Skip to main content
Top
Published in: Journal of Nuclear Cardiology 4/2019

01-08-2019 | Editorial

Dynamic cardiac PET imaging: Technological improvements advancing future cardiac health

Authors: Grant T. Gullberg, PhD, Uttam M. Shrestha, PhD, Youngho Seo, PhD

Published in: Journal of Nuclear Cardiology | Issue 4/2019

Login to get access

Excerpt

While PET, in conjunction with CT,1 has been an important tool in the management of oncology patients, accounting for 86% of PET scans by 2016,2 PET with attenuation and motion correction has significant potential for future cardiac applications, especially with the ability of PET to perform dynamic imaging to measure myocardial perfusion—myocardial blood flow (MBF) and coronary flow reserve (CFR), integrity of neural transmitters of the autonomic nervous system, and connecting cardiac efficiency with metabolism of myocardial substrates. Its potential is found with its excellent resolution and sensitivity, the ability to use tracers with a short half-life allowing higher doses, and possibly in the future the ability to use 18F perfusion agents that would eliminate the need of an onsite cyclotron. During dynamic imaging (a dynamic scan should be performed for every procedure), the high counts during the blood input phase can paralyze the camera electronics. Therefore, improved time-of-flight (TOF) electronics able to accept these high counts rates and quality control measures to determine the maximum allowable injected dose (as presented in this issue of the Journal by van Dijk and colleagues) for dynamic cardiac PET studies need to be implemented. However, there is a caveat: restricting the injected dose to meet the count rate capabilities during the input phase penalizes the ability to obtain high counts during the later phase of the dynamic study when the camera electronics are less likely to be paralyzed. Using constant infusion techniques can reduce high peak counts during the input phase, but this reduces the ability to accurately measure the frequency response of the transfer of blood to tissue compartments. Other approaches in the future such as using a library of input functions or blind estimation may alleviate the limitations of injecting a restricted dose for dynamic cardiac PET studies. Nevertheless, one needs to follow caution and consider the fact that the overall radiation burden to the U.S. population doubled from the early 1980s to 2006, and the contribution of nuclear cardiology procedures to ionizing radiation burden increased 10-fold.3 Thus new and improved hardware, software, and radiotracer developments play an important part in the performance of the PET system for dynamic cardiac applications to provide expected clinical benefit that outweighs the risks of the procedure. …
Literature
1.
go back to reference Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, Jerin J, Young J, Byars L, Nutt R. A combined PET/CT scanner for clinical oncology. J Nucl Med. 2000;41:1369-79.PubMed Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, Jerin J, Young J, Byars L, Nutt R. A combined PET/CT scanner for clinical oncology. J Nucl Med. 2000;41:1369-79.PubMed
3.
go back to reference Dorbala S, Blankstein R, Skali H, Park MA, Fantony J, Mauceri C, Semer J, Moore SC, Di Carli MF. Approaches to reducing radiation dose from radionuclide myocardial perfusion imaging. J Nucl Med. 2015;56:592-9.CrossRefPubMed Dorbala S, Blankstein R, Skali H, Park MA, Fantony J, Mauceri C, Semer J, Moore SC, Di Carli MF. Approaches to reducing radiation dose from radionuclide myocardial perfusion imaging. J Nucl Med. 2015;56:592-9.CrossRefPubMed
4.
go back to reference Renaud JM, Yip K, Guimond J, Trottier M, Pibarot P, Turcotte E, Maguire C, Lalonde L, Gulenchyn K, Farncombe T, Wisenberg G, Moody J, Lee B, Port SC, Turkington TG, Beanlands RS, deKemp RA. Characterization of 3-dimensional PET systems for accurate quantification of myocardial blood flow. J Nucl Med. 2017;58:103-9.CrossRefPubMed Renaud JM, Yip K, Guimond J, Trottier M, Pibarot P, Turcotte E, Maguire C, Lalonde L, Gulenchyn K, Farncombe T, Wisenberg G, Moody J, Lee B, Port SC, Turkington TG, Beanlands RS, deKemp RA. Characterization of 3-dimensional PET systems for accurate quantification of myocardial blood flow. J Nucl Med. 2017;58:103-9.CrossRefPubMed
5.
go back to reference Seo Y, Teo B-K, Hadi M, Schreck C, Bacharach SL, Hasegawa BH. Quantitative accuracy of PET/CT for image-based kinetic analysis. Med Phys. 2008;35:3086-9.CrossRefPubMedPubMedCentral Seo Y, Teo B-K, Hadi M, Schreck C, Bacharach SL, Hasegawa BH. Quantitative accuracy of PET/CT for image-based kinetic analysis. Med Phys. 2008;35:3086-9.CrossRefPubMedPubMedCentral
6.
go back to reference Kolthammer JA, Su KH, Grover A, Narayanan M, Jordan DW, Muzic RF. Performance evaluation of the Ingenuity TF PET/CT scanner with a focus on high count-rate conditions. Phys Med Biol. 2014;59:3843-59.CrossRefPubMedPubMedCentral Kolthammer JA, Su KH, Grover A, Narayanan M, Jordan DW, Muzic RF. Performance evaluation of the Ingenuity TF PET/CT scanner with a focus on high count-rate conditions. Phys Med Biol. 2014;59:3843-59.CrossRefPubMedPubMedCentral
7.
go back to reference Hsu DFC, Ilan E, Peterson WT, Uribe J, Lubberink M, Levin CS. Studies of a next-generation silicon-photomultiplier-based time-of-flight PET/CT system. J Nucl Med. 2017;58:1511-8.CrossRefPubMed Hsu DFC, Ilan E, Peterson WT, Uribe J, Lubberink M, Levin CS. Studies of a next-generation silicon-photomultiplier-based time-of-flight PET/CT system. J Nucl Med. 2017;58:1511-8.CrossRefPubMed
8.
go back to reference Nguyen NC, Vercher-Conejero JL, Sattar A, Miller MA, Maniawski PJ, Jordan DW, Muzic RF Jr, Su KH, O’Donnell JK, Faulhaber PF. Image quality and diagnostic performance of a digital PET prototype in patients with oncologic diseases: Initial experience and comparison with analog PET. J Nucl Med. 2015;56:1378-85.CrossRefPubMed Nguyen NC, Vercher-Conejero JL, Sattar A, Miller MA, Maniawski PJ, Jordan DW, Muzic RF Jr, Su KH, O’Donnell JK, Faulhaber PF. Image quality and diagnostic performance of a digital PET prototype in patients with oncologic diseases: Initial experience and comparison with analog PET. J Nucl Med. 2015;56:1378-85.CrossRefPubMed
9.
go back to reference Slomka PJ, Pan T, Germano G. Recent advances and future progress in PET instrumentation. Semin Nucl Med. 2016;46:5-19.CrossRefPubMed Slomka PJ, Pan T, Germano G. Recent advances and future progress in PET instrumentation. Semin Nucl Med. 2016;46:5-19.CrossRefPubMed
10.
go back to reference Karp JS, Surti S, Daube-Witherspoon ME, Muehllehner G. Benefit of time-of-flight in PET: Experimental and clinical results. J Nucl Med. 2008;49:462-70.CrossRefPubMed Karp JS, Surti S, Daube-Witherspoon ME, Muehllehner G. Benefit of time-of-flight in PET: Experimental and clinical results. J Nucl Med. 2008;49:462-70.CrossRefPubMed
13.
go back to reference Berg E, Roncali E, Hutchcroft W, Qi J, Cherry SR. Improving depth, energy and timing estimation in PET detectors with deconvolution and maximum likelihood pulse shape discrimination. IEEE Trans Med Imag. 2016;35:2436-46.CrossRef Berg E, Roncali E, Hutchcroft W, Qi J, Cherry SR. Improving depth, energy and timing estimation in PET detectors with deconvolution and maximum likelihood pulse shape discrimination. IEEE Trans Med Imag. 2016;35:2436-46.CrossRef
14.
go back to reference Lecoq P. Pushing the limits in time-of-flight PET imaging. IEEE Trans Rad Plasma Med Sci. 2017;1:473-85.CrossRef Lecoq P. Pushing the limits in time-of-flight PET imaging. IEEE Trans Rad Plasma Med Sci. 2017;1:473-85.CrossRef
15.
go back to reference Gu Y, Matteson JL, Skelton RT, et al. Study of a high-resolution, 3D positioning cadmium zinc telluride detector for PET. Phys Med Biol. 2011;56:1563-84.CrossRefPubMedPubMedCentral Gu Y, Matteson JL, Skelton RT, et al. Study of a high-resolution, 3D positioning cadmium zinc telluride detector for PET. Phys Med Biol. 2011;56:1563-84.CrossRefPubMedPubMedCentral
17.
go back to reference Qi JY, Leahy RM. Iterative reconstruction techniques in emission computed tomography. Phys Med Biol. 2006;51:R541-78.CrossRefPubMed Qi JY, Leahy RM. Iterative reconstruction techniques in emission computed tomography. Phys Med Biol. 2006;51:R541-78.CrossRefPubMed
18.
go back to reference Leahy RM, Qi J. Statistical approaches in quantitative positron emission tomography. Stat Comput. 2000;10:147-65.CrossRef Leahy RM, Qi J. Statistical approaches in quantitative positron emission tomography. Stat Comput. 2000;10:147-65.CrossRef
19.
go back to reference Iriarte A, Marabini R, Matej S, Sorzano CO, Lewitt RM. System models for PET statistical iterative reconstruction: A review. Comput Med Imaging Gr. 2016;48:30-48.CrossRef Iriarte A, Marabini R, Matej S, Sorzano CO, Lewitt RM. System models for PET statistical iterative reconstruction: A review. Comput Med Imaging Gr. 2016;48:30-48.CrossRef
20.
go back to reference Brady SL, Shulkin BL. Ultralow dose computed tomography attenuation correction for pediatric PET CT using adaptive statistical iterative reconstruction. Med Phys. 2015;42:558-66.CrossRefPubMed Brady SL, Shulkin BL. Ultralow dose computed tomography attenuation correction for pediatric PET CT using adaptive statistical iterative reconstruction. Med Phys. 2015;42:558-66.CrossRefPubMed
21.
go back to reference Defrise M, Rezaei A, Nuyts J. Time-of-flight PET data determine the attenuation sinogram up to a constant. Phys Med Biol. 2012;57:885-99.CrossRefPubMed Defrise M, Rezaei A, Nuyts J. Time-of-flight PET data determine the attenuation sinogram up to a constant. Phys Med Biol. 2012;57:885-99.CrossRefPubMed
22.
go back to reference Xu J, Tsui BMW. Improved intrinsic motion detection using time-of-flight PET. IEEE Trans Med Imag. 2015;10:2131-45.CrossRef Xu J, Tsui BMW. Improved intrinsic motion detection using time-of-flight PET. IEEE Trans Med Imag. 2015;10:2131-45.CrossRef
24.
