Skip to main content
Top
Published in: The Cerebellum 1/2019

01-02-2019 | Original Paper

Transcranial Direct Current Stimulation to Assist Experienced Pistol Shooters in Gaining Even-Better Performance Scores

Authors: Ali-Mohammad Kamali, Mohammad Nami, Seyedeh-Saeedeh Yahyavi, Zahra Kheradmand Saadi, Alireza Mohammadi

Published in: The Cerebellum | Issue 1/2019

Login to get access

Abstract

Recently, brain stimulation has been considered as a promising method for the empowerment of athletes’ performance. This study recruited 16 pistol shooters who were randomly assigned to two arms, including the control receiving no intervention and the experimental group receiving either sham or real transcranial direct current stimulation (tDCS), i.e., anodal stimulation and cathodal suppression over the cerebellar and dorsolateral prefrontal cortex (DLPFC) regions, respectively. Our outcome measures were the score and latency to shooting, as well as number of errors and task time in the dynamic tremor and mirror-tracing tasks. Our findings suggested that tDCS vs. sham improves the average shooting score in pistol shooters by 2.3% ± 0.65 (mean ± SEM, p = 0.018). Furthermore, the bullet hole distance from the Air Pistol Target center was found to be significantly shorter in the experimental (tDCS) group (p = 0.02). In the control group, no significant difference was noted between the shooting scores of shooters over the consecutive two sessions. In terms of latency to shooting, no significant difference was noted within groups between both sessions. However, for the dynamic tremor task outcome, there were significantly less errors after real tDCS than after sham stimulation. In addition, the results of the mirror-tracing task in the tDCS group showed significant differences between the sham and real-tDCS sessions favoring the real-tDCS session (p = 0.001). Therefore, concurrent suppression of dlPFC and stimulation of cerebellum through tDCS may increase shooting scores in experienced pistol shooters.
Appendix
Available only for authorised users
Literature
1.
go back to reference Dayan E, Censor N, Buch ER, Sandrini M, Cohen LG. Noninvasive brain stimulation: from physiology to network dynamics and back. Nat Neurosci. 2013;16(7):838–44.PubMedPubMedCentralCrossRef Dayan E, Censor N, Buch ER, Sandrini M, Cohen LG. Noninvasive brain stimulation: from physiology to network dynamics and back. Nat Neurosci. 2013;16(7):838–44.PubMedPubMedCentralCrossRef
2.
3.
4.
go back to reference Elble, R.J., Tremor, in Neuro-Geriatrics. 2017, Springer. p. 311–326. Elble, R.J., Tremor, in Neuro-Geriatrics. 2017, Springer. p. 311–326.
5.
go back to reference Boecker H, Wills AJ, Ceballos-Baumann A, Samuel M, Thompson PD, Findley LJ, et al. The effect of ethanol on alcohol-responsive essential tremor: a positron emission tomography study. Ann Neurol. 1996;39(5):650–8.PubMedCrossRef Boecker H, Wills AJ, Ceballos-Baumann A, Samuel M, Thompson PD, Findley LJ, et al. The effect of ethanol on alcohol-responsive essential tremor: a positron emission tomography study. Ann Neurol. 1996;39(5):650–8.PubMedCrossRef
6.
8.
go back to reference Buckner RL. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron. 2013;80(3):807–15.PubMedCrossRef Buckner RL. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron. 2013;80(3):807–15.PubMedCrossRef
10.
go back to reference Tröster A, et al. Neuropsychological deficits in essential tremor: an expression of cerebello-thalamo-cortical pathophysiology? Eur J Neurol. 2002;9(2):143–51.PubMedCrossRef Tröster A, et al. Neuropsychological deficits in essential tremor: an expression of cerebello-thalamo-cortical pathophysiology? Eur J Neurol. 2002;9(2):143–51.PubMedCrossRef
11.
go back to reference Brodal, P. and J.G. Bjaalie, Salient anatomic features of the cortico-ponto-cerebellar pathway in Progress in brain research. 1997, Elsevier. p. 227–249. Brodal, P. and J.G. Bjaalie, Salient anatomic features of the cortico-ponto-cerebellar pathway in Progress in brain research. 1997, Elsevier. p. 227–249.
12.
