Skip to main content
Top
Published in: Breast Cancer 4/2020

01-07-2020 | Breast Cancer | Original Article

The number of FoxP3-positive tumor-infiltrating lymphocytes in patients with synchronous bilateral breast cancer

Authors: Risa Goto, Yuko Hirota, Tomoyuki Aruga, Shinichiro Horiguchi, Sakiko Miura, Seigo Nakamura, Masafumi Takimoto

Published in: Breast Cancer | Issue 4/2020

Login to get access

Abstract

Purpose

In breast cancer, FoxP3-positive tumor-infiltrating lymphocytes (FoxP3+ TILs) vary depending on lymph node status, histological grade, and subtype. All these studies have compared the numbers of FoxP3+ TILs among different hosts, but recruitment of FoxP3+ TILs might depend on each individual’s immune environment and each tumor’s biological characteristics. In the present study, FoxP3+ TIL numbers were investigated in patients with synchronous bilateral breast cancer (SBBC) to determine the factors that affect FoxP3+ TIL recruitment in the same anti-tumor immune environment.

Methods

Patients diagnosed with SBBC who underwent curative surgery at two institutions were enrolled in this study. Patients who underwent primary systemic therapy or who were diagnosed with ductal carcinoma in situ or who had distant metastases at diagnosis were excluded. The average numbers of Foxp3+ TILs were determined from the scores of five high-power microscopic fields (HPF). The associations between Foxp3+ TIL numbers and the clinicopathological features of bilateral breasts in a single individual were examined.

Results

Nuclear grade (NG) (p = 0.007) and subtype (p = 0.03), but not size (p = 0.18) and axillary lymph node (p = 0.23) were significantly associated with increase of FoxP3 + TIL numbers by univariate analysis. Further, only NG was a statistically significant clinicopathological factor for change in the number of FoxP3+ TILs by multivariate analysis (p = 0.046)

