Skip to main content
Top
Published in: Journal of Nuclear Cardiology 5/2020

01-10-2020 | Editorial

PET imaging of glucose and fatty acid metabolism for NAFLD patients

Authors: Grant T. Gullberg, PhD, Uttam M. Shrestha, PhD, Youngho Seo, PhD

Published in: Journal of Nuclear Cardiology | Issue 5/2020

Login to get access

Excerpt

The paper presented in this issue of the Journal by Tang and colleagues illuminate the deficiency in our knowledge of the reciprocal metabolic relationship between liver and heart in health and disease.1 The results presented in this paper used a large number of previously acquired 18F-FDG PET studies to investigate the association between non-alcoholic fatty liver disease (NAFLD) (Figure 1A) and myocardial glucose uptake. Previous work published by Lee and colleagues in Metabolism,2 had found a significant correlation between NAFLD and vascular inflammation using 18F-FDG PET to measure maximum target-to-background uptake in the carotid arteries; however, the present study is the first to elicit through imaging the correlation between NAFLD and potential cardiac metabolic abnormalities. Patients with NAFLD have a high risk of related cardiovascular disease (CVD).3 It has been pointed out that the leading cause of death in NAFLD patients is CVD rather than liver-associated complications,4 of which only 5% of NAFLD patients die from liver-related diseases.518F-FGD PET is an important indicator of cardiac glucose metabolism and its alteration in the presence of disease; however, to systematically understand the relation between NAFLD and the risk of cardiovascular disease, other probes, in addition to 18FDG, should be used to study the complex and dynamic pathways of energy substrate metabolism in the heart in health and disease and their relationship to the metabolic pathways of other body organs.
Literature
1.
go back to reference Correale M, Tarantino N, Petrucci R, Tricarico L, Laonigro I, Di Biase M, et al. Liver disease and heart failure: Back and forth. Eur J Intern Med 2018;48:25-34. Correale M, Tarantino N, Petrucci R, Tricarico L, Laonigro I, Di Biase M, et al. Liver disease and heart failure: Back and forth. Eur J Intern Med 2018;48:25-34.
2.
go back to reference Lee HJ, Lee CH, Kim S, Hwang SY, Hong HC, Choi HY, et al. Association between vascular inflammation and non-alcoholic fatty liver disease: Analysis by 18F-fluorodeoxyglucose positron emission tomography. Metabolism 2017;67:72-9. Lee HJ, Lee CH, Kim S, Hwang SY, Hong HC, Choi HY, et al. Association between vascular inflammation and non-alcoholic fatty liver disease: Analysis by 18F-fluorodeoxyglucose positron emission tomography. Metabolism 2017;67:72-9.
3.
go back to reference Mahfood Haddad T, Hamdeh S, Kanmanthareddy A, Alla VM. Nonalcoholic fatty liver disease and the risk of clinical cardiovascular events: A systematic review and meta-analysis. Diabetes Metab Syndr 2017;11:S209-16. Mahfood Haddad T, Hamdeh S, Kanmanthareddy A, Alla VM. Nonalcoholic fatty liver disease and the risk of clinical cardiovascular events: A systematic review and meta-analysis. Diabetes Metab Syndr 2017;11:S209-16.
4.
go back to reference Ong JP, Pitts A, Younossi ZM. Increased overall mortality and liver-related mortality in non-alcoholic fatty liver disease. J Hepatol 2008;49:608-12. Ong JP, Pitts A, Younossi ZM. Increased overall mortality and liver-related mortality in non-alcoholic fatty liver disease. J Hepatol 2008;49:608-12.
5.
go back to reference Eslam M, Valenti L, Romeo S. Genetics and epigenetics of NAFLD and NASH: Clinical impact. J Hepatol 2018;68:268-79. Eslam M, Valenti L, Romeo S. Genetics and epigenetics of NAFLD and NASH: Clinical impact. J Hepatol 2018;68:268-79.
6.
go back to reference Pais R, Giral P, Khan J-F, Rosenbaum D, Housset C, Poynard T, et al. Fatty liver is an independent predictor of early carotid atherosclerosis. J Hepatol 2016;65:95-102. Pais R, Giral P, Khan J-F, Rosenbaum D, Housset C, Poynard T, et al. Fatty liver is an independent predictor of early carotid atherosclerosis. J Hepatol 2016;65:95-102.
7.
go back to reference Abenavoli L, Peta V. Role of adipokines and cytokines in non-alcoholic fatty liver disease. Rev Recent Clin Trials 2014;9:134-40. Abenavoli L, Peta V. Role of adipokines and cytokines in non-alcoholic fatty liver disease. Rev Recent Clin Trials 2014;9:134-40.
8.
go back to reference A Primer on Carbohydrate Metabolism in the Heart. In: Lopaschuk GD, Dhalla NS, editors. Cardiac energy metabolism in health and disease (advances in biochemistry in health and disease), 1st ed. New York; Springer; 2014. A Primer on Carbohydrate Metabolism in the Heart. In: Lopaschuk GD, Dhalla NS, editors. Cardiac energy metabolism in health and disease (advances in biochemistry in health and disease), 1st ed. New York; Springer; 2014.
9.
go back to reference Taegtmeyer H, Lam T, Davogustto G. Cardiac metabolism in perspective. Compr Physiol 2016;6:1675-99. Taegtmeyer H, Lam T, Davogustto G. Cardiac metabolism in perspective. Compr Physiol 2016;6:1675-99.
10.
go back to reference Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 2005;85:1093-129. Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 2005;85:1093-129.
11.
go back to reference Lopaschuk GD, Ussher JR, Folmes CDL, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev 2010;90:207-58. Lopaschuk GD, Ussher JR, Folmes CDL, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev 2010;90:207-58.
12.
go back to reference Glatz JF, Luiken JJ, Bonen A. Membrane fatty acid transporters as regulators of lipid metabolism: Implications for metabolic disease. Physiol Rev 2010;90:367-417. Glatz JF, Luiken JJ, Bonen A. Membrane fatty acid transporters as regulators of lipid metabolism: Implications for metabolic disease. Physiol Rev 2010;90:367-417.
13.
go back to reference Nelson DL, Cox MM. Lehninger principles of biochemistry. 7th ed. New York, NY: W. H. Freeman and Company; 2017. Nelson DL, Cox MM. Lehninger principles of biochemistry. 7th ed. New York, NY: W. H. Freeman and Company; 2017.
14.
go back to reference Peng KY, Watt MJ, Rensen S, Greve JW, Huynh K, Jayawardana KS, et al. Mitochondrial dysfunction-related lipid changes occur in nonalcoholic fatty liver disease progression. J Lipid Res 2018;59:1977-86. Peng KY, Watt MJ, Rensen S, Greve JW, Huynh K, Jayawardana KS, et al. Mitochondrial dysfunction-related lipid changes occur in nonalcoholic fatty liver disease progression. J Lipid Res 2018;59:1977-86.
15.
go back to reference Schulze PC, Drosatos K, Goldberg IJ. Lipid use and misuse by the heart. Circ Res 2016;118:1736-51. Schulze PC, Drosatos K, Goldberg IJ. Lipid use and misuse by the heart. Circ Res 2016;118:1736-51.
16.
go back to reference Schwenk RW, Holloway GP, Luiken JJFP, Bonen A, Glatz JFC. Fatty acid transport across the cell membrane: Regulation by fatty acid transporters. Prostaglandins Leukot Essential Fatty Acids 2010;82:149-54. Schwenk RW, Holloway GP, Luiken JJFP, Bonen A, Glatz JFC. Fatty acid transport across the cell membrane: Regulation by fatty acid transporters. Prostaglandins Leukot Essential Fatty Acids 2010;82:149-54.
17.
go back to reference Tang Y, Mi C, Liu J, Gao F, Long J. Compromised mitochondrial remodeling in compensatory hypertrophied myocardium of spontaneously hypertensive rat. Cardiovasc Pathol 2014;23:101-6. Tang Y, Mi C, Liu J, Gao F, Long J. Compromised mitochondrial remodeling in compensatory hypertrophied myocardium of spontaneously hypertensive rat. Cardiovasc Pathol 2014;23:101-6.
18.
go back to reference Ikegami R, Shimizu I, Yoshida Y, Minamino T. Metabolomic analysis in heart failure. Circ J 2017;82:10-6. Ikegami R, Shimizu I, Yoshida Y, Minamino T. Metabolomic analysis in heart failure. Circ J 2017;82:10-6.
19.
go back to reference Huang Y, Zhou M, Sun H, Wang Y. Branched-chain amino acid metabolism in heart disease: An epiphenomenon or a real culprit? Cardiovasc Res 2011;90:220-3. Huang Y, Zhou M, Sun H, Wang Y. Branched-chain amino acid metabolism in heart disease: An epiphenomenon or a real culprit? Cardiovasc Res 2011;90:220-3.
20.
go back to reference Gropler RJ. Recent advances in metabolic imaging. J Nucl Cardiol 2013;20:1147-72. Gropler RJ. Recent advances in metabolic imaging. J Nucl Cardiol 2013;20:1147-72.
21.
go back to reference Kundu BK, Zhong M, Sen S, Davogustto G, Keller SR, Taegtmeyer H. Remodeling of glucose metabolism precedes pressure overload-induced left ventricular hypertrophy: Review of a hypothesis. Cardiology 2015;130:211-20. Kundu BK, Zhong M, Sen S, Davogustto G, Keller SR, Taegtmeyer H. Remodeling of glucose metabolism precedes pressure overload-induced left ventricular hypertrophy: Review of a hypothesis. Cardiology 2015;130:211-20.
22.
go back to reference Mather KJ, DeGrado TR. Imaging of myocardial fatty acid oxidation. Biochim Biophys Acta 2016;1861:1535-43. Mather KJ, DeGrado TR. Imaging of myocardial fatty acid oxidation. Biochim Biophys Acta 2016;1861:1535-43.
23.
go back to reference Nesterov SV, Turta O, Han C, Mäki M, Lisinen I, Tuunanen H, et al. C-11 acetate has excellent reproducibility for quantification of myocardial oxidative metabolism. Eur Heart J Cardiovasc Imaging 2015;16:500-6. Nesterov SV, Turta O, Han C, Mäki M, Lisinen I, Tuunanen H, et al. C-11 acetate has excellent reproducibility for quantification of myocardial oxidative metabolism. Eur Heart J Cardiovasc Imaging 2015;16:500-6.
24.
go back to reference Wu KY, Dinculescu V, Renaud JM, Chen SY, Burwash IG, Mielniczuk LM, Beanlands RSB, deKemp RA. Repeatable and reproducible measurements of myocardial oxidative metabolism, blood flow and external efficiency using 11C-acetate PET. J Nucl Cardiol 2018 Feb 16. Wu KY, Dinculescu V, Renaud JM, Chen SY, Burwash IG, Mielniczuk LM, Beanlands RSB, deKemp RA. Repeatable and reproducible measurements of myocardial oxidative metabolism, blood flow and external efficiency using 11C-acetate PET. J Nucl Cardiol 2018 Feb 16.
25.
go back to reference Neely JR, Morgan HE. Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Ann Rev Physiol 1974;36:413-59. Neely JR, Morgan HE. Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Ann Rev Physiol 1974;36:413-59.
26.
go back to reference Iozzo P, Bucci M, Roivainen A, Nagren K, Jarvisalo MJ, Kiss J, et al. Fatty acid metabolism in the liver, measured by positron emission tomography, is increased in obese individuals. Gastroenterology 2010;139:846-56. Iozzo P, Bucci M, Roivainen A, Nagren K, Jarvisalo MJ, Kiss J, et al. Fatty acid metabolism in the liver, measured by positron emission tomography, is increased in obese individuals. Gastroenterology 2010;139:846-56.
27.
go back to reference Viljanen AP, Iozzo P, Borra R, Kankaanpaa M, Karmi A, Lautamaki R, et al. Effect of weight loss on liver free fatty acid uptake and hepatic insulin resistance. J Clin Endocrinol Metab 2009;94:50-5. Viljanen AP, Iozzo P, Borra R, Kankaanpaa M, Karmi A, Lautamaki R, et al. Effect of weight loss on liver free fatty acid uptake and hepatic insulin resistance. J Clin Endocrinol Metab 2009;94:50-5.
28.
go back to reference Davila-Roman VG, Vedala G, Herrero P, de las Fuentes L, Rogers JG, Kelly DP, et al. Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J Am Coll Cardiol 2002;40:271-7. Davila-Roman VG, Vedala G, Herrero P, de las Fuentes L, Rogers JG, Kelly DP, et al. Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J Am Coll Cardiol 2002;40:271-7.
29.
go back to reference De las Fuentes L, Herrero P, Peterson LR, Kelly DP, Gropler RJ, Davila-Roman VG. Myocardial fatty acid metabolism: independent predictor of left ventricular mass in hypertensive heart disease. Hypertension 2003;41:83-7. De las Fuentes L, Herrero P, Peterson LR, Kelly DP, Gropler RJ, Davila-Roman VG. Myocardial fatty acid metabolism: independent predictor of left ventricular mass in hypertensive heart disease. Hypertension 2003;41:83-7.
30.
go back to reference Kudo T, Fukuchi K, Annala AJ, Chatziioannou AF, Allada V, Dahlbom M, et al. Noninvasive measurement of myocardial activity concentrations and perfusion defect sizes in rats with a new small-animal positron emission tomograph. Circulation 2002;106:118-23. Kudo T, Fukuchi K, Annala AJ, Chatziioannou AF, Allada V, Dahlbom M, et al. Noninvasive measurement of myocardial activity concentrations and perfusion defect sizes in rats with a new small-animal positron emission tomograph. Circulation 2002;106:118-23.
31.
go back to reference Taylor M, Wallhaus TR, DeGrado TR, Russell DC, Stanko P, Nickles RJ, et al. An evaluation of myocardial fatty acid and glucose uptake using PET with [18F]fluoro-6-thia-heptadecanoic acid and [18F]FDG in patients with congestive heart failure. J Nucl Med 2001;42:55-62. Taylor M, Wallhaus TR, DeGrado TR, Russell DC, Stanko P, Nickles RJ, et al. An evaluation of myocardial fatty acid and glucose uptake using PET with [18F]fluoro-6-thia-heptadecanoic acid and [18F]FDG in patients with congestive heart failure. J Nucl Med 2001;42:55-62.
32.
go back to reference Wallhaus TR, Taylor M, DeGrado TR, Russell DC, Stanko P, Nickles RJ, et al. Myocardial free fatty acid and glucose use after carvedilol treatment in patients with congestive heart failure. Circulation 2001;103:2441-6. Wallhaus TR, Taylor M, DeGrado TR, Russell DC, Stanko P, Nickles RJ, et al. Myocardial free fatty acid and glucose use after carvedilol treatment in patients with congestive heart failure. Circulation 2001;103:2441-6.
33.
go back to reference Hernandez AM, Murphy ST, Zeng GL, Janabi M, Huber JS, Brennan KM, et al. Longitudinal evaluation of left ventricular substrate metabolism, perfusion, and dysfunction in the SHR model of hypertrophy using microPET imaging. J Nucl Med 2013;54:1938-45. Hernandez AM, Murphy ST, Zeng GL, Janabi M, Huber JS, Brennan KM, et al. Longitudinal evaluation of left ventricular substrate metabolism, perfusion, and dysfunction in the SHR model of hypertrophy using microPET imaging. J Nucl Med 2013;54:1938-45.
34.
go back to reference Huber JS, Hernandez A, Janabi M, O’Neil JP, Brennan K, Murphy S, et al. Longitudinal evaluation of myocardial fatty acid and glucose metabolism in fasted and nonfasted spontaneously hypertensive rats using microPET/CT. Mol Imaging 2017;16:1536012117724558. Huber JS, Hernandez A, Janabi M, O’Neil JP, Brennan K, Murphy S, et al. Longitudinal evaluation of myocardial fatty acid and glucose metabolism in fasted and nonfasted spontaneously hypertensive rats using microPET/CT. Mol Imaging 2017;16:1536012117724558.
35.
go back to reference Manabe O, Kikuchi T, Scholte AJHA, El Mahdiui M, Nishii R, Zhang M-R, et al. Radiopharmaceutical tracers for cardiac imaging. J Nucl Cardiol 2018;25:1204-36. Manabe O, Kikuchi T, Scholte AJHA, El Mahdiui M, Nishii R, Zhang M-R, et al. Radiopharmaceutical tracers for cardiac imaging. J Nucl Cardiol 2018;25:1204-36.
36.
go back to reference Li J, Lu J, Zhou Y. Mitochondrial-targeted molecular imaging in cardiac disease. BioMed Res Int 2017;2017:11. Li J, Lu J, Zhou Y. Mitochondrial-targeted molecular imaging in cardiac disease. BioMed Res Int 2017;2017:11.
37.
go back to reference Saraste A, Knuuti J. PET imaging in heart failure: The role of new tracers. Heart Fail Rev 2017;22:501-11. Saraste A, Knuuti J. PET imaging in heart failure: The role of new tracers. Heart Fail Rev 2017;22:501-11.
38.
go back to reference Wey HY, Wang C, Schroeder FA, Logan J, Price JC, Hooker JM. Kinetic analysis and quantification of [11C]Martinostat for in vivo HDAC imaging of the brain. ACS Chem Neurosci 2015;6:708-15. Wey HY, Wang C, Schroeder FA, Logan J, Price JC, Hooker JM. Kinetic analysis and quantification of [11C]Martinostat for in vivo HDAC imaging of the brain. ACS Chem Neurosci 2015;6:708-15.
39.
go back to reference Wu X, Wang P, Liu R, Zeng H, Chao F, Liu H, et al. Development of 11C-Labeled ω-sulfhydryl fatty acid tracer for myocardial imaging with PET. Eur J Med Chem 2018;143:1657-66. Wu X, Wang P, Liu R, Zeng H, Chao F, Liu H, et al. Development of 11C-Labeled ω-sulfhydryl fatty acid tracer for myocardial imaging with PET. Eur J Med Chem 2018;143:1657-66.
40.
go back to reference Li Y, Huang T, Zhang X, Zhong M, Walker NN, He J, et al. Determination of fatty acid metabolism with dynamic [11C]palmitate positron emission tomography of mouse heart in vivo. Mol Imaging 2015;14:516-25. Li Y, Huang T, Zhang X, Zhong M, Walker NN, He J, et al. Determination of fatty acid metabolism with dynamic [11C]palmitate positron emission tomography of mouse heart in vivo. Mol Imaging 2015;14:516-25.
41.
go back to reference Shoup TM, Elmaleh DR, Bonab AA, Fischman AJ. Evaluation of trans-9-18Ffluoro-3,4-Methyleneheptadecanoic acid as a PET tracer for myocardial fatty acid imaging. J Nucl Med 2005;46:297-304. Shoup TM, Elmaleh DR, Bonab AA, Fischman AJ. Evaluation of trans-9-18Ffluoro-3,4-Methyleneheptadecanoic acid as a PET tracer for myocardial fatty acid imaging. J Nucl Med 2005;46:297-304.
42.
go back to reference Stone CK, Pooley RA, DeGrado TR, Renstrom B, Nickles RJ, Nellis SH, et al. Myocardial uptake of the fatty acid analog 14-fluorine-18-fluoro-6-thia-heptadecanoic acid in comparison to beta-oxidation rates by tritiated palmitate. J Nucl Med 1998;39:1690-6. Stone CK, Pooley RA, DeGrado TR, Renstrom B, Nickles RJ, Nellis SH, et al. Myocardial uptake of the fatty acid analog 14-fluorine-18-fluoro-6-thia-heptadecanoic acid in comparison to beta-oxidation rates by tritiated palmitate. J Nucl Med 1998;39:1690-6.
43.
go back to reference Kato T, Niizuma S, Inuzuka Y, Kawashima T, Okuda J, Tamaki Y, et al. Analysis of metabolic remodeling in compensated left ventricular hypertrophy and heart failure. Circ Heart Fail 2010;3:420-30. Kato T, Niizuma S, Inuzuka Y, Kawashima T, Okuda J, Tamaki Y, et al. Analysis of metabolic remodeling in compensated left ventricular hypertrophy and heart failure. Circ Heart Fail 2010;3:420-30.
44.
go back to reference Yin M, van der Horst IC, van Melle JP, Qian C, van Gilst WH, Silljé HH, et al. Metformin improves cardiac function in a nondiabetic rat model of post-MI heart failure. Am J Physiol Heart Circ Physiol 2011;301:H459-68. Yin M, van der Horst IC, van Melle JP, Qian C, van Gilst WH, Silljé HH, et al. Metformin improves cardiac function in a nondiabetic rat model of post-MI heart failure. Am J Physiol Heart Circ Physiol 2011;301:H459-68.
45.
go back to reference Soesanto W, Lin HY, Hu E, Lefler S, Litwin SE, Sena S, et al. Mammalian target of rapamycin is a critical regulator of cardiac hypertrophy in spontaneously hypertensive rats. Hypertension 2009;54:1321-7. Soesanto W, Lin HY, Hu E, Lefler S, Litwin SE, Sena S, et al. Mammalian target of rapamycin is a critical regulator of cardiac hypertrophy in spontaneously hypertensive rats. Hypertension 2009;54:1321-7.
46.
go back to reference Jeong MY, Lin YH, Wennersten SA, Demos-Davies KM, Cavasin MA, Mahaffey JH, et al. Histone deacetylase activity governs diastolic dysfunction through a nongenomic mechanism. Sci Transl Med 2018;10:eaaao0144. Jeong MY, Lin YH, Wennersten SA, Demos-Davies KM, Cavasin MA, Mahaffey JH, et al. Histone deacetylase activity governs diastolic dysfunction through a nongenomic mechanism. Sci Transl Med 2018;10:eaaao0144.
Metadata
Title
PET imaging of glucose and fatty acid metabolism for NAFLD patients
Authors
Grant T. Gullberg, PhD
Uttam M. Shrestha, PhD
Youngho Seo, PhD
Publication date
01-10-2020
Publisher
Springer International Publishing
Published in
Journal of Nuclear Cardiology / Issue 5/2020
Print ISSN: 1071-3581
Electronic ISSN: 1532-6551
DOI
https://doi.org/10.1007/s12350-018-01532-8

Other articles of this Issue 5/2020

Journal of Nuclear Cardiology 5/2020 Go to the issue