Skip to main content
Top
Published in: The Cerebellum 3/2019

01-06-2019 | Tremor | Review

The Cerebellar Thalamus

Authors: Christophe Habas, Mario Manto, Pierre Cabaraux

Published in: The Cerebellum | Issue 3/2019

Login to get access

Abstract

The thalamus is a neural processor and integrator for the activities of the forebrain. Surprisingly, little is known about the roles of the “cerebellar” thalamus despite the anatomical observation that all the cortico-cerebello-cortical loops make relay in the main subnuclei of the thalamus. The thalamus displays a broad range of electrophysiological responses, such as neuronal spiking, bursting, or oscillatory rhythms, which contribute to precisely shape and to synchronize activities of cortical areas. We emphasize that the cerebellar thalamus deserves a renewal of interest to better understand its specific contributions to the cerebellar motor and associative functions, especially at a time where the anatomy between cerebellum and basal ganglia is being rewritten.
Literature
1.
go back to reference Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon CF, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29-26:8586–94.CrossRef Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon CF, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29-26:8586–94.CrossRef
2.
go back to reference Sang L, Qin W, Liu Y, Han W, Zhang Y, Jiang T, et al. Resting-state functional connectivity of the vermal and hemispheric subregions of the cerebellum with both the cerebral cortical networks and subcortical structures. NeuroImage. 2012;61-4:1213–25.CrossRef Sang L, Qin W, Liu Y, Han W, Zhang Y, Jiang T, et al. Resting-state functional connectivity of the vermal and hemispheric subregions of the cerebellum with both the cerebral cortical networks and subcortical structures. NeuroImage. 2012;61-4:1213–25.CrossRef
3.
go back to reference Sherman SM. Chapter 9: thalamic relays and cortical functioning. Progress Brain Sci. 2005;149:107–26.CrossRef Sherman SM. Chapter 9: thalamic relays and cortical functioning. Progress Brain Sci. 2005;149:107–26.CrossRef
4.
go back to reference Sherman SM. Thalamus plays a central role in ongoing cortical activity functioning. Nat Neurosci. 2016;19-4:533–41.CrossRef Sherman SM. Thalamus plays a central role in ongoing cortical activity functioning. Nat Neurosci. 2016;19-4:533–41.CrossRef
5.
go back to reference Sherman SM, Guillery RW. Functional connections of cortical areas. A new view from the cortical areas. Cambridge, London: The MIT Press; 2013.CrossRef Sherman SM, Guillery RW. Functional connections of cortical areas. A new view from the cortical areas. Cambridge, London: The MIT Press; 2013.CrossRef
6.
go back to reference Shermann SM. Functioning of circuits connecting thalamus and cortex. Compr Physiol. 2017;7:713–39.CrossRef Shermann SM. Functioning of circuits connecting thalamus and cortex. Compr Physiol. 2017;7:713–39.CrossRef
7.
go back to reference Minchiacchi D, Molinari M, Macchi G, Jones EG (Edit). Thalamic networks for relay and modulation: Pergamon studies in neurosciences. Pergamon Press, 1st edition, 1993. Minchiacchi D, Molinari M, Macchi G, Jones EG (Edit). Thalamic networks for relay and modulation: Pergamon studies in neurosciences. Pergamon Press, 1st edition, 1993.
8.
go back to reference Bickford ME. Thalamic circuit diversity: modulation of the driver/modulator framework. Front Neurosci. 2016;9:86. Bickford ME. Thalamic circuit diversity: modulation of the driver/modulator framework. Front Neurosci. 2016;9:86.
9.
go back to reference Bartho P, Slézia A, Varga V, Bokor H, Pinault D, Buzsaki G, et al. Cortical control of zona incerta. J Neurosci. 2007;27-7:1670–81.CrossRef Bartho P, Slézia A, Varga V, Bokor H, Pinault D, Buzsaki G, et al. Cortical control of zona incerta. J Neurosci. 2007;27-7:1670–81.CrossRef
10.
go back to reference Trageser JC, Keller A. Reducing the uncertainty: gating of peripheral inputs by zona incerta. J Neurosci. 2004;24-40:8911–5.CrossRef Trageser JC, Keller A. Reducing the uncertainty: gating of peripheral inputs by zona incerta. J Neurosci. 2004;24-40:8911–5.CrossRef
11.
go back to reference Groh A, Bokor H, Mease RA, Plattner VM, Stroh A, Deschenes M, et al. Convergence of cortical and sensory driver inputs on single thalamocortical cells. Cereb Cortex. 2013;24-12:3167–79. Groh A, Bokor H, Mease RA, Plattner VM, Stroh A, Deschenes M, et al. Convergence of cortical and sensory driver inputs on single thalamocortical cells. Cereb Cortex. 2013;24-12:3167–79.
12.
go back to reference Jones EG. Viewpoint: the core and matrix of thalamic organization. Neurosci. 1998;85-2:331–45.CrossRef Jones EG. Viewpoint: the core and matrix of thalamic organization. Neurosci. 1998;85-2:331–45.CrossRef
13.
go back to reference Cruickshank SJ, Ahmed OJ, Stevens TR, Patrick SL, Gonzales AN, Elmaleh M, et al. Thalamic control of layer 1 circuits in prefrontal cortex. J Neurosci. 2012;32-49:17813–23.CrossRef Cruickshank SJ, Ahmed OJ, Stevens TR, Patrick SL, Gonzales AN, Elmaleh M, et al. Thalamic control of layer 1 circuits in prefrontal cortex. J Neurosci. 2012;32-49:17813–23.CrossRef
14.
go back to reference Theyel BB, Lee CC, Shermann SM. Specific and nonspecific thalamocortical connectivity in the auditory and somatosensory thalamocortical slices. NeuroReport. 2010;21:861–4.CrossRefPubMedPubMedCentral Theyel BB, Lee CC, Shermann SM. Specific and nonspecific thalamocortical connectivity in the auditory and somatosensory thalamocortical slices. NeuroReport. 2010;21:861–4.CrossRefPubMedPubMedCentral
15.
go back to reference Münckle MC, Waldvogel HJ, Faull RLM. The distribution of calbindin, calretinin and paravalbumin immunoreactivity in the human thalamus. J Chem Neuroanat. 2000;19-3:155–73.CrossRef Münckle MC, Waldvogel HJ, Faull RLM. The distribution of calbindin, calretinin and paravalbumin immunoreactivity in the human thalamus. J Chem Neuroanat. 2000;19-3:155–73.CrossRef
17.
