Skip to main content
Top
Published in: Journal of Nuclear Cardiology 2/2019

01-04-2019 | Cardiomyopathy | Original Article

The utility of 82Rb PET for myocardial viability assessment: Comparison with perfusion-metabolism 82Rb-18F-FDG PET

Authors: Jonathan B. Moody, PhD, Keri M. Hiller, CNMT, RT(N), Benjamin C. Lee, PhD, Alexis Poitrasson-Rivière, PhD, James R. Corbett, MD, Richard L. Weinberg, MD, Venkatesh L. Murthy, MD, PhD, Edward P. Ficaro, PhD

Published in: Journal of Nuclear Cardiology | Issue 2/2019

Login to get access

Abstract

Background

82Rb kinetics may distinguish scar from viable but dysfunctional (hibernating) myocardium. We sought to define the relationship between 82Rb kinetics and myocardial viability compared with conventional 82Rb and 18F-fluorodeoxyglucose (FDG) perfusion-metabolism PET imaging.

Methods

Consecutive patients (N = 120) referred for evaluation of myocardial viability prior to revascularization and normal volunteers (N = 37) were reviewed. Dynamic 82Rb 3D PET data were acquired at rest. 18F-FDG 3D PET data were acquired after metabolic preparation using a standardized hyperinsulinemic-euglycemic clamp. 82Rb kinetic parameters K1, k2, and partition coefficient (KP) were estimated by compartmental modeling

Results

Segmental 82Rb k2 and KP differed significantly between scarred and hibernating segments identified by Rb-FDG perfusion-metabolism (k2, 0.42 ± 0.25 vs. 0.22 ± 0.09 min−1; P < .0001; KP, 1.33 ± 0.62 vs. 2.25 ± 0.98 ml/g; P < .0001). As compared to Rb-FDG analysis, segmental Rb KP had a c-index, sensitivity and specificity of 0.809, 76% and 84%, respectively, for distinguishing hibernating and scarred segments. Segmental k2 performed similarly, but with lower specificity (75%, P < .001)

