Skip to main content
Top
Published in: The Cerebellum 3/2008

01-09-2008

Comparative Evaluation of the Cerebral and Cerebellar White Matter Development in Pediatric Age Group using Quantitative Diffusion Tensor Imaging

Authors: Sona Saksena, Nuzhat Husain, Gyanendra K. Malik, Richa Trivedi, Manoj Sarma, Ramkishore S. Rathore, Chandra M. Pandey, Rakesh K. Gupta

Published in: The Cerebellum | Issue 3/2008

Login to get access

Abstract

Age-dependent changes in the normal cerebral white matter have been reported; however, there is no study on normal cerebellar white matter maturation in developing brain using diffusion tensor imaging (DTI). We performed DTI in 21 children who had normal neurological assessment along with no evidence of any abnormality on imaging. The aim of this study was to compare the age-related changes in fractional anisotropy (FA) and mean diffusivity (MD) quantified from cerebral white matter (splenium and genu of the corpus callosum and posterior limb of the internal capsule) and cerebellar white matter (middle cerebellar peduncles, superior cerebellar peduncles, and inferior cerebellar peduncles) regions in healthy children ranging in age from birth to 132 months. Log-linear regression model showed best fit to describe the age-related changes in FA and MD both for cerebral and cerebellar white matter. In cerebral white matter, an initial sharp increase in FA was observed up to the age of 24 months followed by a gradual increase up to 132 months. In cerebellar white matter, sharp increase in FA was observed up to 36 months, which then followed a gradual increase. However, MD showed a sharp decrease in cerebral white matter up to 24 months followed by a more gradual decrease thereafter, while in cerebellar white matter after an initial decrease (6 months), it followed a stable pattern. This study provides normative database of brain white matter development from neonates to childhood. This quantitative information may be useful for assessing brain maturation in patients with developmental delay of the cerebral and cerebellar white matter.
Literature
1.
go back to reference Yakovlev PI, Lecours AR (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed) Regional development of the brain in early life. Oxford, England, Blackwell Scientific, pp 3–70 Yakovlev PI, Lecours AR (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed) Regional development of the brain in early life. Oxford, England, Blackwell Scientific, pp 3–70
2.
go back to reference Ricardson EP Jr (1982) Myelination in the human central nervous system. In: Haymaker W, Adams RD (eds) Histology and histopathology of the nervous system. Springfield, III, Thomas, pp 146–73 Ricardson EP Jr (1982) Myelination in the human central nervous system. In: Haymaker W, Adams RD (eds) Histology and histopathology of the nervous system. Springfield, III, Thomas, pp 146–73
3.
go back to reference Barkovich AJ (2000) Concepts of myelin and myelination in neuroradiology. AJNR Am J Neuroradiol 21:1099–1109PubMed Barkovich AJ (2000) Concepts of myelin and myelination in neuroradiology. AJNR Am J Neuroradiol 21:1099–1109PubMed
4.
go back to reference Paus T, Collins DL, Evans AC, Leonard G, Pike B, Zijdenbos A (2001) Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain Res Bull 54:255–266PubMedCrossRef Paus T, Collins DL, Evans AC, Leonard G, Pike B, Zijdenbos A (2001) Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain Res Bull 54:255–266PubMedCrossRef
5.
go back to reference Schmithorst VJ, Wilke M, Dardzinski BJ, Holland SK (2005) Cognitive functions correlate with white matter architecture in a normal pediatric population: a diffusion tensor MRI study. Hum Brain Mapp 26:139–147PubMedCrossRef Schmithorst VJ, Wilke M, Dardzinski BJ, Holland SK (2005) Cognitive functions correlate with white matter architecture in a normal pediatric population: a diffusion tensor MRI study. Hum Brain Mapp 26:139–147PubMedCrossRef