go back to reference Zeldenrust F, Chameau PJP, Wadman WJ. Information coding by single spikes and bursts in thalamocortical relay neurons. Twentieth Annual Computational Neuroscience Meeting CNS*2011. BMC Neurosci. 2011;12(Suppl 1):P367.CrossRefPubMedCentral Zeldenrust F, Chameau PJP, Wadman WJ. Information coding by single spikes and bursts in thalamocortical relay neurons. Twentieth Annual Computational Neuroscience Meeting CNS*2011. BMC Neurosci. 2011;12(Suppl 1):P367.CrossRefPubMedCentral
18.
go back to reference Mease RA, Kuner T, Fairhall AL, Groh A. Multiplexed spike coding and adaptation in the thalamus. Cell Rep. 2017;19-6:1130–40.CrossRef Mease RA, Kuner T, Fairhall AL, Groh A. Multiplexed spike coding and adaptation in the thalamus. Cell Rep. 2017;19-6:1130–40.CrossRef
19.
go back to reference Hu H, Agmon A. Differential excitation of distally versus proximally targeting cortical interneurons by unitary thalamocortical bursts. J Neurosci. 2016;36-26:6906–16.CrossRef Hu H, Agmon A. Differential excitation of distally versus proximally targeting cortical interneurons by unitary thalamocortical bursts. J Neurosci. 2016;36-26:6906–16.CrossRef
20.
go back to reference Audette NJ, Urban-Ciecki J, Matsushita M, Barth AL. POm thalamocortical input drive layer-specific microcircuits in somatosensory cortex. Cereb Cortex. 2018;28-4:1312–28.CrossRef Audette NJ, Urban-Ciecki J, Matsushita M, Barth AL. POm thalamocortical input drive layer-specific microcircuits in somatosensory cortex. Cereb Cortex. 2018;28-4:1312–28.CrossRef
21.
go back to reference Hay YA, Naudé J, Faure P. Lambolez B. Cereb Cortex: Target interneurons preferences in thalamocortical pathways determines the temporal structure of cortical responses; 2018. Hay YA, Naudé J, Faure P. Lambolez B. Cereb Cortex: Target interneurons preferences in thalamocortical pathways determines the temporal structure of cortical responses; 2018.
22.
go back to reference Jones EG. Thalamic circuitry and thalamocortical synchrony. Philos Trans R Soc Lond B. 2002;357:1659–1673.22.CrossRef Jones EG. Thalamic circuitry and thalamocortical synchrony. Philos Trans R Soc Lond B. 2002;357:1659–1673.22.CrossRef
23.
go back to reference Rockland KS. Corticothalamic axon morphologies and network architecture. Eur J Neurosci 2018 Rockland KS. Corticothalamic axon morphologies and network architecture. Eur J Neurosci 2018
24.
go back to reference Xiao D, Zikopoulos B, Barbas H. Laminar and modular organization of prefrontal projections to multiple thalamic nuclei. Neurosci. 2009;161-4:1067–81.CrossRef Xiao D, Zikopoulos B, Barbas H. Laminar and modular organization of prefrontal projections to multiple thalamic nuclei. Neurosci. 2009;161-4:1067–81.CrossRef
25.
go back to reference Hoerder-Suabedissen A, Hayashi S, Nolan Z, Casas-Torremocha D, Grant E, Viswanathan S, et al. Subset of cortical layer 6b neurons selectively innervates higher order thalamic nuclei in mice. Cereb Cortex. 2018;28–5:1882–97.CrossRef Hoerder-Suabedissen A, Hayashi S, Nolan Z, Casas-Torremocha D, Grant E, Viswanathan S, et al. Subset of cortical layer 6b neurons selectively innervates higher order thalamic nuclei in mice. Cereb Cortex. 2018;28–5:1882–97.CrossRef
26.
go back to reference Briggs F, Usrey WM. Emerging views of corticothalamic function. Curr Opin Neurobiol. 2008;18-4:403–7.CrossRef Briggs F, Usrey WM. Emerging views of corticothalamic function. Curr Opin Neurobiol. 2008;18-4:403–7.CrossRef
27.
28.
go back to reference Connelly WM, Crunelli V, Errington AC. Passive synaptic normalization and input synchrony-dependent amplification of cortical feedback in thalamocortical neuron dendrites. J Neurosci. 2016;36-13:3735–54.CrossRef Connelly WM, Crunelli V, Errington AC. Passive synaptic normalization and input synchrony-dependent amplification of cortical feedback in thalamocortical neuron dendrites. J Neurosci. 2016;36-13:3735–54.CrossRef
30.
go back to reference Ahissar E, Oram T. Commentary. Thalamic relay or cortico-thalamic processing? Old question, new answers. Cereb Cortex. 2013;25:845–8.CrossRefPubMed Ahissar E, Oram T. Commentary. Thalamic relay or cortico-thalamic processing? Old question, new answers. Cereb Cortex. 2013;25:845–8.CrossRefPubMed
31.
go back to reference MacLean JN, Watson BO, Aaron GB, Yuste R. Internal dynamics determine the cortical response to thalamic stimulation. Neuron. 2005;48-5:811–23.CrossRef MacLean JN, Watson BO, Aaron GB, Yuste R. Internal dynamics determine the cortical response to thalamic stimulation. Neuron. 2005;48-5:811–23.CrossRef
32.
go back to reference Ketz NA, Jensen O, O’Reilly RC. Thalamic pathways underlying prefrontal-cortex-medial temporal lobe oscillatory interactions. TINS. 2014;38-1:1–12. Ketz NA, Jensen O, O’Reilly RC. Thalamic pathways underlying prefrontal-cortex-medial temporal lobe oscillatory interactions. TINS. 2014;38-1:1–12.