Conclusions

In this pilot study, 82Rb kinetic parameters k2 and KP, which are readily estimated using a compartmental model commonly used for myocardial blood flow, reliably differentiated hibernating myocardium and scar. Further study is necessary to evaluate their clinical utility for predicting benefit after revascularization.
Appendix
Available only for authorised users
Literature
1.
go back to reference Anavekar NS, Chareonthaitawee P, Narula J, Gersh BJ. Revascularization in patients with severe left ventricular dysfunction: is the assessment of viability still viable? J Am Coll Cardiol 2016;67(24):2874-87.CrossRefPubMed Anavekar NS, Chareonthaitawee P, Narula J, Gersh BJ. Revascularization in patients with severe left ventricular dysfunction: is the assessment of viability still viable? J Am Coll Cardiol 2016;67(24):2874-87.CrossRefPubMed
2.
go back to reference Schinkel AFL, Bax JJ, Poldermans D, Elhendy A, Ferrari R, Rahimtoola SH. Hibernating myocardium: diagnosis and patient outcomes. Curr Probl Cardiol 2007;32(7):375-410.CrossRefPubMed Schinkel AFL, Bax JJ, Poldermans D, Elhendy A, Ferrari R, Rahimtoola SH. Hibernating myocardium: diagnosis and patient outcomes. Curr Probl Cardiol 2007;32(7):375-410.CrossRefPubMed
3.
go back to reference Allman KC. Noninvasive assessment myocardial viability: Current status and future directions. J Nucl Cardiol 2013;20(4):618-37.CrossRefPubMed Allman KC. Noninvasive assessment myocardial viability: Current status and future directions. J Nucl Cardiol 2013;20(4):618-37.CrossRefPubMed
4.
go back to reference Schelbert HR. Positron emission tomography of the heart: Methodology, findings in the normal and the diseased heart, and clinical applications. In: Phelps ME, editor. PET: Molecular Imaging and Its Biological Applications. 1st ed. New York: Springer-Verlag; 2004. p. 389-508.CrossRef Schelbert HR. Positron emission tomography of the heart: Methodology, findings in the normal and the diseased heart, and clinical applications. In: Phelps ME, editor. PET: Molecular Imaging and Its Biological Applications. 1st ed. New York: Springer-Verlag; 2004. p. 389-508.CrossRef
5.
go back to reference Goldstein RA. Kinetics of rubidium-82 after coronary occlusion and reperfusion. Assessment of patency and viability in open-chested dogs. J Clin Invest 1985;75(4):1131-1137. Goldstein RA. Kinetics of rubidium-82 after coronary occlusion and reperfusion. Assessment of patency and viability in open-chested dogs. J Clin Invest 1985;75(4):1131-1137.
6.
go back to reference Goldstein RA. Rubidium-82 kinetics after coronary occlusion: temporal relation of net myocardial accumulation and viability in open-chested dogs. J Nucl Med 1986;27(9):1456-61.PubMed Goldstein RA. Rubidium-82 kinetics after coronary occlusion: temporal relation of net myocardial accumulation and viability in open-chested dogs. J Nucl Med 1986;27(9):1456-61.PubMed
7.
go back to reference Gould KL, Yoshida K, Hess MJ, Haynie M, Mullani N, Smalling RW. Myocardial metabolism of fluorodeoxyglucose compared to cell membrane integrity for the potassium analogue rubidium-82 for assessing infarct size in man by PET. J Nucl Med 1991;32(1):1-9.PubMed Gould KL, Yoshida K, Hess MJ, Haynie M, Mullani N, Smalling RW. Myocardial metabolism of fluorodeoxyglucose compared to cell membrane integrity for the potassium analogue rubidium-82 for assessing infarct size in man by PET. J Nucl Med 1991;32(1):1-9.PubMed
8.
go back to reference Yoshida K, Gould KL. Quantitative relation of myocardial infarct size and myocardial viability by positron emission tomography to left ventricular ejection fraction and 3-year mortality with and without revascularization. J Am Coll Cardiol 1993;22(4):984-97.CrossRefPubMed Yoshida K, Gould KL. Quantitative relation of myocardial infarct size and myocardial viability by positron emission tomography to left ventricular ejection fraction and 3-year mortality with and without revascularization. J Am Coll Cardiol 1993;22(4):984-97.CrossRefPubMed
