Skip to main content
Top
Published in: Journal of Nuclear Cardiology 2/2010

Open Access 01-04-2010 | Original Article

Impact of carbohydrate restriction with and without fatty acid loading on myocardial 18F-FDG uptake during PET: A randomized controlled trial

Authors: Victor Y. Cheng, MD, Piotr J. Slomka, PhD, Marie Ahlen, MD, RD, Louise E. J. Thomson, MD, Alan D. Waxman, MD, Daniel S. Berman, MD

Published in: Journal of Nuclear Cardiology | Issue 2/2010

Login to get access

Abstract

Background

Low-carbohydrate (LC) and high-fat, low-carbohydrate (HFLC) dietary preparations may enhance 18F-FDG-PET-based imaging of small, inflamed structures near the heart by suppressing myocardial FDG signal. We compared myocardial 18F-FDG uptake in patients randomized to LC, HFLC, and unrestricted (UR) preparations prior to 18F-FDG-PET.

Methods and Results

We randomized 63 outpatients referred for oncologic 18F-FDG-PET to LC, HFLC, or UR dietary preparations (1:1:1 allocation) starting the evening before PET. After eating dinner according to instructions, UR and LC patients fasted until FDG injection (mean time 745 minutes for UR, 899 minutes for LC), and HFLC patients drank a fatty drink 60-70 minutes prior to FDG injection. Attenuation-corrected PET imaging was performed 60 minutes after FDG administration. Maximal myocardial standard uptake values (MyoSUVmax) were systematically measured in axial view and compared between the three groups. Using UR patients as reference, mean MyoSUVmax was lower in LC patients (3.3 ± 2.7 vs 6.2 ± 5.2, P = .03) but not in HFLC patients (5.5 ± 4.2, P = .63). Ratios of MyoSUVmax to liver SUVmax, calculated to control for background uptake, were not significantly different amongst the groups (1.9 ± 2.1 LC, 2.6 ± 2.3 HFLC, 3.6 ± 3.5 UR).

Conclusion

In this small randomized controlled trial using UR diet as reference, LC dietary preparation followed by extended fasting resulted in significant myocardial uptake suppression.
Literature
1.
go back to reference Engel H, Steinhart H, Buck A, Berthold T, Huch Boni RA, von Schulthess GK. Whole body PET: Physiological and artifactual fluorodeoxyglucose accumulations. J Nucl Med 1996;37:441-6.PubMed Engel H, Steinhart H, Buck A, Berthold T, Huch Boni RA, von Schulthess GK. Whole body PET: Physiological and artifactual fluorodeoxyglucose accumulations. J Nucl Med 1996;37:441-6.PubMed
2.
go back to reference Shreve P, Anzai Y, Wahl RL. Pitfalls in oncologic diagnosis with FDG PET imaging: Physiologic and benign variants. Radiographics 1999;19:61-77.PubMed Shreve P, Anzai Y, Wahl RL. Pitfalls in oncologic diagnosis with FDG PET imaging: Physiologic and benign variants. Radiographics 1999;19:61-77.PubMed
3.
go back to reference Jonasson L, Holm J, Skalli O, Bondjers G, Hansson GK. Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 1986;6:131-8.PubMed Jonasson L, Holm J, Skalli O, Bondjers G, Hansson GK. Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 1986;6:131-8.PubMed
4.
go back to reference van der Wal AC, Das PK, Bentz van de Berg D, van der Loos CM, Becker AE. Atherosclerotic lesions in humans: In situ immunophenotypic analysis suggesting an immune mediated response. Lab Invest 1989;61:166-70.PubMed van der Wal AC, Das PK, Bentz van de Berg D, van der Loos CM, Becker AE. Atherosclerotic lesions in humans: In situ immunophenotypic analysis suggesting an immune mediated response. Lab Invest 1989;61:166-70.PubMed
5.
go back to reference Ogawa M, Ishino S, Mukai T, Asano D, Teramoto N, Watabe H, et al. (18)F-FDG accumulation in atherosclerotic plaques: Immunohistochemical and PET imaging study. J Nucl Med 2004;45:1245-50.PubMed Ogawa M, Ishino S, Mukai T, Asano D, Teramoto N, Watabe H, et al. (18)F-FDG accumulation in atherosclerotic plaques: Immunohistochemical and PET imaging study. J Nucl Med 2004;45:1245-50.PubMed
6.
go back to reference Davies JR, Rudd JH, Weissberg PL, Narula J. Radionuclide imaging for the detection of inflammation in vulnerable plaques. J Am Coll Cardiol 2006;47:C57-68.CrossRefPubMed Davies JR, Rudd JH, Weissberg PL, Narula J. Radionuclide imaging for the detection of inflammation in vulnerable plaques. J Am Coll Cardiol 2006;47:C57-68.CrossRefPubMed
7.
go back to reference Yun M, Yeh D, Araujo LI, Jang S, Newberg A, Alavi A. F-18 FDG uptake in the large arteries: A new observation. Clin Nucl Med 2001;26:314-9.CrossRefPubMed Yun M, Yeh D, Araujo LI, Jang S, Newberg A, Alavi A. F-18 FDG uptake in the large arteries: A new observation. Clin Nucl Med 2001;26:314-9.CrossRefPubMed
8.
go back to reference Rudd JH, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 2002;105:2708-11.CrossRefPubMed Rudd JH, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 2002;105:2708-11.CrossRefPubMed
9.
go back to reference Tawakol A, Migrino RQ, Bashian GG, Bedri S, Vermylen D, Cury RC, et al. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol 2006;48:1818-24.CrossRefPubMed Tawakol A, Migrino RQ, Bashian GG, Bedri S, Vermylen D, Cury RC, et al. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol 2006;48:1818-24.CrossRefPubMed
10.
go back to reference Rudd JH, Myers KS, Bansilal S, Machac J, Rafique A, Farkouh M, et al. 18Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: Implications for atherosclerosis therapy trials. J Am Coll Cardiol 2007;50:892-6.CrossRefPubMed Rudd JH, Myers KS, Bansilal S, Machac J, Rafique A, Farkouh M, et al. 18Fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: Implications for atherosclerosis therapy trials. J Am Coll Cardiol 2007;50:892-6.CrossRefPubMed
11.
go back to reference Lum DP, Wandell S, Ko J, Coe MN. Reduction of myocardial fluorodeoxyglucose uptake artifacts with a carbohydrate restricted diet. Clin Positron Imaging 2000;3:155.CrossRefPubMed Lum DP, Wandell S, Ko J, Coe MN. Reduction of myocardial fluorodeoxyglucose uptake artifacts with a carbohydrate restricted diet. Clin Positron Imaging 2000;3:155.CrossRefPubMed
12.
go back to reference Lum DP, Wandell S, Ko J, Coel MN. Reduction of myocardial 2-deoxy-2-[18F]fluoro-D-glucose uptake artifacts in positron emission tomography using dietary carbohydrate restriction. Mol Imaging Biol 2002;4:232-7.CrossRefPubMed Lum DP, Wandell S, Ko J, Coel MN. Reduction of myocardial 2-deoxy-2-[18F]fluoro-D-glucose uptake artifacts in positron emission tomography using dietary carbohydrate restriction. Mol Imaging Biol 2002;4:232-7.CrossRefPubMed
13.
go back to reference Williams G, Kolodny GM. Suppression of myocardial 18F-FDG uptake by preparing patients with a high-fat, low-carbohydrate diet. Am J Roentgenol 2008;190:W151-6.CrossRef Williams G, Kolodny GM. Suppression of myocardial 18F-FDG uptake by preparing patients with a high-fat, low-carbohydrate diet. Am J Roentgenol 2008;190:W151-6.CrossRef
14.
go back to reference Wykrzykowska J, Lehman S, Williams G, Parker JA, Palmer MR, Varkey S, et al. Imaging of inflamed and vulnerable plaque in coronary arteries with 18F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation. J Nucl Med 2009;50:563-8.CrossRefPubMed Wykrzykowska J, Lehman S, Williams G, Parker JA, Palmer MR, Varkey S, et al. Imaging of inflamed and vulnerable plaque in coronary arteries with 18F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation. J Nucl Med 2009;50:563-8.CrossRefPubMed
15.
go back to reference Bing RJ, Siegel A, Ungar I, Gilbert M. Metabolism of the human heart II. Studies on fat, ketone and amino acid metabolism. Am J Med 1954;16:504-15.CrossRefPubMed Bing RJ, Siegel A, Ungar I, Gilbert M. Metabolism of the human heart II. Studies on fat, ketone and amino acid metabolism. Am J Med 1954;16:504-15.CrossRefPubMed
16.
go back to reference Opie LH, Evans JR, Shipp JC. Effect of fasting on glucose and palmitate metabolism of perfused rat heart. Am J Physiol 1963;205:1203-8.PubMed Opie LH, Evans JR, Shipp JC. Effect of fasting on glucose and palmitate metabolism of perfused rat heart. Am J Physiol 1963;205:1203-8.PubMed
17.
go back to reference Neely JR, Morgan HE. Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu Rev Physiol 1974;36:413-59.CrossRefPubMed Neely JR, Morgan HE. Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu Rev Physiol 1974;36:413-59.CrossRefPubMed
18.
go back to reference Wisneski JA, Gert EW, Neese RA, Mayr M. Myocardial metabolism of free fatty acids. Studies with 14C-labeled substrates in humans. J Clin Invest 1987;79:359-66.CrossRefPubMed Wisneski JA, Gert EW, Neese RA, Mayr M. Myocardial metabolism of free fatty acids. Studies with 14C-labeled substrates in humans. J Clin Invest 1987;79:359-66.CrossRefPubMed
19.
go back to reference Frayn KN. The glucose-fatty acid cycle: A physiological perspective. Biochem Soc Trans 2003;31:1115-9.CrossRefPubMed Frayn KN. The glucose-fatty acid cycle: A physiological perspective. Biochem Soc Trans 2003;31:1115-9.CrossRefPubMed
20.
go back to reference Yamanouchi M, Yoshia K, Niwayama H, Nakagawa K, Aioi S, Shikama N, et al. Effect of the duration of fasting on myocardial fluorine-18-fluorodeoxyglucose positron emission tomography images in normal males. Jpn Circ J 1996;60:319-27.CrossRefPubMed Yamanouchi M, Yoshia K, Niwayama H, Nakagawa K, Aioi S, Shikama N, et al. Effect of the duration of fasting on myocardial fluorine-18-fluorodeoxyglucose positron emission tomography images in normal males. Jpn Circ J 1996;60:319-27.CrossRefPubMed
21.
go back to reference Thomas TR, Fischer BA, Kist WB, Horner KE, Cox RH. Effects of exercise and n-3 fatty acids on postprandial lipemia. J Appl Physiol 2000;88:2199-204.PubMed Thomas TR, Fischer BA, Kist WB, Horner KE, Cox RH. Effects of exercise and n-3 fatty acids on postprandial lipemia. J Appl Physiol 2000;88:2199-204.PubMed
22.
go back to reference Mjos OD. Effect of free fatty acids on myocardial function and oxygen consumption in intact dogs. J Clin Invest 1971;50:1386-9.CrossRefPubMed Mjos OD. Effect of free fatty acids on myocardial function and oxygen consumption in intact dogs. J Clin Invest 1971;50:1386-9.CrossRefPubMed
23.
go back to reference Kjekshus JK, Mjos OD. Effect of free fatty acids on myocardial function and metabolism in the ischemic dog heart. J Clin Invest 1972;51:1767-76.CrossRefPubMed Kjekshus JK, Mjos OD. Effect of free fatty acids on myocardial function and metabolism in the ischemic dog heart. J Clin Invest 1972;51:1767-76.CrossRefPubMed
24.
go back to reference Mjos OD, Kjekshus JK, Lekvan J. Importance of free fatty acids as a determinant of myocardial oxygen consumption and myocardial ischemic injury during norepinephrine infusion in dogs. J Clin Invest 1974;53:1290-9.CrossRefPubMed Mjos OD, Kjekshus JK, Lekvan J. Importance of free fatty acids as a determinant of myocardial oxygen consumption and myocardial ischemic injury during norepinephrine infusion in dogs. J Clin Invest 1974;53:1290-9.CrossRefPubMed
25.
go back to reference Vik-Mo H, Mjos OD. Influence of free fatty acids on myocardial oxygen consumption and ischemic injury. Am J Cardiol 1981;48:361-5.CrossRefPubMed Vik-Mo H, Mjos OD. Influence of free fatty acids on myocardial oxygen consumption and ischemic injury. Am J Cardiol 1981;48:361-5.CrossRefPubMed
Metadata
Title
Impact of carbohydrate restriction with and without fatty acid loading on myocardial 18F-FDG uptake during PET: A randomized controlled trial
Authors
Victor Y. Cheng, MD
Piotr J. Slomka, PhD
Marie Ahlen, MD, RD
Louise E. J. Thomson, MD
Alan D. Waxman, MD
Daniel S. Berman, MD
Publication date
01-04-2010
Publisher
Springer-Verlag
Published in
Journal of Nuclear Cardiology / Issue 2/2010
Print ISSN: 1071-3581
Electronic ISSN: 1532-6551
DOI
https://doi.org/10.1007/s12350-009-9179-5

Other articles of this Issue 2/2010

Journal of Nuclear Cardiology 2/2010 Go to the issue