Skip to main content
Top
Published in: Breast Cancer 6/2022

18-08-2022 | Breast Cancer | Original Article

A novel ADC targeting cell surface fibromodulin in a mouse model of triple-negative breast cancer

Authors: Mozhan Haji Ghaffari, Miganoosh Simonian, Ali Salimi, Ebrahim Mirzadegan, Niloufar Sadeghi, Mohammad-Reza Nejadmoghaddam, Nasim Ebrahimnezhad, Ghazaleh Fazli, Ramina Fatemi, Ali-Ahmad Bayat, Mohammadali Mazloomi, Hodjattallah Rabbani

Published in: Breast Cancer | Issue 6/2022

Login to get access

Abstract

Background

Triple-negative breast cancers (TNBCs) are highly aggressive and metastatic. To date, finding efficacious targeted therapy molecules might be the only window of hope to cure cancer. Fibromodulin (FMOD), is ectopically highly expressed on the surface of Chronic Lymphocytic Leukemia (CLL) and bladder carcinoma cells; thus, it could be a promising molecule for targeted therapy of cancer. The objective of this study was to evaluate cell surface expression of FMOD in two TNBC cell lines and develop an antibody–drug conjugate (ADC) to target FMOD positive TNBC in vitro and in vivo.

Materials and methods

Two TNBC-derived cell lines 4T1 and MDA-MB-231 were used in this study. The specific binding of anti-FMOD monoclonal antibody (mAb) was evaluated by flow cytometry and its internalization was verified using phAb amine reactive dye. A microtubulin inhibitor Mertansine (DM1) was used for conjugation to anti-FMOD mAb. The binding efficacy of FMOD-ADC was assessed by immunocytochemistry technique. The anti-FMOD mAb and FMOD-ADC apoptosis induction were measured using Annexin V-FITC and flow cytometry. Tumor growth inhibition of anti-FMOD mAb and FMOD-ADC was evaluated using BALB/c mice injected with 4T1 cells.

Results

Our results indicate that both anti-FMOD mAb and FMOD-ADC recognize cell surface FMOD molecules. FMOD-ADC could induce apoptosis in 4T1 and MDA-MB-231 cells in vitro. In vivo tumor growth inhibition was observed using FMOD-ADC in 4T1 inoculated BALB/c mice.

