time: an emerging echocardiographic index of left ventricular filling efficiency. Eur Heart J Cardiovasc Imaging. 2012;13:367–9.PubMedCentralCrossRefPubMed
13.
go back to reference Kheradvar A, Assadi R, Falahatpisheh A, et al. Assessment of transmitral vortex formation in patients with diastolic dysfunction. J Am Soc Echocardiogr. 2012;25:220–7.CrossRefPubMed Kheradvar A, Assadi R, Falahatpisheh A, et al. Assessment of transmitral vortex formation in patients with diastolic dysfunction. J Am Soc Echocardiogr. 2012;25:220–7.CrossRefPubMed
14.
go back to reference Stewart KC, Charonko JC, Niebel CL, et al. Left ventricular vortex formation is unaffected by diastolic impairment. Am J Physiol Heart Circ Physiol. 2012;303:H1255–62.PubMedCentralCrossRefPubMed Stewart KC, Charonko JC, Niebel CL, et al. Left ventricular vortex formation is unaffected by diastolic impairment. Am J Physiol Heart Circ Physiol. 2012;303:H1255–62.PubMedCentralCrossRefPubMed
15.
go back to reference Pasipoularides A, Vlachos PP, Little WC. Vortex formation time is not an index of ventricular function. J Cardiovasc Transl Res. 2015;8:54–8.CrossRefPubMed Pasipoularides A, Vlachos PP, Little WC. Vortex formation time is not an index of ventricular function. J Cardiovasc Transl Res. 2015;8:54–8.CrossRefPubMed
16.•
go back to reference Ro R, Halpern D, Sahn DJ, et al. Vector flow mapping in obstructive hypertrophic cardiomyopathy to assess the relationship of early systolic Leith ventricular flow and the mitral valve. J Am Coll Cardiol. 2014;64:1984–95. Recent study to better understand the interaction between the mechanics of left ventricular flow and structure.CrossRefPubMed Ro R, Halpern D, Sahn DJ, et al. Vector flow mapping in obstructive hypertrophic cardiomyopathy to assess the relationship of early systolic Leith ventricular flow and the mitral valve. J Am Coll Cardiol. 2014;64:1984–95. Recent study to better understand the interaction between the mechanics of left ventricular flow and structure.CrossRefPubMed
17.
go back to reference Kilner PJ, Yang GZ, Wilkes AJ, et al. Asymmetric redirection of flow through the heart. Nature. 2000;404:759–61.CrossRefPubMed Kilner PJ, Yang GZ, Wilkes AJ, et al. Asymmetric redirection of flow through the heart. Nature. 2000;404:759–61.CrossRefPubMed
18.
go back to reference Ohtsuki S, Tanaka M. The flow velocity distribution from the Doppler information on a plane in three-dimensional flow. J Visual. 2006;9:69–82.CrossRef Ohtsuki S, Tanaka M. The flow velocity distribution from the Doppler information on a plane in three-dimensional flow. J Visual. 2006;9:69–82.CrossRef
19.
go back to reference Uejima T, Koike A, Sawada H, et al. A new echocardiographic method for identifying vortex flow in the left ventricle: numerical validation. Ultrasound Med Biol. 2010;36:772–88.CrossRefPubMed Uejima T, Koike A, Sawada H, et al. A new echocardiographic method for identifying vortex flow in the left ventricle: numerical validation. Ultrasound Med Biol. 2010;36:772–88.CrossRefPubMed
20.
go back to reference Itatani K, Okada T, Uejima T, et al. Intraventricular flow velocity vector visualization based on the continuity equation and measurements of vorticity and wall shear stress. Jpn J Appl Phys. 2013;52:07HF16.CrossRef Itatani K, Okada T, Uejima T, et al. Intraventricular flow velocity vector visualization based on the continuity equation and measurements of vorticity and wall shear stress. Jpn J Appl Phys. 2013;52:07HF16.CrossRef
21.
go back to reference Itatani K. When the blood flow becomes bright. Eur Heart J. 2014;35:747–752a.PubMed Itatani K. When the blood flow becomes bright. Eur Heart J. 2014;35:747–752a.PubMed
22.
go back to reference Hayashi T, Itatani K, Inuzuka R, et al. Dissipative energy loss within the left ventricle detected by vector flow zapping in children: normal values and effects of age and heart rate. J Cardiol. 2015 Jan 13. Hayashi T, Itatani K, Inuzuka R, et al. Dissipative energy loss within the left ventricle detected by vector flow zapping in children: normal values and effects of age and heart rate. J Cardiol. 2015 Jan 13.
23.
24.
go back to reference Toger J, Kanski M, Carlsson M, et al. Vortex ring formation in the left ventricle of the heart: analysis by 4D flow MRI and Lagrangian coherent structures. Ann Biomed Eng. 2012;40:2652–62.CrossRefPubMed Toger J, Kanski M, Carlsson M, et al. Vortex ring formation in the left ventricle of the heart: analysis by 4D flow MRI and Lagrangian coherent structures. Ann Biomed Eng. 2012;40:2652–62.CrossRefPubMed
25.
go back to reference Kheradvar A, Houle H, Pedrizzetti G, et al. Echocardiographic particle image velocimetry: a novel technique for quantification of left ventricular blood vorticity pattern. J Am Soc Echocardiogr. 2010;23:86–94.CrossRefPubMed Kheradvar A, Houle H, Pedrizzetti G, et al. Echocardiographic particle image velocimetry: a novel technique for quantification of left ventricular blood vorticity pattern. J Am Soc Echocardiogr. 2010;23:86–94.CrossRefPubMed
26.
go back to reference Garcia D, del Alamo JC, Tanne D, et al. Two dimensional intraventricular flow mapping by digital processing conventional color-Doppler echocardiography images. IEEE Trans Med Imaging. 2010;10:1701–13.CrossRef Garcia D, del Alamo JC, Tanne D, et al. Two dimensional intraventricular flow mapping by digital processing conventional color-Doppler echocardiography images. IEEE Trans Med Imaging. 2010;10:1701–13.CrossRef
27.
go back to reference Mehregan F, Tournoux F, Muth S, et al. Doppler vortography: a color Doppler approach to quantification of intraventricular blood flow vértices. Ultrasound Med Biol. 2014;40:210–21.CrossRefPubMed Mehregan F, Tournoux F, Muth S, et al. Doppler vortography: a color Doppler approach to quantification of intraventricular blood flow vértices. Ultrasound Med Biol. 2014;40:210–21.CrossRefPubMed
28.
go back to reference Sengupta PP, Narula J, Chandrashekhar Y. The dynamic vortex of a beating heart: wring out the old and ring in the new. J Am Coll Cardiol. 2014;64:1722–4.CrossRefPubMed Sengupta PP, Narula J, Chandrashekhar Y. The dynamic vortex of a beating heart: wring out the old and ring in the new. J Am Coll Cardiol. 2014;64:1722–4.CrossRefPubMed
29.
go back to reference Rodriguez Muñoz D, Moya Mur JL, Lozano Granero C, et al. Flow collision in early aortic ejection: an additional source of kinetic energy loss in patients with mitral prosthetic valves. Eur Heart J Cardiovasc Imaging. 2015;16:608.CrossRefPubMed Rodriguez Muñoz D, Moya Mur JL, Lozano Granero C, et al. Flow collision in early aortic ejection: an additional source of kinetic energy loss in patients with mitral prosthetic valves. Eur Heart J Cardiovasc Imaging. 2015;16:608.CrossRefPubMed
30.
go back to reference Witschey WR, Zhang D, Contijoch F, et al. The influence of mitral annuloplasty on left ventricular flow dynamics. Ann Thorac Surg. 2015 May 12. Witschey WR, Zhang D, Contijoch F, et al. The influence of mitral annuloplasty on left ventricular flow dynamics. Ann Thorac Surg. 2015 May 12.
31.
go back to reference Karagöz A, Elalmis ÖU, Cicekcioglu H, et al. Aneurysm of the basal interventricular septum secondary to turbulent flow jet from a mitral prosthetic valve. Hell J Cardiol. 2015;56:98–9. Karagöz A, Elalmis ÖU, Cicekcioglu H, et al. Aneurysm of the basal interventricular septum secondary to turbulent flow jet from a mitral prosthetic valve. Hell J Cardiol. 2015;56:98–9.
32.
go back to reference Rodriguez Muñoz D, Moya Mur JL, Becker Filho DC, et al. Flow mapping inside a left ventricular aneurism: a potential tool to demonstrate thrombogenicity. Echocardiography. 2014;31:E10–2.CrossRefPubMed Rodriguez Muñoz D, Moya Mur JL, Becker Filho DC, et al. Flow mapping inside a left ventricular aneurism: a potential tool to demonstrate thrombogenicity. Echocardiography. 2014;31:E10–2.CrossRefPubMed
33.
go back to reference Li C, Zhang J, Li X, et al. Quantification of chronic aortic regurgitation by vector flow mapping: a novel echocardiographic method. Eur J Echocardiogr. 2010;11:119–24.CrossRefPubMed Li C, Zhang J, Li X, et al. Quantification of chronic aortic regurgitation by vector flow mapping: a novel echocardiographic method. Eur J Echocardiogr. 2010;11:119–24.CrossRefPubMed
Metadata
Title
Vector Flow Mapping in Mitral Valve Disease: a Novel Method for the Assessment of Flow Mechanics and Their Potential Implications for Mitral Valve Repair
Authors
Daniel Rodríguez Muñoz
Cristina Lozano Granero
José Luis Zamorano
Publication date
01-11-2015
Publisher
Springer US
Published in
Current Cardiovascular Imaging Reports / Issue 11/2015
Print ISSN: 1941-9066
Electronic ISSN: 1941-9074
DOI
https://doi.org/10.1007/s12410-015-9358-5