Skip to main content
Top
Published in: Brain Structure and Function 1/2017

Open Access 01-01-2017 | Original Article

Basal ganglia and cerebellar interconnectivity within the human thalamus

Authors: Esther A. Pelzer, Corina Melzer, Lars Timmermann, D. Yves von Cramon, Marc Tittgemeyer

Published in: Brain Structure and Function | Issue 1/2017

Login to get access

Abstract

Basal ganglia and the cerebellum are part of a densely interconnected network. While both subcortical structures process information in basically segregated loops that primarily interact in the neocortex, direct subcortical interaction has been recently confirmed by neuroanatomical studies using viral transneuronal tracers in non-human primate brains. The thalamus is thought to be the main relay station of both projection systems. Yet, our understanding of subcortical basal ganglia and cerebellar interconnectivity within the human thalamus is rather sparse, primarily due to limitation in the acquisition of in vivo tracing. Consequently, we strive to characterize projections of both systems and their potential overlap within the human thalamus by diffusion MRI and tractography. Our analysis revealed a decreasing anterior-to-posterior gradient for pallido-thalamic connections in: (1) the ventral-anterior thalamus, (2) the intralaminar nuclei, and (3) midline regions. Conversely, we found a decreasing posterior-to-anterior gradient for dentato-thalamic projections predominantly in: (1) the ventral-lateral and posterior nucleus; (2) dorsal parts of the intralaminar nuclei and the subparafascicular nucleus, and (3) the medioventral and lateral mediodorsal nucleus. A considerable overlap of connectivity pattern was apparent in intralaminar nuclei and midline regions. Notably, pallidal and cerebellar projections were both hemispherically lateralized to the left thalamus. While strikingly consistent with findings from transneuronal studies in non-human primates as well as with pre-existing anatomical studies on developmentally expressed markers or pathological human brains, our assessment provides distinctive connectional fingerprints that illustrate the anatomical substrate of integrated functional networks between basal ganglia and the cerebellum. Thereby, our findings furnish useful implications for cerebellar contributions to the clinical symptomatology of movement disorders.
Appendix
Available only for authorised users
Literature
go back to reference Andersson JLR, Jenkinson M, Smith S (2010) Non-linear registration, aka spatial normalization. FMRIB Analysis Group of the University of Oxford, FMRIB technical report TR07JA2 Andersson JLR, Jenkinson M, Smith S (2010) Non-linear registration, aka spatial normalization. FMRIB Analysis Group of the University of Oxford, FMRIB technical report TR07JA2
go back to reference Asanuma C, Thach W, Jones E (1983) Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey. Brain Res Rev 5(3):237–265. doi:10.1016/0165-0173(83)90015-2 CrossRef Asanuma C, Thach W, Jones E (1983) Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey. Brain Res Rev 5(3):237–265. doi:10.​1016/​0165-0173(83)90015-2 CrossRef