Conclusion

Our results suggests high cell surface FMOD expression could be a novel bio-marker TNBCs. Furthermore, FMOD-ADC could be a promising candidate for targeting TNBCs.
Literature
1.
go back to reference Mattiuzzi C, Lippi G. Current cancer epidemiology. J Epidemiol Glob Health. 2019;9(4):217.CrossRef Mattiuzzi C, Lippi G. Current cancer epidemiology. J Epidemiol Glob Health. 2019;9(4):217.CrossRef
2.
go back to reference Weir HK, Thompson TD, Soman A, Møller B, Leadbetter S. The past, present, and future of cancer incidence in the United States: 1975 through 2020. Cancer. 2015;121(11):1827–37.CrossRef Weir HK, Thompson TD, Soman A, Møller B, Leadbetter S. The past, present, and future of cancer incidence in the United States: 1975 through 2020. Cancer. 2015;121(11):1827–37.CrossRef
3.
go back to reference Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin. 2021;71(3):209–49.CrossRef Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin. 2021;71(3):209–49.CrossRef
4.
go back to reference Si Y, Xu Y, Guan J, Chen K, Kim S, Yang ES, et al. Anti-EGFR antibody-drug conjugate for triple-negative breast cancer therapy. Eng Life Sci. 2021;21(1–2):37–44.CrossRef Si Y, Xu Y, Guan J, Chen K, Kim S, Yang ES, et al. Anti-EGFR antibody-drug conjugate for triple-negative breast cancer therapy. Eng Life Sci. 2021;21(1–2):37–44.CrossRef
5.
go back to reference Esteva FJ, Hubbard-Lucey VM, Tang J, Pusztai L. Immunotherapy and targeted therapy combinations in metastatic breast cancer. Lancet Oncol. 2019;20(3):e175–86.CrossRef Esteva FJ, Hubbard-Lucey VM, Tang J, Pusztai L. Immunotherapy and targeted therapy combinations in metastatic breast cancer. Lancet Oncol. 2019;20(3):e175–86.CrossRef
6.
go back to reference Kimiz-Gebologlu I, Gulce-Iz S, Biray-Avci C. Monoclonal antibodies in cancer immunotherapy. Mol Biol Rep. 2018;45(6):2935–40.CrossRef Kimiz-Gebologlu I, Gulce-Iz S, Biray-Avci C. Monoclonal antibodies in cancer immunotherapy. Mol Biol Rep. 2018;45(6):2935–40.CrossRef
7.
go back to reference Reichert JM, Rosensweig CJ, Faden LB, Dewitz MC. Monoclonal antibody successes in the clinic. Nat Biotechnol. 2005;23(9):1073–8.CrossRef Reichert JM, Rosensweig CJ, Faden LB, Dewitz MC. Monoclonal antibody successes in the clinic. Nat Biotechnol. 2005;23(9):1073–8.CrossRef
8.
go back to reference Zahavi D, Weiner L. Monoclonal antibodies in cancer therapy. Antibodies. 2020;9(3):34.CrossRef Zahavi D, Weiner L. Monoclonal antibodies in cancer therapy. Antibodies. 2020;9(3):34.CrossRef
9.
go back to reference Chari RV. Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc Chem Res. 2008;41(1):98–107.CrossRef Chari RV. Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc Chem Res. 2008;41(1):98–107.CrossRef
10.
go back to reference Khongorzul P, Ling CJ, Khan FU, Ihsan AU, Zhang J. Antibody–drug conjugates: a comprehensive review. Mol Cancer Res. 2020;18(1):3–19.CrossRef Khongorzul P, Ling CJ, Khan FU, Ihsan AU, Zhang J. Antibody–drug conjugates: a comprehensive review. Mol Cancer Res. 2020;18(1):3–19.CrossRef
11.
go back to reference Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012;367(19):1783–91.CrossRef Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012;367(19):1783–91.CrossRef
13.
go back to reference Spring LM, Nakajima E, Hutchinson J, Viscosi E, Blouin G, Weekes C, et al. Sacituzumab govitecan for metastatic triple-negative breast cancer: clinical overview and management of potential toxicities. Oncologist. 2021;26(10):827–34.CrossRef Spring LM, Nakajima E, Hutchinson J, Viscosi E, Blouin G, Weekes C, et al. Sacituzumab govitecan for metastatic triple-negative breast cancer: clinical overview and management of potential toxicities. Oncologist. 2021;26(10):827–34.CrossRef
14.
