Skip to main content
Top
Published in: Advances in Therapy 6/2016

Open Access 01-06-2016 | Review

Clinical and Biological Principles of Cold Atmospheric Plasma Application in Skin Cancer

Authors: Jesús Gay-Mimbrera, Maria Carmen García, Beatriz Isla-Tejera, Antonio Rodero-Serrano, Antonio Vélez García-Nieto, Juan Ruano

Published in: Advances in Therapy | Issue 6/2016

Login to get access

Abstract

Plasma-based electrosurgical devices have long been employed for tissue coagulation, cutting, desiccation, and cauterizing. Despite their clinical benefits, these technologies involve tissue heating and their effects are primarily heat-mediated. Recently, there have been significant developments in cold atmospheric pressure plasma (CAP) science and engineering. New sources of CAP with well-controlled temperatures below 40 °C have been designed, permitting safe plasma application on animal and human bodies. In the last decade, a new innovative field, often referred to as plasma medicine, which combines plasma physics, life science, and clinical medicine has emerged. This field aims to exploit effects of mild plasma by controlling the interactions between plasma components (and other secondary species that can be formed from these components) with specific structural elements and functionalities of living cells. Recent studies showed that CAP can exert beneficial effects when applied selectively in certain pathologies with minimal toxicity to normal tissues. The rapid increase in new investigations and development of various devices for CAP application suggest early adoption of cold plasma as a new tool in the biomedical field. This review explores the latest major achievements in the field, focusing on the biological effects, mechanisms of action, and clinical evidence of CAP applications in areas such as skin disinfection, tissue regeneration, chronic wounds, and cancer treatment. This information may serve as a foundation for the design of future clinical trials to assess the efficacy and safety of CAP as an adjuvant therapy for skin cancer.
Literature
1.
go back to reference von Woedtke Th, Reuter S, Masur K, Weltmann KD. Plasmas for medicine. Phys Rep. 2013;530:291–320.CrossRef von Woedtke Th, Reuter S, Masur K, Weltmann KD. Plasmas for medicine. Phys Rep. 2013;530:291–320.CrossRef
2.
go back to reference Raiser J, Zenker M. M. Argon plasma coagulation for open surgical and endoscopic applications: state of the art. J Phys D Appl Phys. 2006;39:3520–3.CrossRef Raiser J, Zenker M. M. Argon plasma coagulation for open surgical and endoscopic applications: state of the art. J Phys D Appl Phys. 2006;39:3520–3.CrossRef
3.
go back to reference Heslin C, Boehm D, Milosavljevic V, Laycock M, Cullen PJ, Bourke P. Quantitative assessment of blood coagulation by cold atmospheric plasma. Plasma Med. 2014;4:153–63.CrossRef Heslin C, Boehm D, Milosavljevic V, Laycock M, Cullen PJ, Bourke P. Quantitative assessment of blood coagulation by cold atmospheric plasma. Plasma Med. 2014;4:153–63.CrossRef
4.
go back to reference Zuo X, Wei Y, Wei Chen L, Dong Meng Y. Non-equilibrium atmospheric pressure microplasma jet: an approach to endoscopic therapies. Phys Plasmas. 2013;20:083507.CrossRef Zuo X, Wei Y, Wei Chen L, Dong Meng Y. Non-equilibrium atmospheric pressure microplasma jet: an approach to endoscopic therapies. Phys Plasmas. 2013;20:083507.CrossRef
5.
go back to reference Kong MG, Kroesen G, Morfill G, et al. Plasma medicine: an introductory review. New J Phys. 2009;11:115012.CrossRef Kong MG, Kroesen G, Morfill G, et al. Plasma medicine: an introductory review. New J Phys. 2009;11:115012.CrossRef
6.
go back to reference Isbary G, Zimmermann JL, Shimizu T, et al. Non-thermal plasma-more than five years of clinical experience. Clin Plasma Med. 2013;1:19–23.CrossRef Isbary G, Zimmermann JL, Shimizu T, et al. Non-thermal plasma-more than five years of clinical experience. Clin Plasma Med. 2013;1:19–23.CrossRef
7.
go back to reference Graves DB. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J Phys D Appl Phys. 2012;45:263001.CrossRef Graves DB. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J Phys D Appl Phys. 2012;45:263001.CrossRef
8.
go back to reference Schmidt A, von Woedtke T, Bekeschus S. Periodic exposure of keratinocytes to cold physical plasma–an in vitro model for redox-related diseases of the skin. Oxid Med Cell Longev. 2016;2016:9816072. Schmidt A, von Woedtke T, Bekeschus S. Periodic exposure of keratinocytes to cold physical plasma–an in vitro model for redox-related diseases of the skin. Oxid Med Cell Longev. 2016;2016:9816072.