33.
go back to reference Llinas RR, Steriade M. Bursting of thalamic neurons and state of vigilance. J Neurophysiol. 2006;95:3297–308.CrossRefPubMed Llinas RR, Steriade M. Bursting of thalamic neurons and state of vigilance. J Neurophysiol. 2006;95:3297–308.CrossRefPubMed
34.
go back to reference Buszaki G, Draguhn A. Neuronal oscillations in cortical networks. Science. 2004;304:1926–9.CrossRef Buszaki G, Draguhn A. Neuronal oscillations in cortical networks. Science. 2004;304:1926–9.CrossRef
35.
go back to reference Steriade M. Grouping of brain rythms in corticothalamic systems. Neurosci. 2006;137–4:1087–106.CrossRef Steriade M. Grouping of brain rythms in corticothalamic systems. Neurosci. 2006;137–4:1087–106.CrossRef
36.
go back to reference Huguenard JR, McCormick DA. Thalamic synchrony and dysnamic regulation of the global forebrain oscillations. Trends Neurosci. 2007;30–7:350–6.CrossRef Huguenard JR, McCormick DA. Thalamic synchrony and dysnamic regulation of the global forebrain oscillations. Trends Neurosci. 2007;30–7:350–6.CrossRef
37.
go back to reference Hoppensteadt FC, Izhikevitch EM. Thalamo-cortical interactions modeled by weakly connected oscillators: could the brain use FM radio principles? BioSystems. 1998;48:85–94.CrossRefPubMed Hoppensteadt FC, Izhikevitch EM. Thalamo-cortical interactions modeled by weakly connected oscillators: could the brain use FM radio principles? BioSystems. 1998;48:85–94.CrossRefPubMed
38.
go back to reference Rosjat N, Popovych S, Daun-Gruhn S. A mathematical model of dysfunction of the thalamo-cortical loop in schizophrenia. Theorit Biol Med Model. 2014;11:45.CrossRef Rosjat N, Popovych S, Daun-Gruhn S. A mathematical model of dysfunction of the thalamo-cortical loop in schizophrenia. Theorit Biol Med Model. 2014;11:45.CrossRef
39.
go back to reference Kasevitch RS, LaBerge D. Theory of electric resonance in the neocortical apical dendrite. PLoS One. 2011;6(8):e23412.CrossRef Kasevitch RS, LaBerge D. Theory of electric resonance in the neocortical apical dendrite. PLoS One. 2011;6(8):e23412.CrossRef
40.
41.
go back to reference Spreafico R, Frassoni C, Recondi MC, Arcelli P, De Biasi S. Interneurons in the mammalian thalamus: a marker of species. In: Thalamic networks for relay and modulation. Minciacchi D, Molinari M, Macchi G, Jones EG (Edits). Pergamon studies in neurosciences n° 9. Pergamon Press, 1993; pp. 17–28. Spreafico R, Frassoni C, Recondi MC, Arcelli P, De Biasi S. Interneurons in the mammalian thalamus: a marker of species. In: Thalamic networks for relay and modulation. Minciacchi D, Molinari M, Macchi G, Jones EG (Edits). Pergamon studies in neurosciences n° 9. Pergamon Press, 1993; pp. 17–28.
42.
go back to reference Tracey DJ, Asanuma C, Jones EJ, Porter R. Thalamic relay to motor cortex: afferent pathways from brainstem, cerebellum, and spinal cord in monkeys. J Neurophysiol. 1980;44-3:532–54.CrossRef Tracey DJ, Asanuma C, Jones EJ, Porter R. Thalamic relay to motor cortex: afferent pathways from brainstem, cerebellum, and spinal cord in monkeys. J Neurophysiol. 1980;44-3:532–54.CrossRef
43.
go back to reference Wiesendanger E, Wiesendanger M. Cerebello-cortical linkage in the monkey as revealed by transcellular labeling with lectin wheat germ agglutinin conjgated to the marker horseradishperoxydase. Exp Brain Res. 1985;59:105–17.PubMed Wiesendanger E, Wiesendanger M. Cerebello-cortical linkage in the monkey as revealed by transcellular labeling with lectin wheat germ agglutinin conjgated to the marker horseradishperoxydase. Exp Brain Res. 1985;59:105–17.PubMed
44.
go back to reference Kalil K. Projections of the cerebellar and dorsal column nuclei upon the thalamus of the rhesus monkey. J Comp Neurol. 1981;195-1:25–50.CrossRef Kalil K. Projections of the cerebellar and dorsal column nuclei upon the thalamus of the rhesus monkey. J Comp Neurol. 1981;195-1:25–50.CrossRef
45.
go back to reference Sakai ST, Inase M, Tanji J. Pallidal and cerebellar inputs to thalamocortical neurons projecting to a supplementary motor area in Maccaca fuscata: a triple-labeling light microscopic study. Anat Embryol. 1999;199-1:9–19.CrossRef Sakai ST, Inase M, Tanji J. Pallidal and cerebellar inputs to thalamocortical neurons projecting to a supplementary motor area in Maccaca fuscata: a triple-labeling light microscopic study. Anat Embryol. 1999;199-1:9–19.CrossRef
46.
go back to reference Asanuma C, Thach WT, Jones EG. Cytoarchitectonic delineation of the ventral lateral thalamic region in the monkey. Brain Res Rev. 1983;5-3:219–35.CrossRef Asanuma C, Thach WT, Jones EG. Cytoarchitectonic delineation of the ventral lateral thalamic region in the monkey. Brain Res Rev. 1983;5-3:219–35.CrossRef
47.
go back to reference Asanuma C, Thach WT, Jones EG. Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey. Brain Res Rev. 1983;5-3:237–65.CrossRef Asanuma C, Thach WT, Jones EG. Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey. Brain Res Rev. 1983;5-3:237–65.CrossRef
48.
go back to reference Asanuma C, Thach WT, Jones EG. Anatomical evidence for segregated focal groupings of efferent cells and their terminal ramifications in the cerebellothalamic pathway of the monkey. Brain Res. 1983;286-3:267–97.CrossRef Asanuma C, Thach WT, Jones EG. Anatomical evidence for segregated focal groupings of efferent cells and their terminal ramifications in the cerebellothalamic pathway of the monkey. Brain Res. 1983;286-3:267–97.CrossRef
49.
go back to reference Rodrigo ML, Reinoso-Suarez F. Cerebellar projection to the lateral posterior-pulvinar thalamic complex in cat. Brain Res. 1984;322-1:172–6.CrossRef Rodrigo ML, Reinoso-Suarez F. Cerebellar projection to the lateral posterior-pulvinar thalamic complex in cat. Brain Res. 1984;322-1:172–6.CrossRef
50.
go back to reference Schmahmann JD, Pandya DN. Projections to the basis ponti rom superior temporal sulcus and superior temporal region in the rhesus monkey. J Comp Neurol. 1991;308-2:224–48.CrossRef Schmahmann JD, Pandya DN. Projections to the basis ponti rom superior temporal sulcus and superior temporal region in the rhesus monkey. J Comp Neurol. 1991;308-2:224–48.CrossRef
51.