go back to reference Behrens TEJ, Johansen Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott CAM, Boulby PA, Barker GJ, Sillery EL, Sheehan K, Ciccarelli O, Thompson AJ, Brady JM, Matthews PM (2003) Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 6(7):750–757. doi:10.1038/nn1075 CrossRefPubMed Behrens TEJ, Johansen Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott CAM, Boulby PA, Barker GJ, Sillery EL, Sheehan K, Ciccarelli O, Thompson AJ, Brady JM, Matthews PM (2003) Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 6(7):750–757. doi:10.​1038/​nn1075 CrossRefPubMed
go back to reference Bernard JA, Peltier SJ, Benson BL, Wiggins JL, Jaeggi SM, Buschkuehl M, Jonides J, Monk CS, Seidler RD (2014) Dissociable functional networks of the human dentate nucleus. Cereb Cortex 24(8):2151–2159. doi:10.1093/cercor/bht065 CrossRefPubMed Bernard JA, Peltier SJ, Benson BL, Wiggins JL, Jaeggi SM, Buschkuehl M, Jonides J, Monk CS, Seidler RD (2014) Dissociable functional networks of the human dentate nucleus. Cereb Cortex 24(8):2151–2159. doi:10.​1093/​cercor/​bht065 CrossRefPubMed
go back to reference Caligiore D, Pezzulo G, Baldassarre G, Bostan AC, Strick PL, Doya K, Helmich RC, Dirkx M, Houk J, Jörntell H, Lago-Rodriguez A, Galea JM, Miall RC, Popa T, Kishore A, Verschure PFMJ, Zucca R, Herreros I (2016) Consensus Paper: Towards a Systems-Level View of Cerebellar Function: the Interplay Between Cerebellum, Basal Ganglia, and Cortex. Cerebellum, Ahead of Print. doi: papers3://publication/doi/10.1007/s12311-016-0763-3 Caligiore D, Pezzulo G, Baldassarre G, Bostan AC, Strick PL, Doya K, Helmich RC, Dirkx M, Houk J, Jörntell H, Lago-Rodriguez A, Galea JM, Miall RC, Popa T, Kishore A, Verschure PFMJ, Zucca R, Herreros I (2016) Consensus Paper: Towards a Systems-Level View of Cerebellar Function: the Interplay Between Cerebellum, Basal Ganglia, and Cortex. Cerebellum, Ahead of Print. doi: papers3://publication/doi/10.​1007/​s12311-016-0763-3
go back to reference Carpenter MB, Strominger NL (1967) Efferent fibers of the subthalamic nucleus in the monkey. A comparison of the efferent projections of the subthalamic nucleus, substantia nigra and globus pallidus. Am J Anat 121(1):41–72. doi:10.1002/aja.1001210105 CrossRefPubMed Carpenter MB, Strominger NL (1967) Efferent fibers of the subthalamic nucleus in the monkey. A comparison of the efferent projections of the subthalamic nucleus, substantia nigra and globus pallidus. Am J Anat 121(1):41–72. doi:10.​1002/​aja.​1001210105 CrossRefPubMed
go back to reference Carter D, Fibiger H (1978) The projections of the entopeduncular nucleus and globus pallidus in rat as demonstrated by autoradiography and horseradish peroxidase histochemistry. J Comp Neurol 177(1):113–123. doi:10.1002/cne.901770108 CrossRefPubMed Carter D, Fibiger H (1978) The projections of the entopeduncular nucleus and globus pallidus in rat as demonstrated by autoradiography and horseradish peroxidase histochemistry. J Comp Neurol 177(1):113–123. doi:10.​1002/​cne.​901770108 CrossRefPubMed
go back to reference Draganski B, Kherif F, Kloeppel S, Cook PA, Alexander DC, Parker GJM, Deichmann R, Ashburner J, Frackowiak RSJ (2008) Evidence for segregated and integrative connectivity patterns in the human basal ganglia. J Neurosci 28(28):7143–7152. doi:10.1523/JNEUROSCI.1486-08.2008 CrossRefPubMed Draganski B, Kherif F, Kloeppel S, Cook PA, Alexander DC, Parker GJM, Deichmann R, Ashburner J, Frackowiak RSJ (2008) Evidence for segregated and integrative connectivity patterns in the human basal ganglia. J Neurosci 28(28):7143–7152. doi:10.​1523/​JNEUROSCI.​1486-08.​2008 CrossRefPubMed
go back to reference Gallay MN, Jeanmonod D, Liu J, Morel A (2008) Human pallidothalamic and cerebellothalamic tracts: anatomical basis for functional stereotactic neurosurgery. Brain Struct Func 212(6):443–463. doi:10.1007/s00429-007-0170-0 CrossRef Gallay MN, Jeanmonod D, Liu J, Morel A (2008) Human pallidothalamic and cerebellothalamic tracts: anatomical basis for functional stereotactic neurosurgery. Brain Struct Func 212(6):443–463. doi:10.​1007/​s00429-007-0170-0 CrossRef
go back to reference Ichinohe N, Shoumura K (1998) A di-synaptic projection from the superior colliculus to the head of the caudate nucleus via the centromedian-parafascicular complex in the cat: an anterograde and retrograde labeling study. Neurosci Res 32(4):295–303. doi:10.1016/S0168-0102(98)00095-9 CrossRefPubMed Ichinohe N, Shoumura K (1998) A di-synaptic projection from the superior colliculus to the head of the caudate nucleus via the centromedian-parafascicular complex in the cat: an anterograde and retrograde labeling study. Neurosci Res 32(4):295–303. doi:10.​1016/​S0168-0102(98)00095-9 CrossRefPubMed
go back to reference Ilinsky KK, Fallet C (2004) Development of the human motor-related thalamic nuclei during the first half of gestation, with special emphasis on GABAergic circuits. J Comp Neurol. doi:10.1002/cne.20216 Ilinsky KK, Fallet C (2004) Development of the human motor-related thalamic nuclei during the first half of gestation, with special emphasis on GABAergic circuits. J Comp Neurol. doi:10.​1002/​cne.​20216
go back to reference Ilinsky IA, Kultas-Ilinsky K (1987) Sagittal cytoarchitectonic maps of the Macaca mulatta thalamus with a revised nomenclature of the motor-related nuclei validated by observations on their connectivity. J Comp Neurol 262(3):331–364. doi:10.1002/cne.902620303 CrossRefPubMed Ilinsky IA, Kultas-Ilinsky K (1987) Sagittal cytoarchitectonic maps of the Macaca mulatta thalamus with a revised nomenclature of the motor-related nuclei validated by observations on their connectivity. J Comp Neurol 262(3):331–364. doi:10.​1002/​cne.​902620303 CrossRefPubMed
go back to reference Jenkinson M, Smith S (2001b) A global optimisation method for robust affine registration of brain images. Med Image Anal 5(2):143–156CrossRefPubMed Jenkinson M, Smith S (2001b) A global optimisation method for robust affine registration of brain images. Med Image Anal 5(2):143–156CrossRefPubMed
go back to reference Johansen-Berg H, Behrens TEJ, Sillery E, Ciccarelli O, Thompson AJ, Smith SM, Matthews PM (2005) Functional-anatomical validation and individual variation of diffusion tractography-based segmentation of the human thalamus. Cereb Cortex 15(1):31–39. doi:10.1093/cercor/bhh105 CrossRefPubMed Johansen-Berg H, Behrens TEJ, Sillery E, Ciccarelli O, Thompson AJ, Smith SM, Matthews PM (2005) Functional-anatomical validation and individual variation of diffusion tractography-based segmentation of the human thalamus. Cereb Cortex 15(1):31–39. doi:10.​1093/​cercor/​bhh105 CrossRefPubMed
go back to reference Jones EG (2007) The thalamus, 2nd edn. Cambridge University Press, New York Jones EG (2007) The thalamus, 2nd edn. Cambridge University Press, New York
go back to reference Krack P, Dostrovsky J, Ilinsky I, Kultas-Ilinsky K, Lenz F, Lozano A, Vitek J (2002) Surgery of the motor thalamus: problems with the present nomenclatures. Mov Disord 17(Suppl 3):S2–S8. doi:10.1002/mds.10136 CrossRefPubMed Krack P, Dostrovsky J, Ilinsky I, Kultas-Ilinsky K, Lenz F, Lozano A, Vitek J (2002) Surgery of the motor thalamus: problems with the present nomenclatures. Mov Disord 17(Suppl 3):S2–S8. doi:10.​1002/​mds.​10136 CrossRefPubMed