go back to reference Wahby S, Fashoyin-Aje L, Osgood CL, Cheng J, Fiero MH, Zhang L, et al. FDA approval summary: accelerated approval of sacituzumab govitecan-hziy for third-line treatment of metastatic triple-negative breast cancer. Clin Cancer Res. 2021;27(7):1850–4.CrossRef Wahby S, Fashoyin-Aje L, Osgood CL, Cheng J, Fiero MH, Zhang L, et al. FDA approval summary: accelerated approval of sacituzumab govitecan-hziy for third-line treatment of metastatic triple-negative breast cancer. Clin Cancer Res. 2021;27(7):1850–4.CrossRef
15.
go back to reference Romero D. Benefit in patients with PD-L1-positive TNBC. Nat Rev Clin Oncol. 2019;16(1):6–6.PubMed Romero D. Benefit in patients with PD-L1-positive TNBC. Nat Rev Clin Oncol. 2019;16(1):6–6.PubMed
16.
go back to reference Zent R, Pozzi A. Cell-extracellular matrix interactions in cancer. Berlin: Springer; 2010.CrossRef Zent R, Pozzi A. Cell-extracellular matrix interactions in cancer. Berlin: Springer; 2010.CrossRef
17.
go back to reference Krishnan L, Hoying JB, Nguyen H, Song H, Weiss JA. Interaction of angiogenic microvessels with the extracellular matrix. Am J Physiol-Heart Circ Physiol. 2007;293(6):H3650–8.CrossRef Krishnan L, Hoying JB, Nguyen H, Song H, Weiss JA. Interaction of angiogenic microvessels with the extracellular matrix. Am J Physiol-Heart Circ Physiol. 2007;293(6):H3650–8.CrossRef
18.
go back to reference Naito Z. The role of small leucine-rich proteoglycan (SLRP) family in pathological lesions and cancer cell growth. J Nippon Med Sch. 2005;72(3):137–45.CrossRef Naito Z. The role of small leucine-rich proteoglycan (SLRP) family in pathological lesions and cancer cell growth. J Nippon Med Sch. 2005;72(3):137–45.CrossRef
19.
go back to reference Iozzo RV, Schaefer L. Proteoglycans in health and disease: novel regulatory signaling mechanisms evoked by the small leucine-rich proteoglycans. FEBS J. 2010;277(19):3864–75.CrossRef Iozzo RV, Schaefer L. Proteoglycans in health and disease: novel regulatory signaling mechanisms evoked by the small leucine-rich proteoglycans. FEBS J. 2010;277(19):3864–75.CrossRef
20.
go back to reference Soo C, Hu F-Y, Zhang X, Wang Y, Beanes SR, Lorenz HP, et al. Differential expression of fibromodulin, a transforming growth factor-β modulator, in fetal skin development and scarless repair. Am J Pathol. 2000;157(2):423–33.CrossRef Soo C, Hu F-Y, Zhang X, Wang Y, Beanes SR, Lorenz HP, et al. Differential expression of fibromodulin, a transforming growth factor-β modulator, in fetal skin development and scarless repair. Am J Pathol. 2000;157(2):423–33.CrossRef
21.
go back to reference Lee Y-H, Schiemann WP. Fibromodulin suppresses nuclear factor-κb activity by inducing the delayed degradation of IKBA via a JNK-dependent pathway coupled to fibroblast apoptosis. J Biol Chem. 2011;286(8):6414–22.CrossRef Lee Y-H, Schiemann WP. Fibromodulin suppresses nuclear factor-κb activity by inducing the delayed degradation of IKBA via a JNK-dependent pathway coupled to fibroblast apoptosis. J Biol Chem. 2011;286(8):6414–22.CrossRef
22.
go back to reference DawoodyNejad L, Biglari A, Annese T, Ribatti D. Recombinant fibromodulin and decorin effects on NF-κB and TGFβ1 in the 4T1 breast cancer cell line. Oncol Lett. 2017;13(6):4475–80.CrossRef DawoodyNejad L, Biglari A, Annese T, Ribatti D. Recombinant fibromodulin and decorin effects on NF-κB and TGFβ1 in the 4T1 breast cancer cell line. Oncol Lett. 2017;13(6):4475–80.CrossRef
23.
go back to reference Bettin A, Reyes I, Reyes N. Gene expression profiling of prostate cancer-associated genes identifies fibromodulin as potential novel biomarker for prostate cancer. Int J Biol Markers. 2016;31(2):153–62.CrossRef Bettin A, Reyes I, Reyes N. Gene expression profiling of prostate cancer-associated genes identifies fibromodulin as potential novel biomarker for prostate cancer. Int J Biol Markers. 2016;31(2):153–62.CrossRef
24.
go back to reference Reyes N, Benedetti I, Bettin A, Rebollo J, Geliebter J. The small leucine rich proteoglycan fibromodulin is overexpressed in human prostate epithelial cancer cell lines in culture and human prostate cancer tissue. Cancer Biomark. 2016;16(1):191–202.CrossRef Reyes N, Benedetti I, Bettin A, Rebollo J, Geliebter J. The small leucine rich proteoglycan fibromodulin is overexpressed in human prostate epithelial cancer cell lines in culture and human prostate cancer tissue. Cancer Biomark. 2016;16(1):191–202.CrossRef