go back to reference Yeterian EH, Pandya DN. Thalamic connections of the cortex of the superior temporal sulcus in the rhesus monkey. J Comp Neurol. 1989;282-1:80–97.CrossRef Yeterian EH, Pandya DN. Thalamic connections of the cortex of the superior temporal sulcus in the rhesus monkey. J Comp Neurol. 1989;282-1:80–97.CrossRef
52.
go back to reference Sokolov AA, Erb M, Grodd W, Pavlova MA. Structural loop between the cerebellum and the superior temporal sulcus: evidence from diffusion tensor imaging. Cereb Cortex. 2014;24-3:626–32.CrossRef Sokolov AA, Erb M, Grodd W, Pavlova MA. Structural loop between the cerebellum and the superior temporal sulcus: evidence from diffusion tensor imaging. Cereb Cortex. 2014;24-3:626–32.CrossRef
53.
go back to reference Cavdar S, Onat F, Yananli HR, Sehirli US, Tulay C, Saka E, et al. Cerebellar connections to the rostral reticular nucleus of the thalamus in the rat. J Anat. 2002;201-6:485–91.CrossRef Cavdar S, Onat F, Yananli HR, Sehirli US, Tulay C, Saka E, et al. Cerebellar connections to the rostral reticular nucleus of the thalamus in the rat. J Anat. 2002;201-6:485–91.CrossRef
54.
go back to reference Chan-Palay V. Cerebellar dentate nucleus. Organization, cytology and transmitters. Springer-Verlag. Berlin Heidelberg GmBH 1977. pp: 339–341. Chan-Palay V. Cerebellar dentate nucleus. Organization, cytology and transmitters. Springer-Verlag. Berlin Heidelberg GmBH 1977. pp: 339–341.
55.
go back to reference Batton RR III, Jayaram A, Ruggiero A, Carpenter MB. Fastigial efferent projection in the monkey: an autoradiographic study. J Comp Neurol. 1977;174-2:281–305.CrossRef Batton RR III, Jayaram A, Ruggiero A, Carpenter MB. Fastigial efferent projection in the monkey: an autoradiographic study. J Comp Neurol. 1977;174-2:281–305.CrossRef
56.
go back to reference Sakai ST, Inase M, Tanji J. Comparison of cerebellothalamic and pallidothalamic projections in the monkey (Macaca fuscata): a double anterograde labeling study. J Comp Neurol. 1996;368(2):215–28.CrossRefPubMed Sakai ST, Inase M, Tanji J. Comparison of cerebellothalamic and pallidothalamic projections in the monkey (Macaca fuscata): a double anterograde labeling study. J Comp Neurol. 1996;368(2):215–28.CrossRefPubMed
57.
go back to reference Yamamoto T, Yoshida K, Yoshikawa H, Kishimoto Y, Oka H. The medial dorsal nucleus is one of the thalamic relays of the cerebellocerebral responses to the frontal association cortex in the monkey: horseradish peroxydase and fluorescent dye double staining study. Brain Res. 1992;579-2:315–20.CrossRef Yamamoto T, Yoshida K, Yoshikawa H, Kishimoto Y, Oka H. The medial dorsal nucleus is one of the thalamic relays of the cerebellocerebral responses to the frontal association cortex in the monkey: horseradish peroxydase and fluorescent dye double staining study. Brain Res. 1992;579-2:315–20.CrossRef
58.
go back to reference Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor active and cognitive circuits. Brain Res Rev. 2000;31:236–50.CrossRefPubMed Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor active and cognitive circuits. Brain Res Rev. 2000;31:236–50.CrossRefPubMed
59.
go back to reference Dum RP, Strick PL. An unfolded map of the cerbellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol. 2003;89:634–9.CrossRefPubMed Dum RP, Strick PL. An unfolded map of the cerbellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol. 2003;89:634–9.CrossRefPubMed
60.
go back to reference Middleton FA, Strick PL. Cerebellar projections to the prefontal cortex of the primate. J Neurosci. 2001;21-2:700–12.CrossRef Middleton FA, Strick PL. Cerebellar projections to the prefontal cortex of the primate. J Neurosci. 2001;21-2:700–12.CrossRef
61.
go back to reference Hoshi E, Tremblay L, Féger J, Carras PL, Strick PL. The cerebellum communicates with the basal ganglia. Nat Neurosci. 2005;8-11:1491–3.CrossRef Hoshi E, Tremblay L, Féger J, Carras PL, Strick PL. The cerebellum communicates with the basal ganglia. Nat Neurosci. 2005;8-11:1491–3.CrossRef
62.
go back to reference Bosch-Bouju C, Hyland BI, Parr-Brownlie LC. Motor thalamus integration of cortical, cerebellar and basal ganglia information: implications for normal and parkinsonian conditions. Front Comput Neurosci. 2013;7-163:1–21. Bosch-Bouju C, Hyland BI, Parr-Brownlie LC. Motor thalamus integration of cortical, cerebellar and basal ganglia information: implications for normal and parkinsonian conditions. Front Comput Neurosci. 2013;7-163:1–21.
63.
go back to reference Bostan AC, Dum RP, Strick PL. The basal ganglia communicate with the cerebellum. PNAS. 2010;107-18:8452–6.CrossRef Bostan AC, Dum RP, Strick PL. The basal ganglia communicate with the cerebellum. PNAS. 2010;107-18:8452–6.CrossRef
64.
go back to reference Jakab A, Werner B, Piccirelli M, Kovacs K, Martin E, et al. Feasibility of diffusion tractography for the reconstruction of intra-thalamic targets for functional neurosurgery: a muli-vendor pilot study. Front Neuroanat. 2016;10:1–15.CrossRef Jakab A, Werner B, Piccirelli M, Kovacs K, Martin E, et al. Feasibility of diffusion tractography for the reconstruction of intra-thalamic targets for functional neurosurgery: a muli-vendor pilot study. Front Neuroanat. 2016;10:1–15.CrossRef
65.
go back to reference Hyam JA, Owen SL, Kringelbach M, et al. Contrasting connectivity of the ventralis intermedius and ventralis oralis posterior nuclei of the motor thalamus demonstrated by probabilistic tractography. Neurosurgery. 2012;70:162–9.CrossRefPubMed Hyam JA, Owen SL, Kringelbach M, et al. Contrasting connectivity of the ventralis intermedius and ventralis oralis posterior nuclei of the motor thalamus demonstrated by probabilistic tractography. Neurosurgery. 2012;70:162–9.CrossRefPubMed
66.
go back to reference Jissendi P, Baudry S, Balériaux D. Diffusion tensor imaging (DTI) and tractography of the cerebellar projections to prefrontal and posterior parietal cortices: a study at 3T. J Neuroradiol (Paris). 2008;35-1:45–50. Jissendi P, Baudry S, Balériaux D. Diffusion tensor imaging (DTI) and tractography of the cerebellar projections to prefrontal and posterior parietal cortices: a study at 3T. J Neuroradiol (Paris). 2008;35-1:45–50.
67.
go back to reference Habas C, Cabanis EA. Cortical projections to the human red nucleus: a diffusion tensor tractography study with 1.5 T MRI. Neuroradiol. 2006;48:755–62.CrossRef Habas C, Cabanis EA. Cortical projections to the human red nucleus: a diffusion tensor tractography study with 1.5 T MRI. Neuroradiol. 2006;48:755–62.CrossRef
68.
go back to reference Pelzer EA, Melzer C, Timmermann L, von Cramon DY, Tittgemeyer M. Basal ganglia and cerebellar interconnectivity witin the human thalamus. Brain Struct Funct. 2017;222:381–92.CrossRefPubMed Pelzer EA, Melzer C, Timmermann L, von Cramon DY, Tittgemeyer M. Basal ganglia and cerebellar interconnectivity witin the human thalamus. Brain Struct Funct. 2017;222:381–92.CrossRefPubMed
69.
go back to reference Meola A, Comert A, Yeh F-C, Sivakanthan S, Fernandez-Miranda JC. The nondecussating pathway of the dentatorubrothalamic tract in humans: human connectome-based tractographic study and microdissection validation. J Neurosurg. 2016;124:1406–12.CrossRefPubMed Meola A, Comert A, Yeh F-C, Sivakanthan S, Fernandez-Miranda JC. The nondecussating pathway of the dentatorubrothalamic tract in humans: human connectome-based tractographic study and microdissection validation. J Neurosurg. 2016;124:1406–12.CrossRefPubMed
70.
go back to reference Hintzen A, Pelzer EA, Tittgemeyer M. Thalamic interactions of cerebellum and basal ganglia. Brain Struct Funct. 2018;223:569–87.CrossRefPubMed Hintzen A, Pelzer EA, Tittgemeyer M. Thalamic interactions of cerebellum and basal ganglia. Brain Struct Funct. 2018;223:569–87.CrossRefPubMed
71.
go back to reference Harding BN. An ultrastructural study of the centre median and ventrolateral thalamic nuclei of the monkey. Brain Res. 1973;54:335–40.CrossRefPubMed Harding BN. An ultrastructural study of the centre median and ventrolateral thalamic nuclei of the monkey. Brain Res. 1973;54:335–40.CrossRefPubMed
72.
go back to reference Shinoda Y, Futami T, Kano M. Synaptic organization of the cerebello-thalamo-cerebral pathway in cat. II. Input-output organization of single thalamocortical neurons in the ventrolateral thalamus. Neurosci Res. 1985;2-3:157–80.CrossRef Shinoda Y, Futami T, Kano M. Synaptic organization of the cerebello-thalamo-cerebral pathway in cat. II. Input-output organization of single thalamocortical neurons in the ventrolateral thalamus. Neurosci Res. 1985;2-3:157–80.CrossRef
73.
go back to reference Ando N, Izawa Y, Shinoda Y. Relative contributions of thalamic reticular nucleus neurons and intrinsic interneurons to inhibition of thalamic neurons projecting to the motor cortex. J Physiol. 1995;73:2470–85. Ando N, Izawa Y, Shinoda Y. Relative contributions of thalamic reticular nucleus neurons and intrinsic interneurons to inhibition of thalamic neurons projecting to the motor cortex. J Physiol. 1995;73:2470–85.
74.
go back to reference Ilinsky IA, Toga AW, Kultas-Ilinsky K. Anatomical organisation of internal neuronal circuits in the motor thalamus. In: Thalamic networks for relay and modulation. Minciacchi D, Molinari M, Macchi G, Jones EG (Edits). Pergamon studies in neurosciences n° 9. Pergamon Press, 1993; pp. 155–174. Ilinsky IA, Toga AW, Kultas-Ilinsky K. Anatomical organisation of internal neuronal circuits in the motor thalamus. In: Thalamic networks for relay and modulation. Minciacchi D, Molinari M, Macchi G, Jones EG (Edits). Pergamon studies in neurosciences n° 9. Pergamon Press, 1993; pp. 155–174.
75.
go back to reference Shinoda Y, Kakai S, Wannier T, Futami T, Sugiuchi Y. Input-ouput organisation of the ventrolateral nucleus of the thalamus in the cerebello-thalamo-cortical system. In: Thalamic networks for relay and modulation. Minciacchi D, Molinari M, Macchi G, Jones EG (Edits). Pergamon studies in neurosciences n° 9. Pergamon Press, 1993; pp. 135–144. Shinoda Y, Kakai S, Wannier T, Futami T, Sugiuchi Y. Input-ouput organisation of the ventrolateral nucleus of the thalamus in the cerebello-thalamo-cortical system. In: Thalamic networks for relay and modulation. Minciacchi D, Molinari M, Macchi G, Jones EG (Edits). Pergamon studies in neurosciences n° 9. Pergamon Press, 1993; pp. 135–144.
76.
go back to reference Gomati SV, Schäfer CB, Eelkman Rooda OHJ, Nigg AL, De Zeeuw CI, Hoebeek FE. Differentiating cerebellar impact on thalamic nuclei. Cell Rep. 2018;23-9:2690–704. Gomati SV, Schäfer CB, Eelkman Rooda OHJ, Nigg AL, De Zeeuw CI, Hoebeek FE. Differentiating cerebellar impact on thalamic nuclei. Cell Rep. 2018;23-9:2690–704.