9.
go back to reference Arndt S, Unger P, Wacker E, et al. Cold atmospheric plasma (CAP) changes gene expression of key molecules of the wound healing machinery and improves wound healing in vitro and in vivo. PLoS one. 2013;8:e79325.CrossRefPubMedPubMedCentral Arndt S, Unger P, Wacker E, et al. Cold atmospheric plasma (CAP) changes gene expression of key molecules of the wound healing machinery and improves wound healing in vitro and in vivo. PLoS one. 2013;8:e79325.CrossRefPubMedPubMedCentral
10.
go back to reference Zhong S, Dong Y, Liu D, et al. Surface air plasma induced cell death and cytokines release of human keratinocytes in the context of psoriasis. Br J Dermatol. 2016;174:542–52. Zhong S, Dong Y, Liu D, et al. Surface air plasma induced cell death and cytokines release of human keratinocytes in the context of psoriasis. Br J Dermatol. 2016;174:542–52.
11.
go back to reference Park S-B, Kim B, Bae H, et al. Differential epigenetic effects of atmospheric cold plasma on MCF-7 and MDA-MB-231 breast cancer cells. PLoS One. 2015;10:e0129931.CrossRefPubMedPubMedCentral Park S-B, Kim B, Bae H, et al. Differential epigenetic effects of atmospheric cold plasma on MCF-7 and MDA-MB-231 breast cancer cells. PLoS One. 2015;10:e0129931.CrossRefPubMedPubMedCentral
12.
go back to reference Ahn HJ, Kim KI, Kim G, Moon E, Yang SS, Lee JS. Atmospheric-pressure plasma jet induces apoptosis involving mitochondria via generation of free radicals. PLoS One. 2011;6:e28154. Ahn HJ, Kim KI, Kim G, Moon E, Yang SS, Lee JS. Atmospheric-pressure plasma jet induces apoptosis involving mitochondria via generation of free radicals. PLoS One. 2011;6:e28154.
13.
go back to reference Arndt S, Wacker E, Li YF, et al. Cold atmospheric plasma, a new strategy to induce senescence in melanoma cells. Exp Dermatol. 2013;22:284–9.CrossRefPubMed Arndt S, Wacker E, Li YF, et al. Cold atmospheric plasma, a new strategy to induce senescence in melanoma cells. Exp Dermatol. 2013;22:284–9.CrossRefPubMed
14.
go back to reference Yan X, Zou F, Zhao S, et al. On the mechanism of plasma inducing cell apoptosis. IEEE Trans Plasma Sci. 2010;38:2451–7.CrossRef Yan X, Zou F, Zhao S, et al. On the mechanism of plasma inducing cell apoptosis. IEEE Trans Plasma Sci. 2010;38:2451–7.CrossRef
15.
go back to reference Kim KC, Piao MJ, Madduma Hewage SRK, et al. Non-thermal dielectric-barrier discharge plasma damages human keratinocytes by inducing oxidative stress. Int J Mol Med. 2016;37:29–38.PubMed Kim KC, Piao MJ, Madduma Hewage SRK, et al. Non-thermal dielectric-barrier discharge plasma damages human keratinocytes by inducing oxidative stress. Int J Mol Med. 2016;37:29–38.PubMed
16.
go back to reference Blackert S, Haertel B, Wende K, von Woedtke T, Lindequist U. Influence of non-thermal atmospheric pressure plasma on cellular structures and processes in human keratinocytes (HaCaT). J Dermatol Sci. 2013;70:173–81.CrossRefPubMed Blackert S, Haertel B, Wende K, von Woedtke T, Lindequist U. Influence of non-thermal atmospheric pressure plasma on cellular structures and processes in human keratinocytes (HaCaT). J Dermatol Sci. 2013;70:173–81.CrossRefPubMed
17.
go back to reference Wende K, Landsberg K, Lindequist U, Weltmann K-D, von Woedtke T. Distinctive activity of a nonthermal atmospheric-pressure plasma jet on eukaryotic and prokaryotic cells in a cocultivation approach of keratinocytes and microorganisms. IEEE Trans Plasma Sci. 2010;38:2479–85.CrossRef Wende K, Landsberg K, Lindequist U, Weltmann K-D, von Woedtke T. Distinctive activity of a nonthermal atmospheric-pressure plasma jet on eukaryotic and prokaryotic cells in a cocultivation approach of keratinocytes and microorganisms. IEEE Trans Plasma Sci. 2010;38:2479–85.CrossRef
18.
go back to reference Hasse S, Duong Tran T, et al. Induction of proliferation of basal epidermal keratinocytes by cold atmospheric-pressure plasma. Clin Exp Dermatol. 2016;41(2):202–9.CrossRefPubMed Hasse S, Duong Tran T, et al. Induction of proliferation of basal epidermal keratinocytes by cold atmospheric-pressure plasma. Clin Exp Dermatol. 2016;41(2):202–9.CrossRefPubMed
19.