25.
go back to reference Colin C, Baeza N, Bartoli C, Fina F, Eudes N, Nanni I, et al. Identification of genes differentially expressed in glioblastoma versus pilocytic astrocytoma using Suppression Subtractive Hybridization. Oncogene. 2006;25(19):2818–26.CrossRef Colin C, Baeza N, Bartoli C, Fina F, Eudes N, Nanni I, et al. Identification of genes differentially expressed in glioblastoma versus pilocytic astrocytoma using Suppression Subtractive Hybridization. Oncogene. 2006;25(19):2818–26.CrossRef
26.
go back to reference Farahi L, Ghaemimanesh F, Milani S, Razavi SM, Hadavi R, Bayat AA, et al. GPI-anchored fibromodulin as a novel target in chronic lymphocytic leukemia: diagnostic and therapeutic implications. Iran J Immunol. 2019;16(2):127–41.PubMed Farahi L, Ghaemimanesh F, Milani S, Razavi SM, Hadavi R, Bayat AA, et al. GPI-anchored fibromodulin as a novel target in chronic lymphocytic leukemia: diagnostic and therapeutic implications. Iran J Immunol. 2019;16(2):127–41.PubMed
28.
go back to reference Choudhury A, Derkow K, Daneshmanesh AH, Mikaelsson E, Kiaii S, Kokhaei P, et al. Silencing of ROR1 and FMOD with siRNA results in apoptosis of CLL cells. Br J Haematol. 2010;151(4):327–35.CrossRef Choudhury A, Derkow K, Daneshmanesh AH, Mikaelsson E, Kiaii S, Kokhaei P, et al. Silencing of ROR1 and FMOD with siRNA results in apoptosis of CLL cells. Br J Haematol. 2010;151(4):327–35.CrossRef
29.
go back to reference Riggio AI, Varley KE, Welm AL. The lingering mysteries of metastatic recurrence in breast cancer. Br J Cancer. 2020;124:1–14. Riggio AI, Varley KE, Welm AL. The lingering mysteries of metastatic recurrence in breast cancer. Br J Cancer. 2020;124:1–14.
30.
go back to reference Bi X-L, Yang W. Biological functions of decorin in cancer. Chin J Cancer. 2013;32(5):266.CrossRef Bi X-L, Yang W. Biological functions of decorin in cancer. Chin J Cancer. 2013;32(5):266.CrossRef
31.
go back to reference Pourhanifeh MH, Mohammadi R, Noruzi S, Hosseini SA, Fanoudi S, Mohamadi Y, et al. The role of fibromodulin in cancer pathogenesis: implications for diagnosis and therapy. Cancer Cell Int. 2019;19(1):1–9.CrossRef Pourhanifeh MH, Mohammadi R, Noruzi S, Hosseini SA, Fanoudi S, Mohamadi Y, et al. The role of fibromodulin in cancer pathogenesis: implications for diagnosis and therapy. Cancer Cell Int. 2019;19(1):1–9.CrossRef
32.
go back to reference Mikaelsson E, et al. Fibromodulin, an extracellular matrix protein: characterization of its unique gene and protein expression in B-cell chronic lymphocytic leukemia and mantle cell lymphoma. Blood. 2005;105(12):4828-4835. Mikaelsson E, et al. Fibromodulin, an extracellular matrix protein: characterization of its unique gene and protein expression in B-cell chronic lymphocytic leukemia and mantle cell lymphoma. Blood. 2005;105(12):4828-4835.
33.
go back to reference DeNardo SJ. Radioimmunodetection and therapy of breast cancer. In: Seminars in nuclear medicine. Amsterdam: Elsevier; 2005. DeNardo SJ. Radioimmunodetection and therapy of breast cancer. In: Seminars in nuclear medicine. Amsterdam: Elsevier; 2005.
Metadata
Title
A novel ADC targeting cell surface fibromodulin in a mouse model of triple-negative breast cancer
Authors
Mozhan Haji Ghaffari
Miganoosh Simonian
Ali Salimi
Ebrahim Mirzadegan
Niloufar Sadeghi
Mohammad-Reza Nejadmoghaddam
Nasim Ebrahimnezhad
Ghazaleh Fazli
Ramina Fatemi
Ali-Ahmad Bayat
Mohammadali Mazloomi
Hodjattallah Rabbani
Publication date
18-08-2022
Publisher
Springer Nature Singapore
Published in
Breast Cancer / Issue 6/2022
Print ISSN: 1340-6868
Electronic ISSN: 1880-4233
DOI
https://doi.org/10.1007/s12282-022-01393-7

Other articles of this Issue 6/2022

Breast Cancer 6/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine