Skip to main content
Top
Published in: Journal of Nuclear Cardiology 2/2020

01-04-2020 | Original Article

Evaluation of different respiratory gating schemes for cardiac SPECT

Authors: Duo Zhang, BEng, P. Hendrik Pretorius, PhD, Michael Ghaly, PhD, Qi Zhang, BEng, Michael A. King, PhD, DABR, Greta S. P. Mok, PhD

Published in: Journal of Nuclear Cardiology | Issue 2/2020

Login to get access

Abstract

Background

Respiratory gating reduces motion blurring in cardiac SPECT. Here we aim to evaluate the performance of three respiratory gating strategies using a population of digital phantoms with known truth and clinical data.

Methods

We analytically simulated 60 projections for 10 XCAT phantoms with 99mTc-sestamibi distributions using three gating schemes: equal amplitude gating (AG), equal count gating (CG), and equal time gating (TG). Clinical list-mode data for 10 patients who underwent 99mTc-sestamibi scans were also processed using the 3 gating schemes. Reconstructed images in each gate were registered to a reference gate, averaged and reoriented to generate the polar plots. For simulations, image noise, relative difference (RD) of averaged count for each of the 17 segment, and relative defect size difference (RSD) were analyzed. For clinical data, image intensity profile and FWHM were measured across the left ventricle wall.

Results

For simulations, AG and CG methods showed significantly lower RD and RSD compared to TG, while noise variation was more non-uniform through different gates for AG. In the clinical study, AG and CG had smaller FWHM than TG.

Conclusions

AG and CG methods show better performance for motion reduction and are recommended for clinical respiratory gating SPECT implementation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chrysanthou-Baustert I, Parpottas Y, Demetriadou O, Christofides S, Yiannakkaras C, Kaolis D, et al. Diagnostic sensitivity of SPECT myocardial perfusion imaging using a pumping cardiac phantom with inserted variable defects. J Nucl Cardiol. 2013;20:609–15.CrossRef Chrysanthou-Baustert I, Parpottas Y, Demetriadou O, Christofides S, Yiannakkaras C, Kaolis D, et al. Diagnostic sensitivity of SPECT myocardial perfusion imaging using a pumping cardiac phantom with inserted variable defects. J Nucl Cardiol. 2013;20:609–15.CrossRef
2.
go back to reference Wang Y, Riederer SJ, Ehman RL. Respiratory motion of the heart: Kinematics and the implications for the spatial resolution in coronary imaging. Magn Reson Med. 1995;33:713–9.CrossRef Wang Y, Riederer SJ, Ehman RL. Respiratory motion of the heart: Kinematics and the implications for the spatial resolution in coronary imaging. Magn Reson Med. 1995;33:713–9.CrossRef
3.
go back to reference Pretorius PH, Johnson KL, Dahlberg ST, King MA. Investigation of the physical effects of respiratory motion compensation in a large population of patients undergoing Tc-99m cardiac perfusion SPECT/CT stress imaging. J Nucl Cardiol 2017; Epub ahead of print. Pretorius PH, Johnson KL, Dahlberg ST, King MA. Investigation of the physical effects of respiratory motion compensation in a large population of patients undergoing Tc-99m cardiac perfusion SPECT/CT stress imaging. J Nucl Cardiol 2017; Epub ahead of print.
4.
go back to reference Zhang D, Yang B-H, Wu NY, Mok GSP. Respiratory average CT for attenuation correction in myocardial perfusion SPECT/CT. Ann Nucl Med. 2017;31:172–80.CrossRef Zhang D, Yang B-H, Wu NY, Mok GSP. Respiratory average CT for attenuation correction in myocardial perfusion SPECT/CT. Ann Nucl Med. 2017;31:172–80.CrossRef
5.
go back to reference Okuda K, Nakajima K, Kikuchi A, Onoguchi M, Hashimoto M. Cardiac and respiratory motion-induced artifact in myocardial perfusion SPECT 4D digital anthropomorphic phantom study. Ann Nucl Cardiol. 2017;3:88–93.CrossRef Okuda K, Nakajima K, Kikuchi A, Onoguchi M, Hashimoto M. Cardiac and respiratory motion-induced artifact in myocardial perfusion SPECT 4D digital anthropomorphic phantom study. Ann Nucl Cardiol. 2017;3:88–93.CrossRef
6.
go back to reference Tsui BMW, Segars WP, Lalush DS. Effects of upward creep and respiratory motion in myocardial SPECT. IEEE Trans Nucl Sci. 2000;47:1192–5.CrossRef Tsui BMW, Segars WP, Lalush DS. Effects of upward creep and respiratory motion in myocardial SPECT. IEEE Trans Nucl Sci. 2000;47:1192–5.CrossRef
7.
go back to reference Bitarafan A, Rajabi H, Gruy B, Rustgou F, Sharafi AA, Firoozabady H, et al. Respiratory motion detection and correction in ECG-gated SPECT: A new approach. Korean J Radiol. 2008;9:490–7.CrossRef Bitarafan A, Rajabi H, Gruy B, Rustgou F, Sharafi AA, Firoozabady H, et al. Respiratory motion detection and correction in ECG-gated SPECT: A new approach. Korean J Radiol. 2008;9:490–7.CrossRef
8.
go back to reference Mukherjee JM, McNamara JE, Johnson KL, Dey J, King MA. Estimation of rigid-body and respiratory motion of the heart from marker-tracking data for SPECT motion correction. IEEE Trans Nucl Sci. 2009;56:147–55.CrossRef Mukherjee JM, McNamara JE, Johnson KL, Dey J, King MA. Estimation of rigid-body and respiratory motion of the heart from marker-tracking data for SPECT motion correction. IEEE Trans Nucl Sci. 2009;56:147–55.CrossRef
9.
go back to reference Mukherjee JM, Hutton BF, Johnson KL, Pretorius PH, King MA. An evaluation of data-driven motion estimation in comparison to the usage of external-surrogates in cardiac SPECT imaging. Phys Med Biol. 2013;58:7625–46.CrossRef Mukherjee JM, Hutton BF, Johnson KL, Pretorius PH, King MA. An evaluation of data-driven motion estimation in comparison to the usage of external-surrogates in cardiac SPECT imaging. Phys Med Biol. 2013;58:7625–46.CrossRef
10.
go back to reference Sanders JC, Ritt P, Kuwert T, Vija AH, Maier AK. Fully automated data-driven respiratory signal extraction from SPECT images using laplacian eigenmaps. IEEE Trans Med Imaging. 2016;35:2425–35.CrossRef Sanders JC, Ritt P, Kuwert T, Vija AH, Maier AK. Fully automated data-driven respiratory signal extraction from SPECT images using laplacian eigenmaps. IEEE Trans Med Imaging. 2016;35:2425–35.CrossRef
11.
go back to reference Ko CL, Wu YW, Cheng MF, Yen RF, Wu WC, Tzen KY. Data-driven respiratory motion tracking and compensation in CZT cameras: A comprehensive analysis of phantom and human images. J Nucl Cardiol. 2015;22:308–18.CrossRef Ko CL, Wu YW, Cheng MF, Yen RF, Wu WC, Tzen KY. Data-driven respiratory motion tracking and compensation in CZT cameras: A comprehensive analysis of phantom and human images. J Nucl Cardiol. 2015;22:308–18.CrossRef
12.
go back to reference Chung C, Mark H, Max L, James B, Yariv G, Yi-Hwa L, et al. End-expiration respiratory gating for a high-resolution stationary cardiac SPECT system. Phys Med Biol. 2014;59:6267–87.CrossRef Chung C, Mark H, Max L, James B, Yariv G, Yi-Hwa L, et al. End-expiration respiratory gating for a high-resolution stationary cardiac SPECT system. Phys Med Biol. 2014;59:6267–87.CrossRef
13.
go back to reference Suga K, Kawakami Y, Zaki M, Yamashita T, Shimizu K, Matsunaga N. Clinical utility of co-registered respiratory-gated 99mTc-Technegas/MAA SPECT-CT images in the assessment of regional lung functional impairment in patients with lung cancer. Eur J Nucl Med Mol Imaging. 2004;31:1280–90.CrossRef Suga K, Kawakami Y, Zaki M, Yamashita T, Shimizu K, Matsunaga N. Clinical utility of co-registered respiratory-gated 99mTc-Technegas/MAA SPECT-CT images in the assessment of regional lung functional impairment in patients with lung cancer. Eur J Nucl Med Mol Imaging. 2004;31:1280–90.CrossRef
14.
go back to reference Suga K, Yasuhiko K, Zaki M, Yamashita T, Seto A, Matsumoto T, et al. Assessment of regional lung functional impairment with co-registered respiratory-gated ventilation/perfusion SPET-CT images: Initial experiences. Eur J Nucl Med Mol Imaging. 2004;31:240–9.CrossRef Suga K, Yasuhiko K, Zaki M, Yamashita T, Seto A, Matsumoto T, et al. Assessment of regional lung functional impairment with co-registered respiratory-gated ventilation/perfusion SPET-CT images: Initial experiences. Eur J Nucl Med Mol Imaging. 2004;31:240–9.CrossRef
15.
go back to reference Cho K, Kumiata S, Okada S, Kumazaki T. Development of respiratory gated myocardial SPECT system. J Nucl Cardiol. 1999;6:20–8.CrossRef Cho K, Kumiata S, Okada S, Kumazaki T. Development of respiratory gated myocardial SPECT system. J Nucl Cardiol. 1999;6:20–8.CrossRef
16.
go back to reference Smyczynski MS, Gifford HC, Dey J, Lehovich A, McNamara JE, Segars WP, et al. LROC investigation of three strategies for reducing the impact of respiratory motion on the detection of solitary pulmonary nodules in SPECT. IEEE Trans Nucl Sci. 2016;63:130–9.CrossRef Smyczynski MS, Gifford HC, Dey J, Lehovich A, McNamara JE, Segars WP, et al. LROC investigation of three strategies for reducing the impact of respiratory motion on the detection of solitary pulmonary nodules in SPECT. IEEE Trans Nucl Sci. 2016;63:130–9.CrossRef
17.
go back to reference Kovalski G, Israel O, Keidar Z, Frenkel A, Sachs J, Azhari H. Correction of heart motion due to respiration in clinical myocardial perfusion SPECT scans using respiratory gating. J Nucl Med. 2007;48:630–6.CrossRef Kovalski G, Israel O, Keidar Z, Frenkel A, Sachs J, Azhari H. Correction of heart motion due to respiration in clinical myocardial perfusion SPECT scans using respiratory gating. J Nucl Med. 2007;48:630–6.CrossRef
18.
go back to reference Segars WP, Tsui BMW. Study of the efficacy of respiratory gating in myocardial SPECT using the new 4-D NCAT phantom. IEEE Trans Nucl Sci. 2002;49:675–9.CrossRef Segars WP, Tsui BMW. Study of the efficacy of respiratory gating in myocardial SPECT using the new 4-D NCAT phantom. IEEE Trans Nucl Sci. 2002;49:675–9.CrossRef
19.
go back to reference Segars WP, Mok SP, Tsui BMW. Investigation of respiratory gating in quantitative myocardial SPECT. IEEE Trans Nucl Sci. 2009;56:91–6.CrossRef Segars WP, Mok SP, Tsui BMW. Investigation of respiratory gating in quantitative myocardial SPECT. IEEE Trans Nucl Sci. 2009;56:91–6.CrossRef
20.
go back to reference Pépin A, Daouk J, Bailly P, Hapdey S, Meyer M-E. Management of respiratory motion in PET/computed tomography: The state of the art. Nucl Med Commun. 2014;35:113–22.CrossRef Pépin A, Daouk J, Bailly P, Hapdey S, Meyer M-E. Management of respiratory motion in PET/computed tomography: The state of the art. Nucl Med Commun. 2014;35:113–22.CrossRef
21.
go back to reference Dey J, Segars WP, Pretorius PH, Walvick RP, Bruyant PP, Dahlberg S, et al. Estimation and correction of cardiac respiratory motion in SPECT in the presence of limited-angle effects due to irregular respiration. Med Phys. 2010;37:6453–65.CrossRef Dey J, Segars WP, Pretorius PH, Walvick RP, Bruyant PP, Dahlberg S, et al. Estimation and correction of cardiac respiratory motion in SPECT in the presence of limited-angle effects due to irregular respiration. Med Phys. 2010;37:6453–65.CrossRef
22.
go back to reference Jani SS, Robinson CG, Dahlbom M, White BM, Thomas DH, Gaudio S, et al. A comparison of amplitude-based and phase-based positron emission tomography gating algorithms for segmentation of internal target volumes of tumors subject to respiratory motion. Int J Radiat Oncol Biol Phys. 2013;87:562–9.CrossRef Jani SS, Robinson CG, Dahlbom M, White BM, Thomas DH, Gaudio S, et al. A comparison of amplitude-based and phase-based positron emission tomography gating algorithms for segmentation of internal target volumes of tumors subject to respiratory motion. Int J Radiat Oncol Biol Phys. 2013;87:562–9.CrossRef
23.
go back to reference Dawood M, Büther F, Lang N, Schober O, Schäfers KP. Respiratory gating in positron emission tomography: A quantitative comparison of different gating schemes. Med Phys. 2007;34:3067–76.CrossRef Dawood M, Büther F, Lang N, Schober O, Schäfers KP. Respiratory gating in positron emission tomography: A quantitative comparison of different gating schemes. Med Phys. 2007;34:3067–76.CrossRef
24.
go back to reference Lu W, Parikh PJ, Hubenschmidt JP, Bradley JD, Low DA. A comparison between amplitude sorting and phase-angle sorting using external respiratory measurement for 4D CT. Med Phys. 2006;33:2964–74.CrossRef Lu W, Parikh PJ, Hubenschmidt JP, Bradley JD, Low DA. A comparison between amplitude sorting and phase-angle sorting using external respiratory measurement for 4D CT. Med Phys. 2006;33:2964–74.CrossRef
25.
go back to reference Segars WP, Sturgeon G, Mendonca S, Grimes J, Tsui BMW. 4D XCAT phantom for multimodality imaging research. Med Phys. 2010;37:4902–15.CrossRef Segars WP, Sturgeon G, Mendonca S, Grimes J, Tsui BMW. 4D XCAT phantom for multimodality imaging research. Med Phys. 2010;37:4902–15.CrossRef
26.
go back to reference Ghaly M, Du Y, Fung GSK, Tsui BMW, Links JM, Frey E. Design of a digital phantom population for myocardial perfusion SPECT imaging research. Phys Med Biol. 2014;59:2935–53.CrossRef Ghaly M, Du Y, Fung GSK, Tsui BMW, Links JM, Frey E. Design of a digital phantom population for myocardial perfusion SPECT imaging research. Phys Med Biol. 2014;59:2935–53.CrossRef
27.
go back to reference Quirk S, Becker N, Smith WL. External respiratory motion analysis and statistics for patients and volunteers. J Appl Clin Med Phys. 2013;14:90–101.CrossRef Quirk S, Becker N, Smith WL. External respiratory motion analysis and statistics for patients and volunteers. J Appl Clin Med Phys. 2013;14:90–101.CrossRef
28.
go back to reference Tsui BMW, Hu HB, Gilland DR, Gullberg GT. Implementation of simultaneous attenuation and detector response correction in SPECT. IEEE Trans Nucl Sci. 1988;35:778–83.CrossRef Tsui BMW, Hu HB, Gilland DR, Gullberg GT. Implementation of simultaneous attenuation and detector response correction in SPECT. IEEE Trans Nucl Sci. 1988;35:778–83.CrossRef
29.
go back to reference Ghaly M, Links JM, Frey E. Optimization of energy window and evaluation of scatter compensation methods in myocardial perfusion SPECT using the ideal observer with and without model mismatch and an anthropomorphic model observer. J Med Imaging. 2015;2:015502.CrossRef Ghaly M, Links JM, Frey E. Optimization of energy window and evaluation of scatter compensation methods in myocardial perfusion SPECT using the ideal observer with and without model mismatch and an anthropomorphic model observer. J Med Imaging. 2015;2:015502.CrossRef
30.
go back to reference Pretorius PH, Tin-Su P, Narayanan MV, King MA. A study of the influence of local variations in myocardial thickness on SPECT perfusion imaging. IEEE Trans Nucl Sci. 2002;49:2304–8.CrossRef Pretorius PH, Tin-Su P, Narayanan MV, King MA. A study of the influence of local variations in myocardial thickness on SPECT perfusion imaging. IEEE Trans Nucl Sci. 2002;49:2304–8.CrossRef
31.
go back to reference Ogawa K, Harata Y, Ichihara T, Kubo A, Hashimoto S. A practical method for position-dependent Compton-scatter correction in single photon emission CT. IEEE Trans Med Imaging. 1991;10:408–12.CrossRef Ogawa K, Harata Y, Ichihara T, Kubo A, Hashimoto S. A practical method for position-dependent Compton-scatter correction in single photon emission CT. IEEE Trans Med Imaging. 1991;10:408–12.CrossRef
32.
go back to reference McNamara JE, Pretorius PH, Johnson K, Mukherjee JM, Dey J, Gennert MA, et al. A flexible multicamera visual-tracking system for detecting and correcting motion-induced artifacts in cardiac SPECT slices. Med Phys. 2009;36:1913–23.CrossRef McNamara JE, Pretorius PH, Johnson K, Mukherjee JM, Dey J, Gennert MA, et al. A flexible multicamera visual-tracking system for detecting and correcting motion-induced artifacts in cardiac SPECT slices. Med Phys. 2009;36:1913–23.CrossRef
33.
go back to reference Yoo TS, Ackerman MJ, Lorensen WE, Schroeder W, Chalana V, Aylward S, et al. Engineering and algorithm design for an image processing API: A technical report on ITK - The Insight Toolkit. Stud Health Technol Inform. 2002;85:586–92.PubMed Yoo TS, Ackerman MJ, Lorensen WE, Schroeder W, Chalana V, Aylward S, et al. Engineering and algorithm design for an image processing API: A technical report on ITK - The Insight Toolkit. Stud Health Technol Inform. 2002;85:586–92.PubMed
34.
go back to reference Pluim JPW, Maintz JBA, Viergever MA. Mutual-information-based registration of medical images: A survey. IEEE Trans Med Imaging. 2003;22:986–1004.CrossRef Pluim JPW, Maintz JBA, Viergever MA. Mutual-information-based registration of medical images: A survey. IEEE Trans Med Imaging. 2003;22:986–1004.CrossRef
35.
go back to reference Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105:539–42.CrossRef Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation. 2002;105:539–42.CrossRef
36.
go back to reference McLeish K, Hill DL, Atkinson D, Blackall JM, Razavi R. A study of the motion and deformation of the heart due to respiration. IEEE Trans Med Imaging. 2002;21:1142–50.CrossRef McLeish K, Hill DL, Atkinson D, Blackall JM, Razavi R. A study of the motion and deformation of the heart due to respiration. IEEE Trans Med Imaging. 2002;21:1142–50.CrossRef
37.
go back to reference Feng T, Wang J, Fung G, Tsui B. Non-rigid dual respiratory and cardiac motion correction methods after, during, and before image reconstruction for 4D cardiac PET. Phys Med Biol. 2016;61:151–68.CrossRef Feng T, Wang J, Fung G, Tsui B. Non-rigid dual respiratory and cardiac motion correction methods after, during, and before image reconstruction for 4D cardiac PET. Phys Med Biol. 2016;61:151–68.CrossRef
38.
go back to reference Qi W, Yang Y, Wernick MN, Pretorius PH, King MA. Limited-angle effect compensation for respiratory binned cardiac SPECT. Med Phys. 2016;43:443–54.CrossRef Qi W, Yang Y, Wernick MN, Pretorius PH, King MA. Limited-angle effect compensation for respiratory binned cardiac SPECT. Med Phys. 2016;43:443–54.CrossRef
Metadata
Title
Evaluation of different respiratory gating schemes for cardiac SPECT
Authors
Duo Zhang, BEng
P. Hendrik Pretorius, PhD
Michael Ghaly, PhD
Qi Zhang, BEng
Michael A. King, PhD, DABR
Greta S. P. Mok, PhD
Publication date
01-04-2020
Publisher
Springer International Publishing
Published in
Journal of Nuclear Cardiology / Issue 2/2020
Print ISSN: 1071-3581
Electronic ISSN: 1532-6551
DOI
https://doi.org/10.1007/s12350-018-1392-7

Other articles of this Issue 2/2020

Journal of Nuclear Cardiology 2/2020 Go to the issue