go back to reference Grimaldi G, et al. Marked reduction of cerebellar deficits in upper limbs following transcranial cerebello-cerebral DC stimulation: tremor reduction and re-programming of the timing of antagonist commands. Front Syst Neurosci. 2014;8:9.PubMedPubMedCentralCrossRef Grimaldi G, et al. Marked reduction of cerebellar deficits in upper limbs following transcranial cerebello-cerebral DC stimulation: tremor reduction and re-programming of the timing of antagonist commands. Front Syst Neurosci. 2014;8:9.PubMedPubMedCentralCrossRef
13.
go back to reference Galea JM, Vazquez A, Pasricha N, de Xivry JJ, Celnik P. Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cereb Cortex. 2010;21(8):1761–70.PubMedPubMedCentralCrossRef Galea JM, Vazquez A, Pasricha N, de Xivry JJ, Celnik P. Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cereb Cortex. 2010;21(8):1761–70.PubMedPubMedCentralCrossRef
14.
go back to reference Ferrucci R, Brunoni AR, Parazzini M, Vergari M, Rossi E, Fumagalli M, et al. Modulating human procedural learning by cerebellar transcranial direct current stimulation. Cerebellum. 2013;12(4):485–92.PubMedCrossRef Ferrucci R, Brunoni AR, Parazzini M, Vergari M, Rossi E, Fumagalli M, et al. Modulating human procedural learning by cerebellar transcranial direct current stimulation. Cerebellum. 2013;12(4):485–92.PubMedCrossRef
15.
go back to reference Jayaram G, Tang B, Pallegadda R, Vasudevan EVL, Celnik P, Bastian A. Modulating locomotor adaptation with cerebellar stimulation. J Neurophysiol. 2012;107(11):2950–7.PubMedPubMedCentralCrossRef Jayaram G, Tang B, Pallegadda R, Vasudevan EVL, Celnik P, Bastian A. Modulating locomotor adaptation with cerebellar stimulation. J Neurophysiol. 2012;107(11):2950–7.PubMedPubMedCentralCrossRef
16.
go back to reference Shah B, Nguyen TT, Madhavan S. Polarity independent effects of cerebellar tDCS on short term ankle visuomotor learning. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation. 2013;6(6):966–8.CrossRef Shah B, Nguyen TT, Madhavan S. Polarity independent effects of cerebellar tDCS on short term ankle visuomotor learning. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation. 2013;6(6):966–8.CrossRef
17.
go back to reference Bradnam LV, et al. Anodal transcranial direct current stimulation to the cerebellum improves handwriting and cyclic drawing kinematics in focal hand dystonia. Front Hum Neurosci. 2015;9:286.PubMedPubMedCentralCrossRef Bradnam LV, et al. Anodal transcranial direct current stimulation to the cerebellum improves handwriting and cyclic drawing kinematics in focal hand dystonia. Front Hum Neurosci. 2015;9:286.PubMedPubMedCentralCrossRef
18.
go back to reference Zhu FF, Yeung AY, Poolton JM, Lee TMC, Leung GKK, Masters RSW. Cathodal transcranial direct current stimulation over left dorsolateral prefrontal cortex area promotes implicit motor learning in a golf putting task. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation. 2015;8(4):784–6.CrossRef Zhu FF, Yeung AY, Poolton JM, Lee TMC, Leung GKK, Masters RSW. Cathodal transcranial direct current stimulation over left dorsolateral prefrontal cortex area promotes implicit motor learning in a golf putting task. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation. 2015;8(4):784–6.CrossRef
19.
go back to reference Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(3):633–9.PubMedPubMedCentralCrossRef Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(3):633–9.PubMedPubMedCentralCrossRef
20.
go back to reference Paulin MG. The role of the cerebellum in motor control and perception. Brain Behav Evol. 1993;41(1):39–50.PubMedCrossRef Paulin MG. The role of the cerebellum in motor control and perception. Brain Behav Evol. 1993;41(1):39–50.PubMedCrossRef
21.
go back to reference Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation. 2008;1(3):206–23.CrossRef Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation. 2008;1(3):206–23.CrossRef
22.
go back to reference Steiner KM, Enders A, Thier W, Batsikadze G, Ludolph N, Ilg W, et al. Cerebellar tDCS does not improve learning in a complex whole body dynamic balance task in young healthy subjects. PLoS One. 2016;11(9):e0163598.PubMedPubMedCentralCrossRef Steiner KM, Enders A, Thier W, Batsikadze G, Ludolph N, Ilg W, et al. Cerebellar tDCS does not improve learning in a complex whole body dynamic balance task in young healthy subjects. PLoS One. 2016;11(9):e0163598.PubMedPubMedCentralCrossRef