6.
go back to reference Paus T, Zijdenbos A, Worsley K, Collins L, Blumenthal J, Giedd JN et al (1999) Structural maturation of neural pathways in children and adolescents: in vivo study. Science 283:1908–1911PubMedCrossRef Paus T, Zijdenbos A, Worsley K, Collins L, Blumenthal J, Giedd JN et al (1999) Structural maturation of neural pathways in children and adolescents: in vivo study. Science 283:1908–1911PubMedCrossRef
7.
go back to reference Brody BA, Kinney HC, Kloman AS, Gilles FH (1987) Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. J Neuropathol Exp Neurol 46:283–301PubMedCrossRef Brody BA, Kinney HC, Kloman AS, Gilles FH (1987) Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. J Neuropathol Exp Neurol 46:283–301PubMedCrossRef
8.
go back to reference Kinney HC, Brody BA, Kloman AS, Gilles FH (1988) Sequence of central nervous system myelination in human infancy. II. Patterns of myelination in autopsied infants. J Neuropathol Exp Neurol 47:217–234PubMedCrossRef Kinney HC, Brody BA, Kloman AS, Gilles FH (1988) Sequence of central nervous system myelination in human infancy. II. Patterns of myelination in autopsied infants. J Neuropathol Exp Neurol 47:217–234PubMedCrossRef
9.
go back to reference Gilles FH, Shankle W, Dooling EC (1983) Myelinated tracts: growth patterns. In: Gilles FH, Leviton A, Dooling EC (eds) The developing human brain. PSG, Boston, John Wright, pp 117–183 Gilles FH, Shankle W, Dooling EC (1983) Myelinated tracts: growth patterns. In: Gilles FH, Leviton A, Dooling EC (eds) The developing human brain. PSG, Boston, John Wright, pp 117–183
10.
go back to reference Barkovich AJ, Kjos BO, Jackson DE Jr, Norman D (1988) Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T. Radiology 166:173–180PubMed Barkovich AJ, Kjos BO, Jackson DE Jr, Norman D (1988) Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T. Radiology 166:173–180PubMed
11.
go back to reference van der Knaap MS, Valk J (1990) MR imaging of the various stages of normal myelination during the first year of life. Neuroradiology 31:459–470PubMedCrossRef van der Knaap MS, Valk J (1990) MR imaging of the various stages of normal myelination during the first year of life. Neuroradiology 31:459–470PubMedCrossRef
12.
go back to reference Barkovich AJ (ed) (2005) Pediatric neuroimaging, 4th edn. Lippincott, Philadelphia Barkovich AJ (ed) (2005) Pediatric neuroimaging, 4th edn. Lippincott, Philadelphia
13.
go back to reference Mukherjee P, McKinstry RC (2006) Diffusion tensor imaging and tractography of human brain development. Neuroimaging Clin N Am 16:19–43PubMedCrossRef Mukherjee P, McKinstry RC (2006) Diffusion tensor imaging and tractography of human brain development. Neuroimaging Clin N Am 16:19–43PubMedCrossRef
14.
go back to reference Wimberger DM, Roberts TP, Barkovich AJ, Prayer LM, Moseley ME, Kucharczyk J (1995) Identification of “premyelination” by diffusion-weighted MRI. J Comput Assist Tomogr 19:28–33PubMedCrossRef Wimberger DM, Roberts TP, Barkovich AJ, Prayer LM, Moseley ME, Kucharczyk J (1995) Identification of “premyelination” by diffusion-weighted MRI. J Comput Assist Tomogr 19:28–33PubMedCrossRef
15.
go back to reference Prayer D, Barkovich AJ, Kirschner DA, Prayer LM, Roberts TP, Kucharczyk J et al (2001) Visualization of nonstructural changes in early white matter development on diffusion-weighted MR images: evidence supporting premyelination anisotropy. AJNR Am J Neuroradiol 22:1572–1576PubMed Prayer D, Barkovich AJ, Kirschner DA, Prayer LM, Roberts TP, Kucharczyk J et al (2001) Visualization of nonstructural changes in early white matter development on diffusion-weighted MR images: evidence supporting premyelination anisotropy. AJNR Am J Neuroradiol 22:1572–1576PubMed