go back to reference Arndt S, Landthaler M, Zimmermann JL, et al. Effects of cold atmospheric plasma (CAP) on β-defensins, inflammatory cytokines, and apoptosis-related molecules in keratinocytes in vitro and in vivo. PLoS One. 2015;10:e0120041.CrossRefPubMedPubMedCentral Arndt S, Landthaler M, Zimmermann JL, et al. Effects of cold atmospheric plasma (CAP) on β-defensins, inflammatory cytokines, and apoptosis-related molecules in keratinocytes in vitro and in vivo. PLoS One. 2015;10:e0120041.CrossRefPubMedPubMedCentral
20.
go back to reference Brun P, Pathak S, Castagliuolo I, et al. Helium generated cold plasma finely regulates activation of human fibroblast-like primary cells. PLoS One. 2014;9:e104397.CrossRefPubMedPubMedCentral Brun P, Pathak S, Castagliuolo I, et al. Helium generated cold plasma finely regulates activation of human fibroblast-like primary cells. PLoS One. 2014;9:e104397.CrossRefPubMedPubMedCentral
21.
go back to reference Shashurin A, Stepp MA, Hawley TS, et al. Influence of cold plasma atmospheric jet on surface integrin expression of living cells. Plasma Process Polym. 2010;7:294–300.CrossRef Shashurin A, Stepp MA, Hawley TS, et al. Influence of cold plasma atmospheric jet on surface integrin expression of living cells. Plasma Process Polym. 2010;7:294–300.CrossRef
22.
go back to reference Lopes BB, De Paula Leite Kraft MB, Rehder J, Batista FRX, Puzzi MB. The interactions between non-thermal atmospheric pressure plasma and ex vivo dermal fibroblasts. Proc Eng. 2013;59:92–100. Lopes BB, De Paula Leite Kraft MB, Rehder J, Batista FRX, Puzzi MB. The interactions between non-thermal atmospheric pressure plasma and ex vivo dermal fibroblasts. Proc Eng. 2013;59:92–100.
23.
go back to reference Tipa RS, Kroesen GMW. Plasma-stimulated wound healing. IEEE Trans Plasma Sci. 2011;39:2978–9.CrossRef Tipa RS, Kroesen GMW. Plasma-stimulated wound healing. IEEE Trans Plasma Sci. 2011;39:2978–9.CrossRef
24.
go back to reference Isbary G, Köritzer J, Mitra A, et al. Ex vivo human skin experiments for the evaluation of safety of new cold atmospheric plasma devices. Clin Plasma Med. 2013;1:36–44.CrossRef Isbary G, Köritzer J, Mitra A, et al. Ex vivo human skin experiments for the evaluation of safety of new cold atmospheric plasma devices. Clin Plasma Med. 2013;1:36–44.CrossRef
25.
go back to reference Ma R, Feng H, Li F, et al. An evaluation of anti-oxidative protection for cells against atmospheric pressure cold plasma treatment. Appl Phys Lett. 2012;100:3–7. Ma R, Feng H, Li F, et al. An evaluation of anti-oxidative protection for cells against atmospheric pressure cold plasma treatment. Appl Phys Lett. 2012;100:3–7.
26.
go back to reference Lademann J, Richter H, Alborova A, et al. Risk assessment of the application of a plasma jet in dermatology. J Biomed Opt. 2009;14:054025.CrossRefPubMed Lademann J, Richter H, Alborova A, et al. Risk assessment of the application of a plasma jet in dermatology. J Biomed Opt. 2009;14:054025.CrossRefPubMed
27.
go back to reference Wende K, Bekeschus S, Schmidt A, et al. Risk assessment of a cold argon plasma jet in respect to its mutagenicity. Mutat Res Genet Toxicol Environ Mutagen. 2016;798–799:48–54.CrossRefPubMed Wende K, Bekeschus S, Schmidt A, et al. Risk assessment of a cold argon plasma jet in respect to its mutagenicity. Mutat Res Genet Toxicol Environ Mutagen. 2016;798–799:48–54.CrossRefPubMed
28.
go back to reference Keidar M. Plasma for cancer treatment. Plasma Sour Sci Technol. 2015;24:033001.CrossRef Keidar M. Plasma for cancer treatment. Plasma Sour Sci Technol. 2015;24:033001.CrossRef
29.
go back to reference Kieft IE, Kurdi M, Stoffels E. Reattachment and apoptosis after plasma-needle treatment of cultured cells. IEEE Trans Plasma Sci. 2006;34:1331–6.CrossRef Kieft IE, Kurdi M, Stoffels E. Reattachment and apoptosis after plasma-needle treatment of cultured cells. IEEE Trans Plasma Sci. 2006;34:1331–6.CrossRef
30.