go back to reference Kultas-Ilinsky K, Ilinsky IA, Young PA, Smith KR (1980) Ultrastructure of degenerating cerebellothalamic terminals in the ventral medial nucleus of the cat. Exp Brain Res 38(2):125–135. doi:10.1007/BF00236734 CrossRefPubMed Kultas-Ilinsky K, Ilinsky IA, Young PA, Smith KR (1980) Ultrastructure of degenerating cerebellothalamic terminals in the ventral medial nucleus of the cat. Exp Brain Res 38(2):125–135. doi:10.​1007/​BF00236734 CrossRefPubMed
go back to reference Mai JK, Majtanik M, Paxinos G (2015) Atlas of the human brain, 4th edn. Academic Press, San Diego Mai JK, Majtanik M, Paxinos G (2015) Atlas of the human brain, 4th edn. Academic Press, San Diego
go back to reference Mollink J, van Baarsen KM, Dederen PJWC, Foxley S, Miller KL, Jbabdi S, Slump CH, Grotenhuis JA, Kleinnijenhuis M, van Cappellen van Walsum AM (2015) Dentatorubrothalamic tract localization with postmortem MR diffusion tractography compared to histological 3D reconstruction. Brain Struct Func, Ahead of Print. doi:10.1007/s00429-015-1115-7 Mollink J, van Baarsen KM, Dederen PJWC, Foxley S, Miller KL, Jbabdi S, Slump CH, Grotenhuis JA, Kleinnijenhuis M, van Cappellen van Walsum AM (2015) Dentatorubrothalamic tract localization with postmortem MR diffusion tractography compared to histological 3D reconstruction. Brain Struct Func, Ahead of Print. doi:10.​1007/​s00429-015-1115-7
go back to reference Morel A (2007) Stereotactic atlas of the human thalamus and basal ganglia. CRC Press, NewYorkCrossRef Morel A (2007) Stereotactic atlas of the human thalamus and basal ganglia. CRC Press, NewYorkCrossRef
go back to reference Motulsky HJ, Brown RE (2006) Detecting outliers when fitting data with nonlinear regression—a new method based on robust nonlinear regression and the false discovery rate. BMC Bioinform 7:123. doi:10.1186/1471-2105-7-123 CrossRef Motulsky HJ, Brown RE (2006) Detecting outliers when fitting data with nonlinear regression—a new method based on robust nonlinear regression and the false discovery rate. BMC Bioinform 7:123. doi:10.​1186/​1471-2105-7-123 CrossRef
go back to reference Murray MM, Wallace MT (2011) The neural bases of multisensory processes. CRC Press, Boca Raton, FL Murray MM, Wallace MT (2011) The neural bases of multisensory processes. CRC Press, Boca Raton, FL
go back to reference Nakamura KC, Sharott A, Magill PJ (2012) Temporal coupling with cortex distinguishes spontaneous neuronal activities in identified basal ganglia-recipient and cerebellar-recipient zones of the motor thalamus. Cereb Cortex. doi:10.1093/cercor/bhs287 PubMedPubMedCentral Nakamura KC, Sharott A, Magill PJ (2012) Temporal coupling with cortex distinguishes spontaneous neuronal activities in identified basal ganglia-recipient and cerebellar-recipient zones of the motor thalamus. Cereb Cortex. doi:10.​1093/​cercor/​bhs287 PubMedPubMedCentral
go back to reference Pelzer EA, Hintzen A, Goldau M, von Cramon DY, Timmermann L, Tittgemeyer M (2013) Cerebellar networks with basal ganglia: feasibility for tracking cerebello-pallidal and subthalamo-cerebellar projections in the human brain. Eur J Neurosci 38(8):3106–3114. doi:10.1111/ejn.12314 CrossRefPubMed Pelzer EA, Hintzen A, Goldau M, von Cramon DY, Timmermann L, Tittgemeyer M (2013) Cerebellar networks with basal ganglia: feasibility for tracking cerebello-pallidal and subthalamo-cerebellar projections in the human brain. Eur J Neurosci 38(8):3106–3114. doi:10.​1111/​ejn.​12314 CrossRefPubMed
go back to reference Planetta PJ, Schulze ET, Geary EK, Corcos DM, Goldman JG, Little DM, Vaillancourt DE (2013) Thalamic projection fiber integrity in de novo Parkinson disease. Am J Neuroradiol 34(1):74–79. doi:10.3174/ajnr.A3178 CrossRefPubMed Planetta PJ, Schulze ET, Geary EK, Corcos DM, Goldman JG, Little DM, Vaillancourt DE (2013) Thalamic projection fiber integrity in de novo Parkinson disease. Am J Neuroradiol 34(1):74–79. doi:10.​3174/​ajnr.​A3178 CrossRefPubMed
go back to reference Rolland A-S, Herrero M-T, Garcia-Martinez V, Ruberg M, Hirsch EC, François C (2006) Metabolic activity of cerebellar and basal ganglia-thalamic neurons is reduced in parkinsonism. Brain 130(1):265–275. doi:10.1093/brain/awl337 CrossRef Rolland A-S, Herrero M-T, Garcia-Martinez V, Ruberg M, Hirsch EC, François C (2006) Metabolic activity of cerebellar and basal ganglia-thalamic neurons is reduced in parkinsonism. Brain 130(1):265–275. doi:10.​1093/​brain/​awl337 CrossRef
go back to reference Rouiller EME, Liang FF, Babalian AA, Moret VV, Wiesendanger MM (1994) Cerebellothalamocortical and pallidothalamocortical projections to the primary and supplementary motor cortical areas: a multiple tracing study in macaque monkeys. J Comp Neurol 345(2):185–213. doi:10.1002/cne.903450204 CrossRefPubMed Rouiller EME, Liang FF, Babalian AA, Moret VV, Wiesendanger MM (1994) Cerebellothalamocortical and pallidothalamocortical projections to the primary and supplementary motor cortical areas: a multiple tracing study in macaque monkeys. J Comp Neurol 345(2):185–213. doi:10.​1002/​cne.​903450204 CrossRefPubMed
go back to reference Rozanski VE, Vollmar C, Cunha JP, Tafula SMN, Ahmadi S-A, Patzig M, Mehrkens J-H, Bötzel K (2013) Connectivity patterns of pallidal DBS electrodes in focal dystonia: a diffusion tensor tractography study. Neuroimage 84(1):435–442. doi:10.1016/j.neuroimage.2013.09.009 PubMed Rozanski VE, Vollmar C, Cunha JP, Tafula SMN, Ahmadi S-A, Patzig M, Mehrkens J-H, Bötzel K (2013) Connectivity patterns of pallidal DBS electrodes in focal dystonia: a diffusion tensor tractography study. Neuroimage 84(1):435–442. doi:10.​1016/​j.​neuroimage.​2013.​09.​009 PubMed
go back to reference Sadikot AF, Rymar VV (2009) The primate centromedian-parafascicular complex: anatomical organization with a note on neuromodulation. Brain Res Bull 78(2–3):122CrossRefPubMed Sadikot AF, Rymar VV (2009) The primate centromedian-parafascicular complex: anatomical organization with a note on neuromodulation. Brain Res Bull 78(2–3):122CrossRefPubMed
go back to reference Schaltenbrand G, Wahren W (1977) Atlas for stereotaxy of the human brain, 2nd edn. Thieme, Stuttgart Schaltenbrand G, Wahren W (1977) Atlas for stereotaxy of the human brain, 2nd edn. Thieme, Stuttgart
go back to reference Scholz VH, Flaherty AW, Kraft E, Keltner JR, Kwong KK, Chen YI, Rosen BR, Jenkins BG (2000) Laterality, somatotopy and reproducibility of the basal ganglia and motor cortex during motor tasks. Brain Res 879(1–2):204–215. doi:10.1016/S0006-8993(00)02749-9 CrossRefPubMed Scholz VH, Flaherty AW, Kraft E, Keltner JR, Kwong KK, Chen YI, Rosen BR, Jenkins BG (2000) Laterality, somatotopy and reproducibility of the basal ganglia and motor cortex during motor tasks. Brain Res 879(1–2):204–215. doi:10.​1016/​S0006-8993(00)02749-9 CrossRefPubMed