16.
go back to reference Nomura Y, Sakuma H, Takeda K, Tagami T, Okuda Y, Nakagawa T (1994) Diffusional anisotropy of the human brain assessed with diffusion-weighted MR: relation with normal brain development and aging. AJNR Am J Neuroradiol 15:231–238PubMed Nomura Y, Sakuma H, Takeda K, Tagami T, Okuda Y, Nakagawa T (1994) Diffusional anisotropy of the human brain assessed with diffusion-weighted MR: relation with normal brain development and aging. AJNR Am J Neuroradiol 15:231–238PubMed
17.
go back to reference Morriss MC, Zimmerman RA, Bilaniuk LT, Hunter JV, Haselgrove JC (1999) Changes in brain water diffusion during childhood. Neuroradiology 41:929–934PubMedCrossRef Morriss MC, Zimmerman RA, Bilaniuk LT, Hunter JV, Haselgrove JC (1999) Changes in brain water diffusion during childhood. Neuroradiology 41:929–934PubMedCrossRef
18.
go back to reference Kizildağ B, Düşünceli E, Fitoz S, Erden I (2005) The role of classic spin echo and FLAIR sequences for the evaluation of myelination in MR imaging. Diagn Interv Radiol 11:130–136PubMed Kizildağ B, Düşünceli E, Fitoz S, Erden I (2005) The role of classic spin echo and FLAIR sequences for the evaluation of myelination in MR imaging. Diagn Interv Radiol 11:130–136PubMed
19.
go back to reference Murakami JW, Weinberger E, Shaw DW (1999) Normal myelination of the pediatric brain imaged with fluid-attenuated inversion-recovery (FLAIR) MR imaging. AJNR Am J Neuroradiol 20:1406–1411PubMed Murakami JW, Weinberger E, Shaw DW (1999) Normal myelination of the pediatric brain imaged with fluid-attenuated inversion-recovery (FLAIR) MR imaging. AJNR Am J Neuroradiol 20:1406–1411PubMed
20.
go back to reference Engelbrecht V, Rassek M, Preiss S, Wald C, Modder U (1998) Age-dependent changes in magnetization transfer contrast of white matter in the pediatric brain. AJNR Am J Neuroradiol 19:1923–1929PubMed Engelbrecht V, Rassek M, Preiss S, Wald C, Modder U (1998) Age-dependent changes in magnetization transfer contrast of white matter in the pediatric brain. AJNR Am J Neuroradiol 19:1923–1929PubMed
21.
go back to reference van Buchem MA, Steens SC, Vrooman HA, Zwinderman AH, McGowan JC, Rassek M et al (2001) Global estimation of myelination in the developing brain on the basis of magnetization transfer imaging: a preliminary study. AJNR Am J Neuroradiol 22:762–766PubMed van Buchem MA, Steens SC, Vrooman HA, Zwinderman AH, McGowan JC, Rassek M et al (2001) Global estimation of myelination in the developing brain on the basis of magnetization transfer imaging: a preliminary study. AJNR Am J Neuroradiol 22:762–766PubMed
22.
go back to reference Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed 15:435–455PubMedCrossRef Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system—a technical review. NMR Biomed 15:435–455PubMedCrossRef
23.
go back to reference Neil JJ, Shiran SI, McKinstry RC, Schefft GL, Snyder AZ, Almli CE et al (1998) Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging. Radiology 209:57–66PubMed Neil JJ, Shiran SI, McKinstry RC, Schefft GL, Snyder AZ, Almli CE et al (1998) Normal brain in human newborns: apparent diffusion coefficient and diffusion anisotropy measured by using diffusion tensor MR imaging. Radiology 209:57–66PubMed
24.
go back to reference Huppi PS, Maier SE, Peled S, Zientara GP, Barnes PD, Jolesz FA et al (1998) Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatr Res 44:584–590PubMedCrossRef Huppi PS, Maier SE, Peled S, Zientara GP, Barnes PD, Jolesz FA et al (1998) Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatr Res 44:584–590PubMedCrossRef
25.