78.
go back to reference Bortone DS, Olsen SR, Scanziani M. Translaminar inhibitory cells recruited by layer 6 corticothalamic neurons suppress visual cortex. Neuron. 2014;82–2:474–85.CrossRef Bortone DS, Olsen SR, Scanziani M. Translaminar inhibitory cells recruited by layer 6 corticothalamic neurons suppress visual cortex. Neuron. 2014;82–2:474–85.CrossRef
79.
go back to reference Roger M, Cadusseau J. Afferents to the zona incerta in the rat: a combined retrograde and anterograde study. J Comp Neurol. 1985;241-4:480–92.CrossRef Roger M, Cadusseau J. Afferents to the zona incerta in the rat: a combined retrograde and anterograde study. J Comp Neurol. 1985;241-4:480–92.CrossRef
80.
go back to reference Power BD, Kolmac CI, Mitrofanis J. Evidence for a large projection from the zona incerta to the dorsal thalamus. J Comp Neurol. 1999;404-4:554–65.CrossRef Power BD, Kolmac CI, Mitrofanis J. Evidence for a large projection from the zona incerta to the dorsal thalamus. J Comp Neurol. 1999;404-4:554–65.CrossRef
81.
go back to reference Ishikawa T, Tomatsu S, Izawa J, Kakei S. The cerebro-cerebellum: could it be loci of forward models? Neurosci Res. 2018;104:72–9.CrossRef Ishikawa T, Tomatsu S, Izawa J, Kakei S. The cerebro-cerebellum: could it be loci of forward models? Neurosci Res. 2018;104:72–9.CrossRef
82.
go back to reference Bostan AC, Strick PL. The basal ganglia and the cerebellum: nodes in an integrated network. Nat Rev Neurosci. 2018;19-6:338–50.CrossRef Bostan AC, Strick PL. The basal ganglia and the cerebellum: nodes in an integrated network. Nat Rev Neurosci. 2018;19-6:338–50.CrossRef
85.
go back to reference Butler EG, Horne MK, Hawkins NJ. The activity of monkey thalamic and motor cortical neurones in a skilled, ballistic movement. J Physiol. 1992;445:25–48.CrossRefPubMedPubMedCentral Butler EG, Horne MK, Hawkins NJ. The activity of monkey thalamic and motor cortical neurones in a skilled, ballistic movement. J Physiol. 1992;445:25–48.CrossRefPubMedPubMedCentral
86.
go back to reference Ivanusic JJ, Bourke DW, Xu ZM, Butler EG, Horne MK. Cerebellar activity in the macaque monkey encodes the duration but not force or velocity of wrist movement. Brain Res. 2005;1041-2:181–97.CrossRef Ivanusic JJ, Bourke DW, Xu ZM, Butler EG, Horne MK. Cerebellar activity in the macaque monkey encodes the duration but not force or velocity of wrist movement. Brain Res. 2005;1041-2:181–97.CrossRef
87.
go back to reference van Donkalaar P, Stein SF, Passingham RE, Miall RC. Neuronal activity in the primate motor thalamus during visually trigerred and internally generated limb movements. J Neurophysiol. 1999;82-2:934–45.CrossRef van Donkalaar P, Stein SF, Passingham RE, Miall RC. Neuronal activity in the primate motor thalamus during visually trigerred and internally generated limb movements. J Neurophysiol. 1999;82-2:934–45.CrossRef
88.
go back to reference van Donkalaar P, Stein SF, Passingham RE, Miall RC. Temporary inactivation in the primate motor thalamus during visually trigerred and internally generated limb movements. J Neurophysiol. 2000;83-5:2780–90.CrossRef van Donkalaar P, Stein SF, Passingham RE, Miall RC. Temporary inactivation in the primate motor thalamus during visually trigerred and internally generated limb movements. J Neurophysiol. 2000;83-5:2780–90.CrossRef
89.
go back to reference Proville RD, Spolidoro M, Guyon N, Dugué GP, Selimi F, Isope P, et al. Cerebellum involvement in cortical sensorimotor circuits for the control of voluntary movements. Nat Neurosci. 2014;17-9:1233–9.CrossRef Proville RD, Spolidoro M, Guyon N, Dugué GP, Selimi F, Isope P, et al. Cerebellum involvement in cortical sensorimotor circuits for the control of voluntary movements. Nat Neurosci. 2014;17-9:1233–9.CrossRef
90.
go back to reference Reato D, Tara E, Khodakhah K. Deep cerebellar nuclei rebound firing in vivo: much ado about almost nothing. In: The neural code of the cerebellum. Heck DH (Ed.). Academic Press. Elsevier. 2016. pp: 27–51. Reato D, Tara E, Khodakhah K. Deep cerebellar nuclei rebound firing in vivo: much ado about almost nothing. In: The neural code of the cerebellum. Heck DH (Ed.). Academic Press. Elsevier. 2016. pp: 27–51.
91.
go back to reference Holschneider DP, Yang J, Guo Y, Maarek J-MI. Reorganization of functional brain maps after exercise training: importance of cerebellar-thalamic-cortical pathway. Brain Res. 2007;1184:96–107.CrossRefPubMedPubMedCentral Holschneider DP, Yang J, Guo Y, Maarek J-MI. Reorganization of functional brain maps after exercise training: importance of cerebellar-thalamic-cortical pathway. Brain Res. 2007;1184:96–107.CrossRefPubMedPubMedCentral
92.
go back to reference Yamamoto T, Kawaguchi S, Samejima A. Electrophysiological studies on the cerebellocerebral projection in the rat. Exp Neurol. 1979;63:545–58.CrossRefPubMed Yamamoto T, Kawaguchi S, Samejima A. Electrophysiological studies on the cerebellocerebral projection in the rat. Exp Neurol. 1979;63:545–58.CrossRefPubMed
93.
go back to reference Sasaki S. Electrophysiological studies of the cerebellothalamocortical projections. Appl Neurophysiol. 1976/77;39:239–50.CrossRefPubMed Sasaki S. Electrophysiological studies of the cerebellothalamocortical projections. Appl Neurophysiol. 1976/77;39:239–50.CrossRefPubMed
94.
go back to reference Tanaka YH, Tanaka YR, Kondo M, Terada S-I, Kawaguchi Y, Matsuzaki M. Thalamocortical axonal activity in motor cortex exhibits layer-specific dynamics during motor learning. Neuron. 2018;100(1):P244–58.CrossRef Tanaka YH, Tanaka YR, Kondo M, Terada S-I, Kawaguchi Y, Matsuzaki M. Thalamocortical axonal activity in motor cortex exhibits layer-specific dynamics during motor learning. Neuron. 2018;100(1):P244–58.CrossRef
95.
go back to reference Gaidica M, Hurst A, Cyr C, Leventhal DK. Distinct populations of motor thalamic neurons encode action initiation, action selection, and movement vigor. J Neurosci. 2018;38(29):6563–73.CrossRefPubMedPubMedCentral Gaidica M, Hurst A, Cyr C, Leventhal DK. Distinct populations of motor thalamic neurons encode action initiation, action selection, and movement vigor. J Neurosci. 2018;38(29):6563–73.CrossRefPubMedPubMedCentral
96.
go back to reference Timofeev I, Steriade M. Fast (mainly 30–100 Hz) oscillations in the cat cerebellothalamic pathway and their synchronization with cortical potentials. J Physiol. 1997;504-1:153–68.CrossRef Timofeev I, Steriade M. Fast (mainly 30–100 Hz) oscillations in the cat cerebellothalamic pathway and their synchronization with cortical potentials. J Physiol. 1997;504-1:153–68.CrossRef
97.
go back to reference Mardsen JF, Ashby P, Limousin-Dowsey P, Rothwell JC, Brown P. Coherence between cerebellar thalamus, cortex and muscle in man: cerebellar thalamus interactions. Brain. 2000;123-7:1459–70. Mardsen JF, Ashby P, Limousin-Dowsey P, Rothwell JC, Brown P. Coherence between cerebellar thalamus, cortex and muscle in man: cerebellar thalamus interactions. Brain. 2000;123-7:1459–70.