go back to reference Sharman M, Valabregue R, Perlbarg V, Marrakchi-Kacem L, Vidailhet M, Benali H, Brice A, Lehéricy S (2013) Parkinson’s disease patients show reduced cortical-subcortical sensorimotor connectivity. Mov Disord 28(4):447–454. doi:10.1002/mds.25255 CrossRefPubMed Sharman M, Valabregue R, Perlbarg V, Marrakchi-Kacem L, Vidailhet M, Benali H, Brice A, Lehéricy S (2013) Parkinson’s disease patients show reduced cortical-subcortical sensorimotor connectivity. Mov Disord 28(4):447–454. doi:10.​1002/​mds.​25255 CrossRefPubMed
go back to reference Sidibe M, Bevan MD, Bolam JP, Smith Y (1997) Efferent connections of the internal globus pallidus in the squirrel monkey: I. Topography and synaptic organization of the pallidothalamic projection. J Comp Neurol 382(3):323–347CrossRefPubMed Sidibe M, Bevan MD, Bolam JP, Smith Y (1997) Efferent connections of the internal globus pallidus in the squirrel monkey: I. Topography and synaptic organization of the pallidothalamic projection. J Comp Neurol 382(3):323–347CrossRefPubMed
go back to reference Stanton GB (1980) Topographical organization of ascending cerebellar projections from the dentate and interposed nuclei in Macaca mulatta: an anterograde degeneration study. J Comp Neurol 190(4):699–731. doi:10.1002/cne.901900406 CrossRefPubMed Stanton GB (1980) Topographical organization of ascending cerebellar projections from the dentate and interposed nuclei in Macaca mulatta: an anterograde degeneration study. J Comp Neurol 190(4):699–731. doi:10.​1002/​cne.​901900406 CrossRefPubMed
go back to reference Van der Werf YD, Witter MP, Groenewegen HJ (2002) The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res Rev 39(2–3):107–140. doi:10.1016/S0165-0173(02)00181-9 CrossRefPubMed Van der Werf YD, Witter MP, Groenewegen HJ (2002) The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res Rev 39(2–3):107–140. doi:10.​1016/​S0165-0173(02)00181-9 CrossRefPubMed
go back to reference Vogt C, Vogt O (1920) Zur Lehre der Erkrankungen des striatären systems. J Psychol Neurol 25(suppl 3):627–846 Vogt C, Vogt O (1920) Zur Lehre der Erkrankungen des striatären systems. J Psychol Neurol 25(suppl 3):627–846
go back to reference Vogt C, Vogt O (1941) Thalamusstudien I-III. J Psychol Neurol 50:33–154 Vogt C, Vogt O (1941) Thalamusstudien I-III. J Psychol Neurol 50:33–154
go back to reference Yasukawa TT, Kita TT, Xue YY, Kita HH (2004) Rat intralaminar thalamic nuclei projections to the globus pallidus: a biotinylated dextran amine anterograde tracing study. J Comp Neurol 471(2):153–167. doi:10.1002/cne.20029 CrossRefPubMed Yasukawa TT, Kita TT, Xue YY, Kita HH (2004) Rat intralaminar thalamic nuclei projections to the globus pallidus: a biotinylated dextran amine anterograde tracing study. J Comp Neurol 471(2):153–167. doi:10.​1002/​cne.​20029 CrossRefPubMed
Metadata
Title
Basal ganglia and cerebellar interconnectivity within the human thalamus
Authors
Esther A. Pelzer
Corina Melzer
Lars Timmermann
D. Yves von Cramon
Marc Tittgemeyer
Publication date
01-01-2017
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 1/2017
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-016-1223-z

Other articles of this Issue 1/2017

Brain Structure and Function 1/2017 Go to the issue