31.
go back to reference Yan D, Talbot A, Nourmohammadi N, et al. Principles of using cold atmospheric plasma stimulated media for cancer treatment. Sci Rep. 2015;17(5):18339.CrossRef Yan D, Talbot A, Nourmohammadi N, et al. Principles of using cold atmospheric plasma stimulated media for cancer treatment. Sci Rep. 2015;17(5):18339.CrossRef
32.
go back to reference Adachi T, Tanaka H, Nonomura S, et al. Plasma-activated medium induces A549 cell injury via a spiral apoptotic cascade involving the mitochondrial-nuclear network. Free Radic Biol Med. 2015;79:28–44.CrossRefPubMed Adachi T, Tanaka H, Nonomura S, et al. Plasma-activated medium induces A549 cell injury via a spiral apoptotic cascade involving the mitochondrial-nuclear network. Free Radic Biol Med. 2015;79:28–44.CrossRefPubMed
33.
go back to reference Utsumi F, Kajiyama H, Nakamura K, et al. Effect of indirect nonequilibrium atmospheric pressure plasma on anti-proliferative activity against chronic chemo-resistant ovarian cancer cells in vitro and in vivo. PLoS One. 2013;8(12):e81576.CrossRefPubMedPubMedCentral Utsumi F, Kajiyama H, Nakamura K, et al. Effect of indirect nonequilibrium atmospheric pressure plasma on anti-proliferative activity against chronic chemo-resistant ovarian cancer cells in vitro and in vivo. PLoS One. 2013;8(12):e81576.CrossRefPubMedPubMedCentral
34.
go back to reference Sander CS, Hamm F, Elsner P, Thiele JJ. Oxidative stress in malignant melanoma and non-melanoma skin cancer. Br J Dermatol. 2003;148(5):913–22.CrossRefPubMed Sander CS, Hamm F, Elsner P, Thiele JJ. Oxidative stress in malignant melanoma and non-melanoma skin cancer. Br J Dermatol. 2003;148(5):913–22.CrossRefPubMed
35.
go back to reference Ishaq M, Kumar S, Varinli H, et al. Atmospheric gas plasma-induced ROS production activates TNF-ASK1 pathway for the induction of melanoma cancer cell apoptosis. Mol Biol Cell. 2014;25:1523–31.CrossRefPubMedPubMedCentral Ishaq M, Kumar S, Varinli H, et al. Atmospheric gas plasma-induced ROS production activates TNF-ASK1 pathway for the induction of melanoma cancer cell apoptosis. Mol Biol Cell. 2014;25:1523–31.CrossRefPubMedPubMedCentral
36.
go back to reference Daeschlein G, Scholz S, Lutze S, et al. Comparison between cold plasma, electrochemotherapy and combined therapy in a melanoma mouse model. Exp Dermatol. 2013;22:582–6.CrossRefPubMed Daeschlein G, Scholz S, Lutze S, et al. Comparison between cold plasma, electrochemotherapy and combined therapy in a melanoma mouse model. Exp Dermatol. 2013;22:582–6.CrossRefPubMed
37.
go back to reference Welz C, Emmert S, Canis M, et al. Cold atmospheric plasma: a promising complementary therapy for squamous head and neck cancer. PLoS One. 2015;10:e0141827.CrossRefPubMedPubMedCentral Welz C, Emmert S, Canis M, et al. Cold atmospheric plasma: a promising complementary therapy for squamous head and neck cancer. PLoS One. 2015;10:e0141827.CrossRefPubMedPubMedCentral
38.
go back to reference Maisch T, Shimizu T, Li Y-F, et al. Decolonisation of MRSA, S. aureus and E. coli by cold-atmospheric plasma using a porcine skin model in vitro. PLoS One. 2012;7:e34610.CrossRefPubMedPubMedCentral Maisch T, Shimizu T, Li Y-F, et al. Decolonisation of MRSA, S. aureus and E. coli by cold-atmospheric plasma using a porcine skin model in vitro. PLoS One. 2012;7:e34610.CrossRefPubMedPubMedCentral
39.
go back to reference Klampfl TG, Isbary G, Shimizu T, et al. Cold atmospheric air plasma sterilization against spores and other microorganisms of clinical interest. Appl Environ Microbiol. 2012;78:5077–82.CrossRefPubMedPubMedCentral Klampfl TG, Isbary G, Shimizu T, et al. Cold atmospheric air plasma sterilization against spores and other microorganisms of clinical interest. Appl Environ Microbiol. 2012;78:5077–82.CrossRefPubMedPubMedCentral
40.
go back to reference Isbary G, Morfill G, Schmidt HU, et al. A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. Br J Dermatol. 2010;163:78–82.PubMed Isbary G, Morfill G, Schmidt HU, et al. A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. Br J Dermatol. 2010;163:78–82.PubMed
41.
go back to reference Isbary G, Heinlin J, Shimizu T, et al. Successful and safe use of 2 min cold atmospheric argon plasma in chronic wounds: results of a randomized controlled trial. Br J Dermatol. 2012;167:404–10.CrossRefPubMed Isbary G, Heinlin J, Shimizu T, et al. Successful and safe use of 2 min cold atmospheric argon plasma in chronic wounds: results of a randomized controlled trial. Br J Dermatol. 2012;167:404–10.CrossRefPubMed
42.
go back to reference Brehmer F, Haenssle HA, Daeschlein G, et al. Alleviation of chronic venous leg ulcers with a hand-held dielectric barrier discharge plasma generator (PlasmaDerm(®) VU-2010): results of a monocentric, two-armed, open, prospective, randomized and controlled trial (NCT01415622). J Eur Acad Dermatol Venereol. 2015;29:148–55.CrossRefPubMed Brehmer F, Haenssle HA, Daeschlein G, et al. Alleviation of chronic venous leg ulcers with a hand-held dielectric barrier discharge plasma generator (PlasmaDerm(®) VU-2010): results of a monocentric, two-armed, open, prospective, randomized and controlled trial (NCT01415622). J Eur Acad Dermatol Venereol. 2015;29:148–55.CrossRefPubMed
43.
go back to reference Klebes M, Lademann J, Philipp S, et al. Effects of tissue-tolerable plasma on psoriasis vulgaris treatment compared to conventional local treatment: a pilot study. Clin Plasma Med. 2014;2:22–7.CrossRef Klebes M, Lademann J, Philipp S, et al. Effects of tissue-tolerable plasma on psoriasis vulgaris treatment compared to conventional local treatment: a pilot study. Clin Plasma Med. 2014;2:22–7.CrossRef
44.
go back to reference Isbary G, Morfill G, Zimmermann J, Shimizu T, Stolz W. Cold atmospheric plasma: a successful treatment of lesions in Hailey-Hailey disease. Arch Dermatol. 2011;147:388–90.CrossRefPubMed Isbary G, Morfill G, Zimmermann J, Shimizu T, Stolz W. Cold atmospheric plasma: a successful treatment of lesions in Hailey-Hailey disease. Arch Dermatol. 2011;147:388–90.CrossRefPubMed
45.
go back to reference Heinlin J, Isbary G, Stolz W, et al. A randomized two-sided placebo-controlled study on the efficacy and safety of atmospheric non-thermal argon plasma for pruritus. J Eur Acad Dermatol Venereol. 2013;27:324–31.CrossRefPubMed Heinlin J, Isbary G, Stolz W, et al. A randomized two-sided placebo-controlled study on the efficacy and safety of atmospheric non-thermal argon plasma for pruritus. J Eur Acad Dermatol Venereol. 2013;27:324–31.CrossRefPubMed
46.
go back to reference Metelmann HR, Nedrelow DS, Seebauer C, et al. Head and neck cancer treatment and physical plasma. Clin Plasma Med. 2015;3:17–23.CrossRef Metelmann HR, Nedrelow DS, Seebauer C, et al. Head and neck cancer treatment and physical plasma. Clin Plasma Med. 2015;3:17–23.CrossRef
47.
go back to reference Daeschlein G, Scholz S, Ahmed R, et al. Cold plasma is well-tolerated and does not disturb skin barrier or reduce skin moisture. J Dtsch Dermatol Ges. 2012;10:509–15.PubMed Daeschlein G, Scholz S, Ahmed R, et al. Cold plasma is well-tolerated and does not disturb skin barrier or reduce skin moisture. J Dtsch Dermatol Ges. 2012;10:509–15.PubMed
48.
go back to reference Welz C, Becker S, Li Y-F, et al. Effects of cold atmospheric plasma on mucosal tissue culture. J Phys D Appl Phys. 2013;46:045401.CrossRef Welz C, Becker S, Li Y-F, et al. Effects of cold atmospheric plasma on mucosal tissue culture. J Phys D Appl Phys. 2013;46:045401.CrossRef
49.
go back to reference Tiede R, Hirschberg J, Daeschlein G, von Woedtke T, Vioel W, Emmert S. Plasma applications: a dermatological view. Contrib Plasma Phys. 2014;2:118–30.CrossRef Tiede R, Hirschberg J, Daeschlein G, von Woedtke T, Vioel W, Emmert S. Plasma applications: a dermatological view. Contrib Plasma Phys. 2014;2:118–30.CrossRef
50.
go back to reference Rajasekaran P, Mertmann P, Bibinov N, Wandke D, Viöl W, Awakowicz P. DBD plasma source operated in single-filamentary mode for therapeutic use in dermatology. J Phys D Appl Phys. 2009;42:225201.CrossRef Rajasekaran P, Mertmann P, Bibinov N, Wandke D, Viöl W, Awakowicz P. DBD plasma source operated in single-filamentary mode for therapeutic use in dermatology. J Phys D Appl Phys. 2009;42:225201.CrossRef
51.
go back to reference Bender C, Matthes R, Kindel E, et al. The irritation potential of nonthermal atmospheric pressure plasma in the het-CAM. Plasma Process Polym. 2010;7:318–26.CrossRef Bender C, Matthes R, Kindel E, et al. The irritation potential of nonthermal atmospheric pressure plasma in the het-CAM. Plasma Process Polym. 2010;7:318–26.CrossRef
52.
go back to reference Boekema BKHL, Vlig M, Guijt D, et al. A new flexible DBD device for treating infected wounds: in vitro and ex vivo evaluation and comparison with a RF argon plasma jet. J Phys D Appl Phys. 2016;49:044001.CrossRef Boekema BKHL, Vlig M, Guijt D, et al. A new flexible DBD device for treating infected wounds: in vitro and ex vivo evaluation and comparison with a RF argon plasma jet. J Phys D Appl Phys. 2016;49:044001.CrossRef
53.
go back to reference Chutsirimongkol C, Boonyawan D, Polnikorn N, Techawatthanawisan W, Kundilokchai T. Non-thermal plasma for acne treatment and aesthetic skin improvement. Plasma Med. 2014;4:79–88.CrossRef Chutsirimongkol C, Boonyawan D, Polnikorn N, Techawatthanawisan W, Kundilokchai T. Non-thermal plasma for acne treatment and aesthetic skin improvement. Plasma Med. 2014;4:79–88.CrossRef
54.
go back to reference Haertel B, von Woedtke T, Weltmann K-D, Lindequist U. Non-thermal atmospheric-pressure plasma possible application in wound healing. Biomol Ther 2014;22:477–90.CrossRef Haertel B, von Woedtke T, Weltmann K-D, Lindequist U. Non-thermal atmospheric-pressure plasma possible application in wound healing. Biomol Ther 2014;22:477–90.CrossRef
55.
go back to reference Daeschleia G, Scholza S, Ahmed R, et al. Skin decontamination by low-temperature atmospheric pressure plasma jet and dielectric barrier discharge plasma. J Hosp Infect. 2012;81:177–83.CrossRef Daeschleia G, Scholza S, Ahmed R, et al. Skin decontamination by low-temperature atmospheric pressure plasma jet and dielectric barrier discharge plasma. J Hosp Infect. 2012;81:177–83.CrossRef
56.
go back to reference Fluhr JW, Sassning S, Lademann O, et al. In vivo skin treatment with tissue-tolerable plasma influences skin physiology and antioxidant profile in human stratum corneum. Exp Dermatol. 2011;21:130–4.CrossRefPubMed Fluhr JW, Sassning S, Lademann O, et al. In vivo skin treatment with tissue-tolerable plasma influences skin physiology and antioxidant profile in human stratum corneum. Exp Dermatol. 2011;21:130–4.CrossRefPubMed
57.
go back to reference Ishaq M, Bazaka K, Ostrikov K. Pro-apoptotic NOXA is implicated in atmospheric-pressure plasma-induced melanoma cell death. J Phys D Appl Phys. 2015;48:464002.CrossRef Ishaq M, Bazaka K, Ostrikov K. Pro-apoptotic NOXA is implicated in atmospheric-pressure plasma-induced melanoma cell death. J Phys D Appl Phys. 2015;48:464002.CrossRef
58.
go back to reference Jacofsky MC, Lubahn C, McDonnell C, et al. Spatially resolved optical emission spectroscopy of a helium plasma jet and its effects on wound healing rate in a diabetic murine model. Plasma Med. 2014;4:177–91.CrossRef Jacofsky MC, Lubahn C, McDonnell C, et al. Spatially resolved optical emission spectroscopy of a helium plasma jet and its effects on wound healing rate in a diabetic murine model. Plasma Med. 2014;4:177–91.CrossRef
59.
go back to reference Boekema BKHL, Hofmann SS, van Ham BJT, Bruggeman PJ, Middelkoop E. Antibacterial plasma at safe levels for skin cells. J Phys D Appl Phys. 2013;46:422001. Boekema BKHL, Hofmann SS, van Ham BJT, Bruggeman PJ, Middelkoop E. Antibacterial plasma at safe levels for skin cells. J Phys D Appl Phys. 2013;46:422001.
60.
go back to reference Morfill G, Shimizu T, Steffes B, Schmidt H-U. Nosocomical infections-a new approach towards preventive medicine using plasmas. New J Phys. 2009;11:115019.CrossRef Morfill G, Shimizu T, Steffes B, Schmidt H-U. Nosocomical infections-a new approach towards preventive medicine using plasmas. New J Phys. 2009;11:115019.CrossRef
61.
go back to reference Li YF, Taylor D, Zimmermann JL, et al. In vivo skin treatment using two portable plasma devices: comparison of a direct and an indirect cold atmospheric plasma treatment. Clin Plasma Med. 2013;1:35–9.CrossRef Li YF, Taylor D, Zimmermann JL, et al. In vivo skin treatment using two portable plasma devices: comparison of a direct and an indirect cold atmospheric plasma treatment. Clin Plasma Med. 2013;1:35–9.CrossRef
62.
go back to reference Kaushik N, Kumar N, Kim CH, Kaushik NK, Choi EH. Dielectric barrier discharge plasma efficiently delivers an apoptotic response in human monocytic lymphoma. Plasma Process Polym. 2014;11:1175–87.CrossRef Kaushik N, Kumar N, Kim CH, Kaushik NK, Choi EH. Dielectric barrier discharge plasma efficiently delivers an apoptotic response in human monocytic lymphoma. Plasma Process Polym. 2014;11:1175–87.CrossRef
63.
go back to reference Wang M, Holmes B, Cheng X, Zhu W, Keidar M, Zhang LG. Cold atmospheric plasma for selectively ablating metastatic breast cancer cells. PLoS One. 2013;8:e73741.CrossRefPubMedPubMedCentral Wang M, Holmes B, Cheng X, Zhu W, Keidar M, Zhang LG. Cold atmospheric plasma for selectively ablating metastatic breast cancer cells. PLoS One. 2013;8:e73741.CrossRefPubMedPubMedCentral
64.
go back to reference Iseki S, Nakamura K, Hayashi M, et al. Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma. Appl Phys Lett. 2012;100:113702.CrossRef Iseki S, Nakamura K, Hayashi M, et al. Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma. Appl Phys Lett. 2012;100:113702.CrossRef
65.
go back to reference Kim CH, Kwon S, Bahn JH, et al. Effects of atmospheric nonthermal plasma on invasion of colorectal cancer cells. Appl Phys Lett. 2010;96. Kim CH, Kwon S, Bahn JH, et al. Effects of atmospheric nonthermal plasma on invasion of colorectal cancer cells. Appl Phys Lett. 2010;96.
66.
go back to reference Joh HM, Choi JY, Kim SJ, Chung TH, Kang T-H. Effect of additive oxygen gas on cellular response of lung cancer cells induced by atmospheric pressure helium plasma jet. Sci Rep. 2014;4:6638.CrossRefPubMedPubMedCentral Joh HM, Choi JY, Kim SJ, Chung TH, Kang T-H. Effect of additive oxygen gas on cellular response of lung cancer cells induced by atmospheric pressure helium plasma jet. Sci Rep. 2014;4:6638.CrossRefPubMedPubMedCentral
67.
go back to reference Gweon B, Kim M, Bee Kim D, et al. Differential responses of human liver cancer and normal cells to atmospheric pressure plasma. Appl Phys Lett. 2011;99:063701.CrossRef Gweon B, Kim M, Bee Kim D, et al. Differential responses of human liver cancer and normal cells to atmospheric pressure plasma. Appl Phys Lett. 2011;99:063701.CrossRef
68.
go back to reference Kim JY, Ballato J, Foy P, et al. Apoptosis of lung carcinoma cells induced by a flexible optical fiber-based cold microplasma. Biosens Bioelectron. 2011;28:530–8.CrossRef Kim JY, Ballato J, Foy P, et al. Apoptosis of lung carcinoma cells induced by a flexible optical fiber-based cold microplasma. Biosens Bioelectron. 2011;28:530–8.CrossRef
69.
go back to reference Partecke LI, Evert K, Haugk J, et al. Tissue tolerable plasma (TTP) induces apoptosis in pancreatic cancer cells in vitro and in vivo. BMC Cancer. 2012;12:1–10.CrossRef Partecke LI, Evert K, Haugk J, et al. Tissue tolerable plasma (TTP) induces apoptosis in pancreatic cancer cells in vitro and in vivo. BMC Cancer. 2012;12:1–10.CrossRef
70.
go back to reference Guerrero-Preston R, Ogawa T, Uemura M, et al. Cold atmospheric plasma treatment selectively targets head and neck squamous cell carcinoma cells. Int J Mol Med. 2014;34:941–6.PubMedPubMedCentral Guerrero-Preston R, Ogawa T, Uemura M, et al. Cold atmospheric plasma treatment selectively targets head and neck squamous cell carcinoma cells. Int J Mol Med. 2014;34:941–6.PubMedPubMedCentral
71.
go back to reference Hirst AM, Frame FM, Maitland NJ, Connell DO. Low temperature plasma: a novel focal therapy for localized prostate cancer. Biomed Res Int. 2014;2014:878319.CrossRefPubMedPubMedCentral Hirst AM, Frame FM, Maitland NJ, Connell DO. Low temperature plasma: a novel focal therapy for localized prostate cancer. Biomed Res Int. 2014;2014:878319.CrossRefPubMedPubMedCentral
72.
go back to reference Gibson AR, McCarthy HO, Ali A, O’Connell D, Graham WG. Interactions of a non-thermal atmospheric pressure plasma effluent with PC-3 prostate cancer cells. Plasma Process Polym. 2014;11:1142–9.CrossRef Gibson AR, McCarthy HO, Ali A, O’Connell D, Graham WG. Interactions of a non-thermal atmospheric pressure plasma effluent with PC-3 prostate cancer cells. Plasma Process Polym. 2014;11:1142–9.CrossRef
73.
go back to reference Weiss M, Gümbel D, Hanschmann E-M, et al. Cold atmospheric plasma treatment induces anti-proliferative effects in prostate cancer cells by redox and apoptotic signaling pathways. PLoS One. 2015;10:e0130350.CrossRefPubMedPubMedCentral Weiss M, Gümbel D, Hanschmann E-M, et al. Cold atmospheric plasma treatment induces anti-proliferative effects in prostate cancer cells by redox and apoptotic signaling pathways. PLoS One. 2015;10:e0130350.CrossRefPubMedPubMedCentral
74.
go back to reference Conway GE, Casey A, Milosavljevic V, Liu Y, Howe O, Cullen PJ, et al. Non-thermal atmospheric plasma induces ROS-independent cell death in U373MG glioma cells and augments the cytotoxicity of temozolomide. Br J Cancer. 2016;114(4):435–43.CrossRefPubMed Conway GE, Casey A, Milosavljevic V, Liu Y, Howe O, Cullen PJ, et al. Non-thermal atmospheric plasma induces ROS-independent cell death in U373MG glioma cells and augments the cytotoxicity of temozolomide. Br J Cancer. 2016;114(4):435–43.CrossRefPubMed
75.
go back to reference Vandamme M, Robert E, Pesnel S, et al. Antitumor effect of plasma treatment on U87 glioma xenografts: preliminary results. Plasma Process Polym. 2010;7:264–73. Vandamme M, Robert E, Pesnel S, et al. Antitumor effect of plasma treatment on U87 glioma xenografts: preliminary results. Plasma Process Polym. 2010;7:264–73.
76.
go back to reference Köritzer J, Boxhammer V, Al E. Restoration of sensitivity in chemo-resistant glioma cells by cold atmospheric plasma. PLoS One. 2013;8:1–10.CrossRef Köritzer J, Boxhammer V, Al E. Restoration of sensitivity in chemo-resistant glioma cells by cold atmospheric plasma. PLoS One. 2013;8:1–10.CrossRef
77.
go back to reference Cheng X, Murphy W, Recek N, et al. Synergistic effect of gold nanoparticles and cold plasma on glioblastoma cancer therapy. J Phys D Appl Phys. 2014;47:335402.CrossRef Cheng X, Murphy W, Recek N, et al. Synergistic effect of gold nanoparticles and cold plasma on glioblastoma cancer therapy. J Phys D Appl Phys. 2014;47:335402.CrossRef
78.
go back to reference Cheng X, Sherman J, Murphy W, Ratovitski E, Canady J, Keidar M. The effect of tuning cold plasma composition on glioblastoma cell viability. PLoS One. 2014;9:1–9.CrossRef Cheng X, Sherman J, Murphy W, Ratovitski E, Canady J, Keidar M. The effect of tuning cold plasma composition on glioblastoma cell viability. PLoS One. 2014;9:1–9.CrossRef
79.
80.
go back to reference Walk RM, Snyder J, Srinivasan P, et al. Cold atmospheric plasma for the ablative treatment of neuroblastoma. J Pediatr Surg. 2013;48:67–73.CrossRefPubMed Walk RM, Snyder J, Srinivasan P, et al. Cold atmospheric plasma for the ablative treatment of neuroblastoma. J Pediatr Surg. 2013;48:67–73.CrossRefPubMed
Metadata
Title
Clinical and Biological Principles of Cold Atmospheric Plasma Application in Skin Cancer
Authors
Jesús Gay-Mimbrera
Maria Carmen García
Beatriz Isla-Tejera
Antonio Rodero-Serrano
Antonio Vélez García-Nieto
Juan Ruano
Publication date
01-06-2016
Publisher
Springer Healthcare
Published in
Advances in Therapy / Issue 6/2016
Print ISSN: 0741-238X
Electronic ISSN: 1865-8652
DOI
https://doi.org/10.1007/s12325-016-0338-1

Other articles of this Issue 6/2016

Advances in Therapy 6/2016 Go to the issue