9.
go back to reference vom Dahl J, Muzik O, Wolfe ER, Allman C, Hutchins G, Schwaiger M. Myocardial rubidium-82 tissue kinetics assessed by dynamic positron emission tomography as a marker of myocardial cell membrane integrity and viability. Circulation 1996;93(2):238-45.CrossRef vom Dahl J, Muzik O, Wolfe ER, Allman C, Hutchins G, Schwaiger M. Myocardial rubidium-82 tissue kinetics assessed by dynamic positron emission tomography as a marker of myocardial cell membrane integrity and viability. Circulation 1996;93(2):238-45.CrossRef
10.
go back to reference Stankewicz MA, Mansour CS, Eisner RL, et al. Myocardial viability assessment by PET: 82Rb defect washout does not predict the results of metabolic-perfusion mismatch. J Nucl Med 2005;46(10):1602-9.PubMed Stankewicz MA, Mansour CS, Eisner RL, et al. Myocardial viability assessment by PET: 82Rb defect washout does not predict the results of metabolic-perfusion mismatch. J Nucl Med 2005;46(10):1602-9.PubMed
11.
go back to reference Chien DT, Bravo P, Higuchi T, Merrill J, Bengel FM. Washout of 82Rb as a marker of impaired tissue integrity, obtained by list-mode cardiac PET/CT: relationship with perfusion/metabolism patterns of myocardial viability. Eur J Nucl Med Mol Imaging 2011;38(8):1507-15.CrossRefPubMed Chien DT, Bravo P, Higuchi T, Merrill J, Bengel FM. Washout of 82Rb as a marker of impaired tissue integrity, obtained by list-mode cardiac PET/CT: relationship with perfusion/metabolism patterns of myocardial viability. Eur J Nucl Med Mol Imaging 2011;38(8):1507-15.CrossRefPubMed
12.
go back to reference Moody JB, Lee BC, Corbett JR, Ficaro EP, Murthy VL. Precision and accuracy of clinical quantification of myocardial blood flow by dynamic PET: A technical perspective. J. Nucl. Cardiol 2015;22(5):935-51.CrossRefPubMed Moody JB, Lee BC, Corbett JR, Ficaro EP, Murthy VL. Precision and accuracy of clinical quantification of myocardial blood flow by dynamic PET: A technical perspective. J. Nucl. Cardiol 2015;22(5):935-51.CrossRefPubMed
13.
go back to reference Knuuti MJ, Nuutila P, Ruotsalainen U, et al. Euglycemic hyperinsulinemic clamp and oral glucose load in stimulating myocardial glucose utilization during positron emission tomography. J Nucl Med 1992;33(7):1255-62.PubMed Knuuti MJ, Nuutila P, Ruotsalainen U, et al. Euglycemic hyperinsulinemic clamp and oral glucose load in stimulating myocardial glucose utilization during positron emission tomography. J Nucl Med 1992;33(7):1255-62.PubMed
14.
go back to reference Lee BC, Moody JB, Poitrasson-Rivière A, et al. Blood pool and tissue phase patient motion effects on 82rubidium PET myocardial blood flow quantification. J Nucl Cardiol 2018;23:1-12. Lee BC, Moody JB, Poitrasson-Rivière A, et al. Blood pool and tissue phase patient motion effects on 82rubidium PET myocardial blood flow quantification. J Nucl Cardiol 2018;23:1-12.
15.
go back to reference Ficaro EP, Lee BC, Kritzman JN, Corbett JR. Corridor4DM: the Michigan method for quantitative nuclear cardiology. J Nucl Cardiol 2007;14(4):455-65.CrossRefPubMed Ficaro EP, Lee BC, Kritzman JN, Corbett JR. Corridor4DM: the Michigan method for quantitative nuclear cardiology. J Nucl Cardiol 2007;14(4):455-65.CrossRefPubMed
16.
go back to reference Porenta G, Kuhle W, Czernin J, et al. Semiquantitative assessment of myocardial blood flow and viability using polar map displays of cardiac PET images. J Nucl Med 1992;33(9):1628-36.PubMed Porenta G, Kuhle W, Czernin J, et al. Semiquantitative assessment of myocardial blood flow and viability using polar map displays of cardiac PET images. J Nucl Med 1992;33(9):1628-36.PubMed
17.
go back to reference FDG-PET/CT Technical Committee. FDG-PET/CT as an Imaging Biomarker Measuring Response to Cancer Therapy. Quantitative Imaging Biomarker Alliance, Version 1.05, Publicly Reviewed Version. QIBA; 2013. https://rsna.org/qiba. Accessed Feb 17, 2016. FDG-PET/CT Technical Committee. FDG-PET/CT as an Imaging Biomarker Measuring Response to Cancer Therapy. Quantitative Imaging Biomarker Alliance, Version 1.05, Publicly Reviewed Version. QIBA; 2013. https://​rsna.​org/​qiba. Accessed Feb 17, 2016.