go back to reference McKinstry RC, Mathur A, Miller JH, Ozcan A, Snyder AZ, Schefft GL et al (2002) Radial organization of developing preterm human cerebral cortex revealed by non-invasive water diffusion anisotropy MRI. Cereb Cortex 12:1237–1243PubMedCrossRef McKinstry RC, Mathur A, Miller JH, Ozcan A, Snyder AZ, Schefft GL et al (2002) Radial organization of developing preterm human cerebral cortex revealed by non-invasive water diffusion anisotropy MRI. Cereb Cortex 12:1237–1243PubMedCrossRef
26.
go back to reference Mukherjee P, Miller JH, Shimony JS, Conturo TE, Lee BC, Almli CR et al (2001) Normal brain maturation during childhood: developmental trends characterized with diffusion-tensor MR imaging. Radiology 221:349–358PubMedCrossRef Mukherjee P, Miller JH, Shimony JS, Conturo TE, Lee BC, Almli CR et al (2001) Normal brain maturation during childhood: developmental trends characterized with diffusion-tensor MR imaging. Radiology 221:349–358PubMedCrossRef
27.
go back to reference McGraw P, Liang L, Provenzale JM (2002) Evaluation of normal age-related changes in anisotropy during infancy and childhood as shown by diffusion tensor imaging. AJR Am J Roentgenol 179:1515–1522PubMed McGraw P, Liang L, Provenzale JM (2002) Evaluation of normal age-related changes in anisotropy during infancy and childhood as shown by diffusion tensor imaging. AJR Am J Roentgenol 179:1515–1522PubMed
28.
go back to reference Schneider JF, Il’yasov KA, Hennig J, Martin E (2004) Fast quantitative diffusion-tensor imaging of cerebral white matter from the neonatal period to adolescence. Neuroradiology 46:258–266PubMedCrossRef Schneider JF, Il’yasov KA, Hennig J, Martin E (2004) Fast quantitative diffusion-tensor imaging of cerebral white matter from the neonatal period to adolescence. Neuroradiology 46:258–266PubMedCrossRef
29.
go back to reference Hermoye L, Saint-Martin C, Cosnard G, Lee SK, Kim J, Nassogne MC et al (2006) Pediatric diffusion tensor imaging: normal database and observation of the white matter maturation in early childhood. Neuroimage 29:493–504PubMedCrossRef Hermoye L, Saint-Martin C, Cosnard G, Lee SK, Kim J, Nassogne MC et al (2006) Pediatric diffusion tensor imaging: normal database and observation of the white matter maturation in early childhood. Neuroimage 29:493–504PubMedCrossRef
30.
go back to reference Dubois J, Hertz-Pannier L, Dehaene-Lambertz G, Cointepas Y, Le Bihan D (2006) Assessment of the early organization and maturation of infants’ cerebral white matter fiber bundles: a feasibility study using quantitative diffusion tensor imaging and tractography. Neuroimage 30:1121–1132PubMedCrossRef Dubois J, Hertz-Pannier L, Dehaene-Lambertz G, Cointepas Y, Le Bihan D (2006) Assessment of the early organization and maturation of infants’ cerebral white matter fiber bundles: a feasibility study using quantitative diffusion tensor imaging and tractography. Neuroimage 30:1121–1132PubMedCrossRef
31.
go back to reference Le Bihan D (ed) (1995) Diffusion and perfusion MRI—applications to functional MRI. Raven, New York Le Bihan D (ed) (1995) Diffusion and perfusion MRI—applications to functional MRI. Raven, New York
32.
go back to reference Hasan KM, Parker DL, Alexander AL (2001) Comparison of gradient encoding schemes for diffusion-tensor MRI. J Magn Reson Imaging 13:769–780PubMedCrossRef Hasan KM, Parker DL, Alexander AL (2001) Comparison of gradient encoding schemes for diffusion-tensor MRI. J Magn Reson Imaging 13:769–780PubMedCrossRef
33.
go back to reference Woods RP, Mazziotta JC, Cherry SR (1993) MRI–PET registration with automated algorithm. J Comput Assist Tomogr 17:536–546PubMedCrossRef Woods RP, Mazziotta JC, Cherry SR (1993) MRI–PET registration with automated algorithm. J Comput Assist Tomogr 17:536–546PubMedCrossRef
34.
go back to reference Purwar A, Gupta RK, Sarma MK, Bayu G, Singh A, Rathore DK et al (2006) De-scalping of the brain in echo planar DT-MRI. Proceedings of the International Society of Magnetic Resonance in Medicine, p 325 Purwar A, Gupta RK, Sarma MK, Bayu G, Singh A, Rathore DK et al (2006) De-scalping of the brain in echo planar DT-MRI. Proceedings of the International Society of Magnetic Resonance in Medicine, p 325