98.
go back to reference Paradiso G, Cunic D, Saint-Cyr JA, Hoque T, Lozano AM, Lang AE, et al. Involvement of human thalamus in the preparartion of self-paced movements. Brain. 2004;127-12:2717–31.CrossRef Paradiso G, Cunic D, Saint-Cyr JA, Hoque T, Lozano AM, Lang AE, et al. Involvement of human thalamus in the preparartion of self-paced movements. Brain. 2004;127-12:2717–31.CrossRef
99.
go back to reference Edagawa K, Kawasaki M. Beta phase synchronization in the frontal-temporalcerebellar network during auditory-to-motor rhythm learning. Sci Report. 2017;7:42721.CrossRef Edagawa K, Kawasaki M. Beta phase synchronization in the frontal-temporalcerebellar network during auditory-to-motor rhythm learning. Sci Report. 2017;7:42721.CrossRef
100.
go back to reference Kujala J, Pammer K, Cornelissen P, Roebroeck A, Formisano E, Salmelin R. Phase coupling in a cerebero-cerebellar network at 8–13 Hz during reading. Cereb Cortex. 2007;17-6:1476–85.CrossRef Kujala J, Pammer K, Cornelissen P, Roebroeck A, Formisano E, Salmelin R. Phase coupling in a cerebero-cerebellar network at 8–13 Hz during reading. Cereb Cortex. 2007;17-6:1476–85.CrossRef
101.
go back to reference Dhamala M, Pagnoni G, Wiesenfeld K, Zink CF, Martin M, Berns G. Neural correlates of the complexity of rhythmic finger tapping. NeuroImage. 2001;20:918–26.CrossRef Dhamala M, Pagnoni G, Wiesenfeld K, Zink CF, Martin M, Berns G. Neural correlates of the complexity of rhythmic finger tapping. NeuroImage. 2001;20:918–26.CrossRef
102.
go back to reference Gross J, Timmermann L, Kujala J, Dirks M, Schmidz F, Salmelin R, et al. The neural basis of intermittent motor control in humans. PNAS. 2002;99-4:2299–302.CrossRef Gross J, Timmermann L, Kujala J, Dirks M, Schmidz F, Salmelin R, et al. The neural basis of intermittent motor control in humans. PNAS. 2002;99-4:2299–302.CrossRef
103.
go back to reference Kros L, Elkman OHJ, Spanke JK, Alva P, van Dongen MN, Karapatis A, et al. Cerebellar output controls generalized spike-and-wave discharge occurrence. Ann Neurol. 2015;77:1027–49.CrossRefPubMedPubMedCentral Kros L, Elkman OHJ, Spanke JK, Alva P, van Dongen MN, Karapatis A, et al. Cerebellar output controls generalized spike-and-wave discharge occurrence. Ann Neurol. 2015;77:1027–49.CrossRefPubMedPubMedCentral
104.
go back to reference Sakai K, Hokosaka O, Nakamura K. Emergence of rhythm during motor learning. TICS. 2004;8-12:547–53. Sakai K, Hokosaka O, Nakamura K. Emergence of rhythm during motor learning. TICS. 2004;8-12:547–53.
105.
go back to reference Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9:304–13.CrossRefPubMed Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9:304–13.CrossRefPubMed
106.
go back to reference Ide JS, Li C-SR. A cerebellar thalamic cortical circuit for error-related cognitive control. NeuroImage. 2011;54-1:455–64.CrossRef Ide JS, Li C-SR. A cerebellar thalamic cortical circuit for error-related cognitive control. NeuroImage. 2011;54-1:455–64.CrossRef
107.
go back to reference McKenna TM, McMullen TA, Shlesinger MF. The brain as adynamic phisical system. Neurosci. 1994;60–3:587–605.CrossRef McKenna TM, McMullen TA, Shlesinger MF. The brain as adynamic phisical system. Neurosci. 1994;60–3:587–605.CrossRef
108.
109.
go back to reference Senden M, Reuter N, van den Heuvel MP, Goebel R, Deco G. Cortical rich club regions can organize state-dependent functional network formation by engaging in oscillatory behavior. NeuroImage. 2017;146:561–74.CrossRefPubMed Senden M, Reuter N, van den Heuvel MP, Goebel R, Deco G. Cortical rich club regions can organize state-dependent functional network formation by engaging in oscillatory behavior. NeuroImage. 2017;146:561–74.CrossRefPubMed
110.
go back to reference Jantzen KJ, Kelso JAS. Neural coordination dynamics of human sensorimotor behavior: a review. In: Jirsa VK, McIntoch A, editors. Handbook of brain connectivity. Heidelberg: Springer Berlin; 2007. p. 421–61.CrossRef Jantzen KJ, Kelso JAS. Neural coordination dynamics of human sensorimotor behavior: a review. In: Jirsa VK, McIntoch A, editors. Handbook of brain connectivity. Heidelberg: Springer Berlin; 2007. p. 421–61.CrossRef
111.
go back to reference Courtemanche R, Robinson JC, Aponte DI. Linking oscillations in cerebellar circuits. Front Neural Circ. 2013;7-125:1–15. Courtemanche R, Robinson JC, Aponte DI. Linking oscillations in cerebellar circuits. Front Neural Circ. 2013;7-125:1–15.
