Skip to main content
Top
Published in: Journal of Nuclear Cardiology 5/2018

Open Access 01-10-2018 | Original Article

Partial volume correction for improved PET quantification in 18F-NaF imaging of atherosclerotic plaques

Authors: Jacobo Cal-Gonzalez, PhD, Xiang Li, PhD, Daniel Heber, MD, Ivo Rausch, MSc, Stephen C. Moore, PhD, Klaus Schäfers, PhD, Marcus Hacker, MD, Thomas Beyer, PhD

Published in: Journal of Nuclear Cardiology | Issue 5/2018

Login to get access

Abstract

Background

Accurate quantification of plaque imaging using 18F-NaF PET requires partial volume correction (PVC).

Methods

PVC of PET data was implemented by the use of a local projection (LP) method. LP-based PVC was evaluated with an image quality (NEMA) and with a thorax phantom with “plaque-type” lesions of 18-36 mL. The validated PVC method was then applied to a cohort of 17 patients, each with at least one plaque in the carotid or ascending aortic arteries. In total, 51 calcified (HU > 110) and 16 non-calcified plaque lesions (HU < 110) were analyzed. The lesion-to-background ratio (LBR) and the relative change of LBR (ΔLBR) were measured on PET.

Results

Following PVC, LBR of the spheres (NEMA phantom) was within 10% of the original values. LBR of the thoracic lesions increased by 155% to 440% when the LP-PVC method was applied to the PET images. In patients, PVC increased the LBR in both calcified [mean = 78% (−8% to 227%)] and non-calcified plaques [mean = 41%, (−9%-104%)].

Conclusions

PVC helps to improve LBR of plaque-type lesions in both phantom studies and clinical patients. Better results were obtained when the PVC method was applied to images reconstructed with point spread function modeling.
Appendix
Available only for authorised users
Literature
1.
go back to reference Weintraub HS. Identifying the vulnerable patient with rupture-prone plaque. Am J Cardiol 2008;101:3F–10F.CrossRefPubMed Weintraub HS. Identifying the vulnerable patient with rupture-prone plaque. Am J Cardiol 2008;101:3F–10F.CrossRefPubMed
2.
go back to reference Izquierdo-Garcia D, Davies JR, Graves MJ, et al. Comparison of methods for magnetic resonance-guided [18-F]fluorodeoxyglucose positron emission tomography in human carotid arteries. Reproducibility, partial volume correction, and correlation between methods. Stroke 2009;40:86–93.CrossRefPubMed Izquierdo-Garcia D, Davies JR, Graves MJ, et al. Comparison of methods for magnetic resonance-guided [18-F]fluorodeoxyglucose positron emission tomography in human carotid arteries. Reproducibility, partial volume correction, and correlation between methods. Stroke 2009;40:86–93.CrossRefPubMed
3.
go back to reference Doherty TM, Fitzpatrick LA, Inoue D, et al. Molecular, endocrine, and genetic mechanisms of arterial calcification. Endocr Rev 2004;25:629–72.CrossRefPubMed Doherty TM, Fitzpatrick LA, Inoue D, et al. Molecular, endocrine, and genetic mechanisms of arterial calcification. Endocr Rev 2004;25:629–72.CrossRefPubMed
4.
go back to reference Rosa GM, Bauckneht M, Masoero G, et al. The vulnerable coronary plaque: Update on imaging technologies. Thromb Haemost 2013;110:706–22.CrossRefPubMed Rosa GM, Bauckneht M, Masoero G, et al. The vulnerable coronary plaque: Update on imaging technologies. Thromb Haemost 2013;110:706–22.CrossRefPubMed
5.
go back to reference Pen A, Yam Y, Chen L, Dennie C, McPherson R, Chow BJ. Discordance between Framingham Risk Score and atherosclerotic plaque burden. Eur Heart J 2013;34:1075–82.CrossRefPubMed Pen A, Yam Y, Chen L, Dennie C, McPherson R, Chow BJ. Discordance between Framingham Risk Score and atherosclerotic plaque burden. Eur Heart J 2013;34:1075–82.CrossRefPubMed
6.
go back to reference Derlin T, Richter U, Bannas P, et al. Feasibility of 18F-sodium fluoride PET/CT for imaging of atherosclerotic plaque. J Nucl Med 2010;51:862–5.CrossRefPubMed Derlin T, Richter U, Bannas P, et al. Feasibility of 18F-sodium fluoride PET/CT for imaging of atherosclerotic plaque. J Nucl Med 2010;51:862–5.CrossRefPubMed
7.
go back to reference Derlin T, Wisotzki C, Richter U, et al. In vivo imaging of mineral deposition in carotid plaque using 18F-sodium fluoride PET/CT: Correlation with atherogenic risk factors. J Nucl Med 2011;52:362–8.CrossRefPubMed Derlin T, Wisotzki C, Richter U, et al. In vivo imaging of mineral deposition in carotid plaque using 18F-sodium fluoride PET/CT: Correlation with atherogenic risk factors. J Nucl Med 2011;52:362–8.CrossRefPubMed
8.
go back to reference Beheshti M, Saboury B, Mehta NN, et al. Detection and global quantification of cardiovascular molecular calcification by fluoro18-fluoride positron emission tomography/computed tomography: A novel concept. Hell J Nucl Med 2011;14:114–20.PubMed Beheshti M, Saboury B, Mehta NN, et al. Detection and global quantification of cardiovascular molecular calcification by fluoro18-fluoride positron emission tomography/computed tomography: A novel concept. Hell J Nucl Med 2011;14:114–20.PubMed
9.
go back to reference Chen W, Dilsizian V. Targeted PET/CT imaging of vulnerable atherosclerotic plaques: Microcalcification with sodium fluoride and inflammation with fluorodeoxyglucose. Curr Cardiol Rep 2013;15:364.CrossRefPubMed Chen W, Dilsizian V. Targeted PET/CT imaging of vulnerable atherosclerotic plaques: Microcalcification with sodium fluoride and inflammation with fluorodeoxyglucose. Curr Cardiol Rep 2013;15:364.CrossRefPubMed
10.
go back to reference Derlin T, Tóth Z, Papp L, et al. Correlation of inflammation assessed by 18F-FDG PET, active mineral deposition assessed by 18F-fluoride PET, and vascular calcification in atherosclerotic plaque: A dual-tracer PET/CT study. J Nucl Med 2011;52:1020–7.CrossRefPubMed Derlin T, Tóth Z, Papp L, et al. Correlation of inflammation assessed by 18F-FDG PET, active mineral deposition assessed by 18F-fluoride PET, and vascular calcification in atherosclerotic plaque: A dual-tracer PET/CT study. J Nucl Med 2011;52:1020–7.CrossRefPubMed
11.
go back to reference Fiz F, Morbelli S, Piccardo A, et al. 18F-NaF uptake by atherosclerotic plaque on PET/CT imaging: Inverse correlation between calcification density and mineral metabolic activity. J Nucl Med 2015;56:1019–23.CrossRefPubMed Fiz F, Morbelli S, Piccardo A, et al. 18F-NaF uptake by atherosclerotic plaque on PET/CT imaging: Inverse correlation between calcification density and mineral metabolic activity. J Nucl Med 2015;56:1019–23.CrossRefPubMed