35.
go back to reference Hasan KM, Basser PJ, Parker DL, Alexander AL (2001) Analytical computation of the eigenvalues and eigenvectors in DT-MRI. J Magn Reson 152:41–47PubMedCrossRef Hasan KM, Basser PJ, Parker DL, Alexander AL (2001) Analytical computation of the eigenvalues and eigenvectors in DT-MRI. J Magn Reson 152:41–47PubMedCrossRef
36.
go back to reference Purwar A, Rathore DK, Rathore RKS, Gupta RK (2006) A DTI analysis tool. Proceedings of the European Society of Magnetic Resonance in Medicine, Abstract 644 Purwar A, Rathore DK, Rathore RKS, Gupta RK (2006) A DTI analysis tool. Proceedings of the European Society of Magnetic Resonance in Medicine, Abstract 644
37.
go back to reference Wakana S, Jiang H, Nagae-Poetscher LM, van Zijl PC, Mori S (2004) Fiber tract-based atlas of human white matter anatomy. Radiology 230:77–87PubMedCrossRef Wakana S, Jiang H, Nagae-Poetscher LM, van Zijl PC, Mori S (2004) Fiber tract-based atlas of human white matter anatomy. Radiology 230:77–87PubMedCrossRef
38.
go back to reference Dietrich RB, Bradley WG, Zaragoza EJ IV, Otto RJ, Taira RK, Wilson GH et al (1988) MR evaluation of early myelination patterns in normal and developmentally delayed infants. AJR Am J Roentgenol 150:889–896PubMed Dietrich RB, Bradley WG, Zaragoza EJ IV, Otto RJ, Taira RK, Wilson GH et al (1988) MR evaluation of early myelination patterns in normal and developmentally delayed infants. AJR Am J Roentgenol 150:889–896PubMed
39.
go back to reference Benes FM, Turtle M, Khan Y, Farol P (1994) Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood. Arch Gen Psychiatry 51:477–484PubMed Benes FM, Turtle M, Khan Y, Farol P (1994) Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood. Arch Gen Psychiatry 51:477–484PubMed
40.
go back to reference Dobbing J, Sands J (1973) Quantitative growth and development of human brain. Arch Dis Child 48:757–767PubMedCrossRef Dobbing J, Sands J (1973) Quantitative growth and development of human brain. Arch Dis Child 48:757–767PubMedCrossRef
41.
go back to reference Engelbrecht V, Scherer A, Rassek M, Witsack HJ, Mödder U (2002) Diffusion-weighted MR imaging in the brain in children: findings in the normal brain and in the brain with white matter diseases. Radiology 222:410–418PubMedCrossRef Engelbrecht V, Scherer A, Rassek M, Witsack HJ, Mödder U (2002) Diffusion-weighted MR imaging in the brain in children: findings in the normal brain and in the brain with white matter diseases. Radiology 222:410–418PubMedCrossRef
42.
go back to reference Stricker T, Martin E, Boesch C (1990) Development of the human cerebellum observed with high-field-strength MR imaging. Radiology 177:431–435PubMed Stricker T, Martin E, Boesch C (1990) Development of the human cerebellum observed with high-field-strength MR imaging. Radiology 177:431–435PubMed
43.
go back to reference Schmahmann JD (2004) Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci 16:367–378PubMed Schmahmann JD (2004) Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci 16:367–378PubMed
Metadata
Title
Comparative Evaluation of the Cerebral and Cerebellar White Matter Development in Pediatric Age Group using Quantitative Diffusion Tensor Imaging
Authors
Sona Saksena
Nuzhat Husain
Gyanendra K. Malik
Richa Trivedi
Manoj Sarma
Ramkishore S. Rathore
Chandra M. Pandey
Rakesh K. Gupta
Publication date
01-09-2008
Publisher
Springer-Verlag
Published in
The Cerebellum / Issue 3/2008
Print ISSN: 1473-4222
Electronic ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-008-0041-0

Other articles of this Issue 3/2008

The Cerebellum 3/2008 Go to the issue

Invited Review

Gluten ataxia