25.
go back to reference Laporte W. The influence of a gymnastic pause upon recovery following post office work. Ergonomics. 1966;9(6):501–6.PubMedCrossRef Laporte W. The influence of a gymnastic pause upon recovery following post office work. Ergonomics. 1966;9(6):501–6.PubMedCrossRef
26.
go back to reference Louis ED, Yousefzadeh E, Barnes LF, Yu Q, Pullman SL, Wendt KJ. Validation of a portable instrument for assessing tremor severity in epidemiologic field studies. Mov Disord. 2000;15(1):95–102.PubMedCrossRef Louis ED, Yousefzadeh E, Barnes LF, Yu Q, Pullman SL, Wendt KJ. Validation of a portable instrument for assessing tremor severity in epidemiologic field studies. Mov Disord. 2000;15(1):95–102.PubMedCrossRef
27.
go back to reference Keeser D, Meindl T, Bor J, Palm U, Pogarell O, Mulert C, et al. Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI. J Neurosci. 2011;31(43):15284–93.PubMedCrossRefPubMedCentral Keeser D, Meindl T, Bor J, Palm U, Pogarell O, Mulert C, et al. Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI. J Neurosci. 2011;31(43):15284–93.PubMedCrossRefPubMedCentral
28.
go back to reference Vitor-Costa M, Okuno NM, Bortolotti H, Bertollo M, Boggio PS, Fregni F, et al. Improving cycling performance: transcranial direct current stimulation increases time to exhaustion in cycling. PLoS One. 2015;10(12):e0144916.PubMedPubMedCentralCrossRef Vitor-Costa M, Okuno NM, Bortolotti H, Bertollo M, Boggio PS, Fregni F, et al. Improving cycling performance: transcranial direct current stimulation increases time to exhaustion in cycling. PLoS One. 2015;10(12):e0144916.PubMedPubMedCentralCrossRef
29.
go back to reference Okano, A.H., et al., Brain stimulation modulates the autonomic nervous system, rating of perceived exertion and performance during maximal exercise. Br J Sports Med, 2013 p. bjsports-2012-091658. Okano, A.H., et al., Brain stimulation modulates the autonomic nervous system, rating of perceived exertion and performance during maximal exercise. Br J Sports Med, 2013 p. bjsports-2012-091658.
30.
go back to reference Morton SM, Bastian AJ. Cerebellar control of balance and locomotion. Neuroscientist. 2004;10(3):247–59.PubMedCrossRef Morton SM, Bastian AJ. Cerebellar control of balance and locomotion. Neuroscientist. 2004;10(3):247–59.PubMedCrossRef
31.
go back to reference Clark VP, Coffman BA, Mayer AR, Weisend MP, Lane TDR, Calhoun VD, et al. TDCS guided using fMRI significantly accelerates learning to identify concealed objects. Neuroimage. 2012;59(1):117–28.PubMedCrossRef Clark VP, Coffman BA, Mayer AR, Weisend MP, Lane TDR, Calhoun VD, et al. TDCS guided using fMRI significantly accelerates learning to identify concealed objects. Neuroimage. 2012;59(1):117–28.PubMedCrossRef
32.
go back to reference Reis J, Schambra HM, Cohen LG, Buch ER, Fritsch B, Zarahn E, et al. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc Natl Acad Sci. 2009;106(5):1590–5.PubMedCrossRefPubMedCentral Reis J, Schambra HM, Cohen LG, Buch ER, Fritsch B, Zarahn E, et al. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc Natl Acad Sci. 2009;106(5):1590–5.PubMedCrossRefPubMedCentral
33.
go back to reference Borducchi DM, et al. Transcranial direct current stimulation effects on athletes’ cognitive performance: an exploratory proof of concept trial. Front Psychol. 2016;7:183. Borducchi DM, et al. Transcranial direct current stimulation effects on athletes’ cognitive performance: an exploratory proof of concept trial. Front Psychol. 2016;7:183.
Metadata
Title
Transcranial Direct Current Stimulation to Assist Experienced Pistol Shooters in Gaining Even-Better Performance Scores
Authors
Ali-Mohammad Kamali
Mohammad Nami
Seyedeh-Saeedeh Yahyavi
Zahra Kheradmand Saadi
Alireza Mohammadi
Publication date
01-02-2019
Publisher
Springer US
Published in
The Cerebellum / Issue 1/2019
Print ISSN: 1473-4222
Electronic ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-018-0967-9

Other articles of this Issue 1/2019

The Cerebellum 1/2019 Go to the issue