12.
go back to reference Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med 2007;48:932–45.CrossRefPubMed Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med 2007;48:932–45.CrossRefPubMed
13.
go back to reference Erlandsson K, Buvat I, Pretorius H, Thomas B, Hutton BF. A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Phys Med Biol 2012;57:R119–59.CrossRefPubMed Erlandsson K, Buvat I, Pretorius H, Thomas B, Hutton BF. A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Phys Med Biol 2012;57:R119–59.CrossRefPubMed
14.
go back to reference Rousset OG, Ma Y, Evans AC. Correction for partial volume effects in PET: Principle and validation. J Nucl Med 1998;39:904–11.PubMed Rousset OG, Ma Y, Evans AC. Correction for partial volume effects in PET: Principle and validation. J Nucl Med 1998;39:904–11.PubMed
15.
go back to reference Müller-Gartner HW, Links JM, Prince JL, et al. Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. J Cereb Blood Flow Metab 1992;12:571–83.CrossRefPubMed Müller-Gartner HW, Links JM, Prince JL, et al. Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. J Cereb Blood Flow Metab 1992;12:571–83.CrossRefPubMed
16.
go back to reference Grecchi E, O’Doherty J, Veronese M, Tsoumpas C, Cook GJ, Turkheimer E. Multimodal partial-volume correction: Application to 18F-Fluoride PET/CT bone metastases studies. J Nucl Med 2015;56:1408–14.CrossRefPubMed Grecchi E, O’Doherty J, Veronese M, Tsoumpas C, Cook GJ, Turkheimer E. Multimodal partial-volume correction: Application to 18F-Fluoride PET/CT bone metastases studies. J Nucl Med 2015;56:1408–14.CrossRefPubMed
17.
go back to reference Moore SC, Southekal S, McQuaid SJ, Kijewski MF, Mueller SP. Improved regional activity quantitation in nuclear medicine using a new approach to correct for tissue partial volume and crosstalk effects. IEEE Trans Med Imaging 2012;31:405–16.CrossRefPubMed Moore SC, Southekal S, McQuaid SJ, Kijewski MF, Mueller SP. Improved regional activity quantitation in nuclear medicine using a new approach to correct for tissue partial volume and crosstalk effects. IEEE Trans Med Imaging 2012;31:405–16.CrossRefPubMed
18.
go back to reference Southekal S, McQuaid SJ, Kijewski MF, Moore SC. Evaluation of a method for projection-based tissue-activity estimation within small volumes of interest. Phys Med Biol 2012;57:685–701.CrossRefPubMedPubMedCentral Southekal S, McQuaid SJ, Kijewski MF, Moore SC. Evaluation of a method for projection-based tissue-activity estimation within small volumes of interest. Phys Med Biol 2012;57:685–701.CrossRefPubMedPubMedCentral
19.
go back to reference Cal-González J, Moore SC, Park M-A, et al. Improved quantification for local regions of interest in preclinical PET imaging. Phys Med Biol 2015;60:7127–49.CrossRefPubMedPubMedCentral Cal-González J, Moore SC, Park M-A, et al. Improved quantification for local regions of interest in preclinical PET imaging. Phys Med Biol 2015;60:7127–49.CrossRefPubMedPubMedCentral
20.
go back to reference Burg S, Dupas A, Stute S, et al. Partial volume effect estimation and correction in the aortic vascular wall in PET imaging. Phys Med Biol 2013;58:7527–42.CrossRefPubMed Burg S, Dupas A, Stute S, et al. Partial volume effect estimation and correction in the aortic vascular wall in PET imaging. Phys Med Biol 2013;58:7527–42.CrossRefPubMed
21.
go back to reference Huet P, Burg S, Le Guludec D, Hyafil F, Buvat I. Variability and uncertainty of 18F-FDG PET imaging protocols for assessing inflammation in atherosclerosis: Suggestions for improvement. J Nucl Med 2015;56:552–9.CrossRefPubMed Huet P, Burg S, Le Guludec D, Hyafil F, Buvat I. Variability and uncertainty of 18F-FDG PET imaging protocols for assessing inflammation in atherosclerosis: Suggestions for improvement. J Nucl Med 2015;56:552–9.CrossRefPubMed
22.
go back to reference Thielemans K, Tsoumpas C, Mustafovic S, et al. STIR: Software for tomographic image reconstruction release 2. Phys Med Biol 2012;57:867–83.CrossRefPubMed Thielemans K, Tsoumpas C, Mustafovic S, et al. STIR: Software for tomographic image reconstruction release 2. Phys Med Biol 2012;57:867–83.CrossRefPubMed
23.
go back to reference Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994;13:601–9.CrossRefPubMed Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994;13:601–9.CrossRefPubMed
24.
go back to reference Panin VY, Kehren F, Michel C, Casey M. Fully 3-D PET reconstruction with system matrix derived from point source measurements. IEEE Trans Med Imaging 2006;25:907–21.CrossRefPubMed Panin VY, Kehren F, Michel C, Casey M. Fully 3-D PET reconstruction with system matrix derived from point source measurements. IEEE Trans Med Imaging 2006;25:907–21.CrossRefPubMed