go back to reference Ziadi MC. Myocardial flow reserve (MFR) with positron emission tomography (PET)/computed tomography (CT): Clinical impact in diagnosis and prognosis. Cardiovasc Diagn Ther. 2017;72:206-18.CrossRef Ziadi MC. Myocardial flow reserve (MFR) with positron emission tomography (PET)/computed tomography (CT): Clinical impact in diagnosis and prognosis. Cardiovasc Diagn Ther. 2017;72:206-18.CrossRef
25.
go back to reference Dilsizian V, Taillefer R. Journey in evolution of nuclear cardiology: Will there be another quantum leap with the F-18-labeled myocardial perfusion tracers? JACC Cardiovasc Imaging. 2012;5:1269-84.CrossRefPubMed Dilsizian V, Taillefer R. Journey in evolution of nuclear cardiology: Will there be another quantum leap with the F-18-labeled myocardial perfusion tracers? JACC Cardiovasc Imaging. 2012;5:1269-84.CrossRefPubMed
26.
go back to reference Hernandez AM, Murphy ST, Zeng GL, Janabi M, Huber JS, Brennan KM, O’Neil JP, Seo Y, Gullberg GT. Longitudinal evaluation of left ventricular substrate metabolism, perfusion, and dysfunction in the SHR model of hypertrophy using microPET imaging. J Nucl Med. 2013;54:1938-45.CrossRefPubMed Hernandez AM, Murphy ST, Zeng GL, Janabi M, Huber JS, Brennan KM, O’Neil JP, Seo Y, Gullberg GT. Longitudinal evaluation of left ventricular substrate metabolism, perfusion, and dysfunction in the SHR model of hypertrophy using microPET imaging. J Nucl Med. 2013;54:1938-45.CrossRefPubMed
27.
go back to reference Katz AM. Physiology of the heart. 5th ed. Philadelphia, PA: Wolters Kluwer Health/Lippincott Williams & Wilkins Health; 2011. Katz AM. Physiology of the heart. 5th ed. Philadelphia, PA: Wolters Kluwer Health/Lippincott Williams & Wilkins Health; 2011.
28.
go back to reference Thackeray JT, Bengel FM. PET imaging of the autonomic nervous system. Q J Nucl Med Mol Imaging. 2016;60:362-82.PubMed Thackeray JT, Bengel FM. PET imaging of the autonomic nervous system. Q J Nucl Med Mol Imaging. 2016;60:362-82.PubMed
29.
30.
go back to reference Ketchum ES, Jacobson AF, Caldwell JH, Senior R, Cerqueira MD, Thomas GS, Agostini D, Marula J, Levy WC. Selective improvement in Seattle heart failure model risk stratification using iodine-123 metaiodobenzylguanidine imaging. J Nucl Cardiol. 2012;19:1007-16.CrossRefPubMed Ketchum ES, Jacobson AF, Caldwell JH, Senior R, Cerqueira MD, Thomas GS, Agostini D, Marula J, Levy WC. Selective improvement in Seattle heart failure model risk stratification using iodine-123 metaiodobenzylguanidine imaging. J Nucl Cardiol. 2012;19:1007-16.CrossRefPubMed
31.
go back to reference Zan Y, Boutchko R, Huang Q, Li B, Chen K, Gullberg GT. Longitudinal evaluation of sympathetic nervous system and perfusion in normal and spontaneously hypertensive rat hearts with dynamic single-photon emission computed tomography. Mol Imaging. 2015;14:373-84.CrossRefPubMed Zan Y, Boutchko R, Huang Q, Li B, Chen K, Gullberg GT. Longitudinal evaluation of sympathetic nervous system and perfusion in normal and spontaneously hypertensive rat hearts with dynamic single-photon emission computed tomography. Mol Imaging. 2015;14:373-84.CrossRefPubMed
32.