18.
go back to reference Knuuti J, Schelbert HR, Bax JJ. The need for standardisation of cardiac FDG PET imaging in the evaluation of myocardial viability in patients with chronic ischaemic left ventricular dysfunction. Eur J Nucl Med Mol Imaging 2002;29(9):1257-66.CrossRefPubMed Knuuti J, Schelbert HR, Bax JJ. The need for standardisation of cardiac FDG PET imaging in the evaluation of myocardial viability in patients with chronic ischaemic left ventricular dysfunction. Eur J Nucl Med Mol Imaging 2002;29(9):1257-66.CrossRefPubMed
19.
go back to reference Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the American Heart Association. Circulation 2002;105(4):539-42.CrossRefPubMed Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the American Heart Association. Circulation 2002;105(4):539-42.CrossRefPubMed
20.
go back to reference Moody JB, Murthy VL, Lee BC, Corbett JR, Ficaro EP. Variance estimation for myocardial blood flow by dynamic PET. IEEE Trans Med Imaging 2015;34(11):2343-53.CrossRefPubMed Moody JB, Murthy VL, Lee BC, Corbett JR, Ficaro EP. Variance estimation for myocardial blood flow by dynamic PET. IEEE Trans Med Imaging 2015;34(11):2343-53.CrossRefPubMed
21.
go back to reference Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference, and prediction. 2nd ed. New York: Springer; 2009.CrossRef Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference, and prediction. 2nd ed. New York: Springer; 2009.CrossRef
22.
go back to reference Muniyappa R, Lee S, Chen H, Quon MJ. Current approaches for assessing insulin sensitivity and resistance in vivo: advantages, limitations, and appropriate usage. Am J Physiol 2008;294(1):E15-26. Muniyappa R, Lee S, Chen H, Quon MJ. Current approaches for assessing insulin sensitivity and resistance in vivo: advantages, limitations, and appropriate usage. Am J Physiol 2008;294(1):E15-26.
24.
go back to reference Millman KJ, Aivazis M. Python for scientists and engineers. Comput Sci Eng 2011;13(2):9-12.CrossRef Millman KJ, Aivazis M. Python for scientists and engineers. Comput Sci Eng 2011;13(2):9-12.CrossRef
25.
go back to reference Paternostro G, Camici PG, Lammertsma AA, et al. Cardiac and skeletal muscle insulin resistance in patients with coronary heart disease. A study with positron emission tomography. J Clin Invest 1996;98(9):2094-9.CrossRefPubMedPubMedCentral Paternostro G, Camici PG, Lammertsma AA, et al. Cardiac and skeletal muscle insulin resistance in patients with coronary heart disease. A study with positron emission tomography. J Clin Invest 1996;98(9):2094-9.CrossRefPubMedPubMedCentral
26.
go back to reference Nesterov SV, Deshayes E, Sciagrà R, et al. Quantification of myocardial blood flow in absolute terms using 82Rb PET imaging: results of RUBY-10 study. JACC Cardiovasc Imaging 2014;7(11):1119-27.CrossRefPubMedPubMedCentral Nesterov SV, Deshayes E, Sciagrà R, et al. Quantification of myocardial blood flow in absolute terms using 82Rb PET imaging: results of RUBY-10 study. JACC Cardiovasc Imaging 2014;7(11):1119-27.CrossRefPubMedPubMedCentral
27.
go back to reference Klein R, Renaud JM, Ziadi MC, et al. Intra- and inter-operator repeatability of myocardial blood flow and myocardial flow reserve measurements using rubidium-82 PET and a highly automated analysis program. J Nucl Cardiol 2010;17:600-16.CrossRefPubMed Klein R, Renaud JM, Ziadi MC, et al. Intra- and inter-operator repeatability of myocardial blood flow and myocardial flow reserve measurements using rubidium-82 PET and a highly automated analysis program. J Nucl Cardiol 2010;17:600-16.CrossRefPubMed
28.
go back to reference Buck A, Wolpers HG, Hutchins GD, et al. Effect of carbon-11-acetate recirculation on estimates of myocardial oxygen consumption by PET. J Nucl Med 1991;32(10):1950-7.PubMed Buck A, Wolpers HG, Hutchins GD, et al. Effect of carbon-11-acetate recirculation on estimates of myocardial oxygen consumption by PET. J Nucl Med 1991;32(10):1950-7.PubMed