112.
go back to reference De Luca C, Jantzen KJ, Comani S, Bertollo M, Kelso JAS. Striatal activity during intentional switching depends on pattern stability. J Neurosci. 2010;30-9:3167–74.CrossRef De Luca C, Jantzen KJ, Comani S, Bertollo M, Kelso JAS. Striatal activity during intentional switching depends on pattern stability. J Neurosci. 2010;30-9:3167–74.CrossRef
113.
go back to reference Boonstra F, Florescu G, Evans A, Steward C, Mitchell P, Desmond P, et al. Tremor in multiple sclerosis is associated with cerebello-thalamic pathology. J Neural Transm. 2017;124-12:1509–14.CrossRef Boonstra F, Florescu G, Evans A, Steward C, Mitchell P, Desmond P, et al. Tremor in multiple sclerosis is associated with cerebello-thalamic pathology. J Neural Transm. 2017;124-12:1509–14.CrossRef
114.
go back to reference Nagaseki Y, Shibazaki T, Hirai T, et al. Long-term follow-up results of selective VIM-thalamotomy. J Neurosurg. 1986;65:296–302.CrossRefPubMed Nagaseki Y, Shibazaki T, Hirai T, et al. Long-term follow-up results of selective VIM-thalamotomy. J Neurosurg. 1986;65:296–302.CrossRefPubMed
115.
go back to reference Hashimoto T, Murualidharan A, Yoshida K, Goto T, Yako T, Baker KB, et al. Neuronal activity and outcomes from thalamic surgery for spinocerebellar ataxia. Ann Clin Transl Neurol. 2017;5-1:52–63. Hashimoto T, Murualidharan A, Yoshida K, Goto T, Yako T, Baker KB, et al. Neuronal activity and outcomes from thalamic surgery for spinocerebellar ataxia. Ann Clin Transl Neurol. 2017;5-1:52–63.
116.
go back to reference Anasuma C, Thach WT, Jones EG. Anatomical evidence for segregated focal groupings of efferent cells and their terminal ramifications in the cerebellothalamic pathway of the monkey. Brain Res Rev. 1983;5:267–97.CrossRef Anasuma C, Thach WT, Jones EG. Anatomical evidence for segregated focal groupings of efferent cells and their terminal ramifications in the cerebellothalamic pathway of the monkey. Brain Res Rev. 1983;5:267–97.CrossRef
117.
go back to reference Solomon DH, Barohn RJ, Bazan C, Grissom J. The thalamic ataxia syndrome. Neurology. 1994;44(5):810–4.CrossRefPubMed Solomon DH, Barohn RJ, Bazan C, Grissom J. The thalamic ataxia syndrome. Neurology. 1994;44(5):810–4.CrossRefPubMed
118.
go back to reference Olivito G, Clausi S, Laghi F, Tedesco AM, Baiocco R, Mastropasqua C, et al. Resting-state functional connectivity changes between dentate nucleus and cortical social brain regions in autism spectrum disorders. Cerebellum. 2017;16(2):283–92.CrossRefPubMed Olivito G, Clausi S, Laghi F, Tedesco AM, Baiocco R, Mastropasqua C, et al. Resting-state functional connectivity changes between dentate nucleus and cortical social brain regions in autism spectrum disorders. Cerebellum. 2017;16(2):283–92.CrossRefPubMed
119.
go back to reference Bernard JA, Orr JM, Mittal VA. Cerebello-cortical networks predict positive symptom progression in individuals at ultra-high risk for psychosis. Neuroimage Clin. 2017;14:622–8.CrossRefPubMedPubMedCentral Bernard JA, Orr JM, Mittal VA. Cerebello-cortical networks predict positive symptom progression in individuals at ultra-high risk for psychosis. Neuroimage Clin. 2017;14:622–8.CrossRefPubMedPubMedCentral
120.
go back to reference Dirkx MF, den Ouden HE, Aarts E, Timmer MH, Bloem BR, Toni I, et al. Dopamine controls Parkinson’s tremor by inhibiting the cerebellar thalamus. Brain. 2017;140(3):721–34.PubMed Dirkx MF, den Ouden HE, Aarts E, Timmer MH, Bloem BR, Toni I, et al. Dopamine controls Parkinson’s tremor by inhibiting the cerebellar thalamus. Brain. 2017;140(3):721–34.PubMed
121.
go back to reference Hou Y, Ou R, Yang J, Song W, Gong Q, Shang H. Patterns of stiatal and cerebellar functional connectivity in early-stage drug-naïve patients with Parkinson’s disease subtypes. Neuroradiology. 2018;60(12):1323–33.CrossRefPubMed Hou Y, Ou R, Yang J, Song W, Gong Q, Shang H. Patterns of stiatal and cerebellar functional connectivity in early-stage drug-naïve patients with Parkinson’s disease subtypes. Neuroradiology. 2018;60(12):1323–33.CrossRefPubMed
122.
go back to reference Schirinzi T, Di Lorenzo F, Ponzo V, Palmieri MG, Bentivoglio AR, Schillaci O, et al. Mild cerebello-thalamo-cortical impairment in patients with normal dopaminergic scans (SWEDD). Parkinsonism Relat Disord. 2016;28:23–8.CrossRefPubMed Schirinzi T, Di Lorenzo F, Ponzo V, Palmieri MG, Bentivoglio AR, Schillaci O, et al. Mild cerebello-thalamo-cortical impairment in patients with normal dopaminergic scans (SWEDD). Parkinsonism Relat Disord. 2016;28:23–8.CrossRefPubMed
123.
go back to reference Debaere F, Wenderoth N, Sunaert S, Van Hecke P, Swinnen SP. Cerebellar and premotor function in bimanual coordination: parametric neural responses to spatiotemporal complexity and cycling frequency. NeuroImage. 2004;21:1416–27.CrossRefPubMed Debaere F, Wenderoth N, Sunaert S, Van Hecke P, Swinnen SP. Cerebellar and premotor function in bimanual coordination: parametric neural responses to spatiotemporal complexity and cycling frequency. NeuroImage. 2004;21:1416–27.CrossRefPubMed
124.
go back to reference Sakai K, Hikosaka O, Nakamura K. Emergence of rhythm during motor learning. TICS. 2014;8-12:547–53. Sakai K, Hikosaka O, Nakamura K. Emergence of rhythm during motor learning. TICS. 2014;8-12:547–53.
Metadata
Title
The Cerebellar Thalamus
Authors
Christophe Habas
Mario Manto
Pierre Cabaraux
Publication date
01-06-2019
Publisher
Springer US
Keyword
Tremor
Published in
The Cerebellum / Issue 3/2019
Print ISSN: 1473-4222
Electronic ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-019-01019-3

Other articles of this Issue 3/2019

The Cerebellum 3/2019 Go to the issue