go back to reference Werner RA, Rischpler C, Onthank D, Lapa C, Robinson S, Samnick S, Javadi M, Schwaiger M, Nekolla SG, Higuchi T. Retention kinetics of the 18F-labeled sympathetic nerve PET tracer LMI1195: Comparison with 11C-Hydroxyephedrine and 123I-MIBG. J Nucl Med. 2015;56:1429-33.CrossRefPubMed Werner RA, Rischpler C, Onthank D, Lapa C, Robinson S, Samnick S, Javadi M, Schwaiger M, Nekolla SG, Higuchi T. Retention kinetics of the 18F-labeled sympathetic nerve PET tracer LMI1195: Comparison with 11C-Hydroxyephedrine and 123I-MIBG. J Nucl Med. 2015;56:1429-33.CrossRefPubMed
33.
go back to reference Mather KJ, DeGrado TR. Imaging of myocardial fatty acid oxidation. Biochim Biophys Acta. 2016;1861:1535-43.CrossRefPubMed Mather KJ, DeGrado TR. Imaging of myocardial fatty acid oxidation. Biochim Biophys Acta. 2016;1861:1535-43.CrossRefPubMed
34.
go back to reference de las Fuentes L, Soto PF, Cupps BP, Pasque MK, Herrero P, Gropler RJ, Waggoner AD, Davila-Roman VG. Hypertensive left ventricular hypertrophy is associated with abnormal myocardial fatty acid metabolism and myocardial efficiency. J Nucl Cardiol. 2006;13:369-77.CrossRefPubMed de las Fuentes L, Soto PF, Cupps BP, Pasque MK, Herrero P, Gropler RJ, Waggoner AD, Davila-Roman VG. Hypertensive left ventricular hypertrophy is associated with abnormal myocardial fatty acid metabolism and myocardial efficiency. J Nucl Cardiol. 2006;13:369-77.CrossRefPubMed
35.
go back to reference Neely JR, Morgan HE. Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Ann Rev Physiol. 1974;36:413-59.CrossRef Neely JR, Morgan HE. Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Ann Rev Physiol. 1974;36:413-59.CrossRef
36.
go back to reference Haim TE, Wang W, Flagg TP, Tones MA, Bahinski A, Numann RE, Nichols CG, Nerbonne JM. Palmitate attenuates myocardial contractility through augmentation of repolarizing Kv currents. J Mol Cell Cardiol. 2010;48:395-405.CrossRefPubMed Haim TE, Wang W, Flagg TP, Tones MA, Bahinski A, Numann RE, Nichols CG, Nerbonne JM. Palmitate attenuates myocardial contractility through augmentation of repolarizing Kv currents. J Mol Cell Cardiol. 2010;48:395-405.CrossRefPubMed
37.
go back to reference Tuunanen H, Engblom E, Naum A, Nagren K, Hesse B, Airaksinen KE, Nuutila P, Iozzo P, Ukkonen H, Opie LH, Knuuti J. Free fatty acid depletion acutely decreases cardiac work and efficiency in cardiomyopathic heart failure. Circulation. 2006;114:2130-7.CrossRefPubMed Tuunanen H, Engblom E, Naum A, Nagren K, Hesse B, Airaksinen KE, Nuutila P, Iozzo P, Ukkonen H, Opie LH, Knuuti J. Free fatty acid depletion acutely decreases cardiac work and efficiency in cardiomyopathic heart failure. Circulation. 2006;114:2130-7.CrossRefPubMed
38.
go back to reference Wehrl HF, Wiehr S, Divine M, Gatidis S, Gullberg GT, Maier FC, Rolle AM, Schwenk J, Thaiss W, Pichler BJ. Preclinical and translational PET/MR imaging. J Nucl Med. 2014;55:11S-8S.CrossRefPubMed Wehrl HF, Wiehr S, Divine M, Gatidis S, Gullberg GT, Maier FC, Rolle AM, Schwenk J, Thaiss W, Pichler BJ. Preclinical and translational PET/MR imaging. J Nucl Med. 2014;55:11S-8S.CrossRefPubMed
Metadata
Title
Dynamic cardiac PET imaging: Technological improvements advancing future cardiac health
Authors
Grant T. Gullberg, PhD
Uttam M. Shrestha, PhD
Youngho Seo, PhD
Publication date
01-08-2019
Publisher
Springer International Publishing
Published in
Journal of Nuclear Cardiology / Issue 4/2019
Print ISSN: 1071-3581
Electronic ISSN: 1532-6551
DOI
https://doi.org/10.1007/s12350-018-1201-3

Other articles of this Issue 4/2019

Journal of Nuclear Cardiology 4/2019 Go to the issue