29.
go back to reference Budinger TF, Yano Y, Huesman RH, et al. Positron emission tomography of the heart. Physiologist 1983;26(1):31-4.PubMed Budinger TF, Yano Y, Huesman RH, et al. Positron emission tomography of the heart. Physiologist 1983;26(1):31-4.PubMed
30.
go back to reference Mullani NA, Goldstein RA, Gould KL, et al. Myocardial perfusion with rubidium-82. I. Measurement of extraction fraction and flow with external detectors. J Nucl Med 1983;24(10):898-906.PubMed Mullani NA, Goldstein RA, Gould KL, et al. Myocardial perfusion with rubidium-82. I. Measurement of extraction fraction and flow with external detectors. J Nucl Med 1983;24(10):898-906.PubMed
31.
go back to reference Lortie M, Beanlands RSB, Yoshinaga K, Klein R, Dasilva JN, DeKemp RA. Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging 2007;34(11):1765-74.CrossRefPubMed Lortie M, Beanlands RSB, Yoshinaga K, Klein R, Dasilva JN, DeKemp RA. Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging 2007;34(11):1765-74.CrossRefPubMed
32.
go back to reference Prior JO, Allenbach G, Valenta I, et al. Quantification of myocardial blood flow with 82Rb positron emission tomography: clinical validation with 15O-water. Eur J Nucl Med Mol Imaging 2012;39(6):1037-47.CrossRefPubMedPubMedCentral Prior JO, Allenbach G, Valenta I, et al. Quantification of myocardial blood flow with 82Rb positron emission tomography: clinical validation with 15O-water. Eur J Nucl Med Mol Imaging 2012;39(6):1037-47.CrossRefPubMedPubMedCentral
33.
go back to reference Schwaiger M, Pirich C. Reverse flow-metabolism mismatch: what does it mean? J Nucl Med 1999;40(9):1499-502.PubMed Schwaiger M, Pirich C. Reverse flow-metabolism mismatch: what does it mean? J Nucl Med 1999;40(9):1499-502.PubMed
34.
go back to reference Johnson NP, Sdringola S, Gould KL. Partial volume correction incorporating Rb-82 positron range for quantitative myocardial perfusion PET based on systolic-diastolic activity ratios and phantom measurements. J Nucl Cardiol 2011;18(2):247-58.CrossRefPubMed Johnson NP, Sdringola S, Gould KL. Partial volume correction incorporating Rb-82 positron range for quantitative myocardial perfusion PET based on systolic-diastolic activity ratios and phantom measurements. J Nucl Cardiol 2011;18(2):247-58.CrossRefPubMed
35.
go back to reference Renaud JM, Yip K, Guimond J, et al. Characterization of 3D PET systems for accurate quantification of myocardial blood flow. J Nucl Med 2017;58(1):103-9.CrossRefPubMed Renaud JM, Yip K, Guimond J, et al. Characterization of 3D PET systems for accurate quantification of myocardial blood flow. J Nucl Med 2017;58(1):103-9.CrossRefPubMed
36.
go back to reference AlJaroudi W, Jaber WA, Grimm RA, Marwick T, Cerqueira MD. Alternative methods for the assessment of mechanical dyssynchrony using phase analysis of gated single photon emission computed tomography myocardial perfusion imaging. Int J Cardiovasc Imaging 2012;28(6):1385-94.CrossRefPubMed AlJaroudi W, Jaber WA, Grimm RA, Marwick T, Cerqueira MD. Alternative methods for the assessment of mechanical dyssynchrony using phase analysis of gated single photon emission computed tomography myocardial perfusion imaging. Int J Cardiovasc Imaging 2012;28(6):1385-94.CrossRefPubMed
Metadata
Title
The utility of 82Rb PET for myocardial viability assessment: Comparison with perfusion-metabolism 82Rb-18F-FDG PET
Authors
Jonathan B. Moody, PhD
Keri M. Hiller, CNMT, RT(N)
Benjamin C. Lee, PhD
Alexis Poitrasson-Rivière, PhD
James R. Corbett, MD
Richard L. Weinberg, MD
Venkatesh L. Murthy, MD, PhD
Edward P. Ficaro, PhD
Publication date
01-04-2019
Publisher
Springer International Publishing
Published in
Journal of Nuclear Cardiology / Issue 2/2019
Print ISSN: 1071-3581
Electronic ISSN: 1532-6551
DOI
https://doi.org/10.1007/s12350-019-01615-0

Other articles of this Issue 2/2019

Journal of Nuclear Cardiology 2/2019 Go to the issue