25.
go back to reference National Electrical Manufacturers Association. Performance measurements of positron emission tomographs. NEMA Standards Publication NU 2-2012. Rosslyn, USA: National Electrical Manufacturers Association; 2012. National Electrical Manufacturers Association. Performance measurements of positron emission tomographs. NEMA Standards Publication NU 2-2012. Rosslyn, USA: National Electrical Manufacturers Association; 2012.
2.
go back to reference Fieseler M, Kugel H, Gigenback F, et al. A dynamic thorax phantom for the assessment of cardiac and respiratory motion correction in PET/MRI: A preliminary evaluation. Nucl Inst Methods Phys Res A 2013;702:59–63.CrossRef Fieseler M, Kugel H, Gigenback F, et al. A dynamic thorax phantom for the assessment of cardiac and respiratory motion correction in PET/MRI: A preliminary evaluation. Nucl Inst Methods Phys Res A 2013;702:59–63.CrossRef
27.
go back to reference Delso G, Martinez-Moller A, Bundschuh RA, Nekolla SG, Ziegler SI, Schwaiger M. Preliminary study of the detectability of coronary plaque with PET. Phys Med Biol 2011;56:2145–60.CrossRefPubMed Delso G, Martinez-Moller A, Bundschuh RA, Nekolla SG, Ziegler SI, Schwaiger M. Preliminary study of the detectability of coronary plaque with PET. Phys Med Biol 2011;56:2145–60.CrossRefPubMed
28.
go back to reference Jakoby BW, Bercier MY, Watson CC, Bendriem B, Townsend DW. Performance characteristics of a new LSO PET/CT scanner with extended axial field of view and PSF reconstruction. IEEE Trans Nucl Sci 2009;56:633–9.CrossRef Jakoby BW, Bercier MY, Watson CC, Bendriem B, Townsend DW. Performance characteristics of a new LSO PET/CT scanner with extended axial field of view and PSF reconstruction. IEEE Trans Nucl Sci 2009;56:633–9.CrossRef
29.
go back to reference Jakoby BW, Bercier Y, Conti M, Casey ME, Bendriem B, Townsend DW. Physical and clinical performance of the mCT time-of-flight PET/CT scanner. Phys Med Biol 2011;56:2375–89.CrossRefPubMed Jakoby BW, Bercier Y, Conti M, Casey ME, Bendriem B, Townsend DW. Physical and clinical performance of the mCT time-of-flight PET/CT scanner. Phys Med Biol 2011;56:2375–89.CrossRefPubMed
30.
go back to reference Xiang L, Heber D, Rausch I, et al. Quantitative assessment of atherosclerotic plaques on 18F-FDG PET/MRI: Comparison with a PET/CT hybrid system. Eur J Nucl Med Mol Imaging 2016;43:1503–12.CrossRef Xiang L, Heber D, Rausch I, et al. Quantitative assessment of atherosclerotic plaques on 18F-FDG PET/MRI: Comparison with a PET/CT hybrid system. Eur J Nucl Med Mol Imaging 2016;43:1503–12.CrossRef
31.
go back to reference Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: A simulation study. J Nucl Med 2004;45:1519–27.PubMed Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: A simulation study. J Nucl Med 2004;45:1519–27.PubMed
32.
go back to reference Rahmin A, Qi J, Sossi V. Resolution modeling in PET imaging: Theory, practice, benefits, and pitfalls. Med Phys 2013;40:064301.CrossRef Rahmin A, Qi J, Sossi V. Resolution modeling in PET imaging: Theory, practice, benefits, and pitfalls. Med Phys 2013;40:064301.CrossRef
34.
go back to reference Firouzian A, Kelly MD, Declerck M. Insight on automated lesion delineation methods for PET data. Eur J Nucl Med Mol Imaging Res 2012;4:69. Firouzian A, Kelly MD, Declerck M. Insight on automated lesion delineation methods for PET data. Eur J Nucl Med Mol Imaging Res 2012;4:69.
36.
go back to reference Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol 2006;47:C13–8.CrossRefPubMed Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol 2006;47:C13–8.CrossRefPubMed
37.
go back to reference Cal-Gonzalez J, Tsoumpas C, Lassen ML, Hacker M, Beyer T. [NaF]-PET imaging of vulnerable plaques in coronary arteries: Impact of motion-compensation and partial volume correction [Abstract]. In: 2015 IEEE NSS-MIC conference. Cal-Gonzalez J, Tsoumpas C, Lassen ML, Hacker M, Beyer T. [NaF]-PET imaging of vulnerable plaques in coronary arteries: Impact of motion-compensation and partial volume correction [Abstract]. In: 2015 IEEE NSS-MIC conference.
Metadata
Title
Partial volume correction for improved PET quantification in 18F-NaF imaging of atherosclerotic plaques
Authors
Jacobo Cal-Gonzalez, PhD
Xiang Li, PhD
Daniel Heber, MD
Ivo Rausch, MSc
Stephen C. Moore, PhD
Klaus Schäfers, PhD
Marcus Hacker, MD
Thomas Beyer, PhD
Publication date
01-10-2018
Publisher
Springer US
Published in
Journal of Nuclear Cardiology / Issue 5/2018
Print ISSN: 1071-3581
Electronic ISSN: 1532-6551
DOI
https://doi.org/10.1007/s12350-017-0778-2

Other articles of this Issue 5/2018

Journal of Nuclear Cardiology 5/2018 Go to the issue