Conclusions

There was no relationship between FoxP3+ TIL numbers and cancer progression as reflected in tumor size and axillary lymph node in patients with SBBC. Aggressive biological factors, especially high NG, were significantly related to enhanced recruitment of FoxP3+ TILs.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.PubMed Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.PubMed
3.
go back to reference Fridman WH, Zitvogel L, Sautès-Fridman C, Kroemer G. The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol. 2017;14(12):717–34.CrossRefPubMed Fridman WH, Zitvogel L, Sautès-Fridman C, Kroemer G. The immune contexture in cancer prognosis and treatment. Nat Rev Clin Oncol. 2017;14(12):717–34.CrossRefPubMed
4.
go back to reference Wing K, Sakaguchi S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol. 2010; 11(1):7–13 Wing K, Sakaguchi S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol. 2010; 11(1):7–13
5.
go back to reference Levings MK, Sangregorio R, Human RMG. cd25(+)cd4(+) t regulatory cells suppress naive and memory T cell proliferation and can be expanded invitro without loss of function. J Exp Med. 2001;193(11):1295–302.CrossRefPubMedPubMedCentral Levings MK, Sangregorio R, Human RMG. cd25(+)cd4(+) t regulatory cells suppress naive and memory T cell proliferation and can be expanded invitro without loss of function. J Exp Med. 2001;193(11):1295–302.CrossRefPubMedPubMedCentral
6.
go back to reference Ng WF, Duggan PJ, Ponchel F, Matarese G, Lombardi G, Edwards AD, et al. Human CD4(+)CD25(+) cells: a naturally occurring population of regulatory T cells. Blood. 2001;98(9):2736–44.CrossRefPubMed Ng WF, Duggan PJ, Ponchel F, Matarese G, Lombardi G, Edwards AD, et al. Human CD4(+)CD25(+) cells: a naturally occurring population of regulatory T cells. Blood. 2001;98(9):2736–44.CrossRefPubMed
7.
go back to reference Shevach EM. CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol. 2002;2(6):389–400.CrossRefPubMed Shevach EM. CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol. 2002;2(6):389–400.CrossRefPubMed
9.
go back to reference Coffer PJ, Burgering BM. Forkhead-box transcription factors and their role in the immune system. Nat Rev Immunol. 2004;4(11):889–99.CrossRefPubMed Coffer PJ, Burgering BM. Forkhead-box transcription factors and their role in the immune system. Nat Rev Immunol. 2004;4(11):889–99.CrossRefPubMed
10.
go back to reference Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Sci (N Y). 2003;299(5609):1057–61.CrossRef Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Sci (N Y). 2003;299(5609):1057–61.CrossRef
11.
go back to reference Sakaguchi S, Ono M, Setoguchi R, Yagi H, Hori S, Fehervari Z, et al. Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev. 2006;212:8–27.CrossRefPubMed Sakaguchi S, Ono M, Setoguchi R, Yagi H, Hori S, Fehervari Z, et al. Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev. 2006;212:8–27.CrossRefPubMed
12.
go back to reference deLeeuw RJ, Kost SE, Kakal JA, Nelson BH. The prognostic value of FoxP3+ tumor-infiltrating lymphocytes in cancer: a critical review of the literature. Clin Cancer Res. 2012;18(11):3022–9.CrossRefPubMed deLeeuw RJ, Kost SE, Kakal JA, Nelson BH. The prognostic value of FoxP3+ tumor-infiltrating lymphocytes in cancer: a critical review of the literature. Clin Cancer Res. 2012;18(11):3022–9.CrossRefPubMed
13.
go back to reference Sakaguchi S. Naturally arising Foxp3-expressing CD25 + CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol. 2005;6(4):345–52.CrossRefPubMed Sakaguchi S. Naturally arising Foxp3-expressing CD25 + CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol. 2005;6(4):345–52.CrossRefPubMed
14.
go back to reference Jiang D, Gao Z, Cai Z, Wang M, He J. Clinicopathological and prognostic significance of FOXP3+ tumor infiltrating lymphocytes in patients with breast cancer: a meta-analysis. BMC Cancer. 2015;15:727.CrossRefPubMedPubMedCentral Jiang D, Gao Z, Cai Z, Wang M, He J. Clinicopathological and prognostic significance of FOXP3+ tumor infiltrating lymphocytes in patients with breast cancer: a meta-analysis. BMC Cancer. 2015;15:727.CrossRefPubMedPubMedCentral
15.
go back to reference Nichol AM, Yerushalmi R, Tyldesley S, Lesperance M, Bajdik CD, Speers C, et al. A case-match study comparing unilateral with synchronous bilateral breast cancer outcomes. J Clin Oncol. 2011;29(36):4763–8.CrossRefPubMed Nichol AM, Yerushalmi R, Tyldesley S, Lesperance M, Bajdik CD, Speers C, et al. A case-match study comparing unilateral with synchronous bilateral breast cancer outcomes. J Clin Oncol. 2011;29(36):4763–8.CrossRefPubMed
16.
go back to reference Verkooijen HM, Chatelain V, Fioretta G, Vlastos G, Rapiti E, Sappino AP, et al. Survival after bilateral breast cancer: results from a population-based study. Breast Cancer Res Treat. 2007;105(3):347–57.CrossRefPubMed Verkooijen HM, Chatelain V, Fioretta G, Vlastos G, Rapiti E, Sappino AP, et al. Survival after bilateral breast cancer: results from a population-based study. Breast Cancer Res Treat. 2007;105(3):347–57.CrossRefPubMed
17.
go back to reference Kurebayashi J, Miyosi Y, Ishikawa T, Saji S, Sugie T, Suzuki T, et al. Clinicopathological characteristics of breast cancer and trends in the management of breast cancer patients in Japan: Based on the Breast Cancer Registry of the Japanese Breast Cancer Society between 2004 and 2011. Breast Cancer. 2015;22(3):235–44. Kurebayashi J, Miyosi Y, Ishikawa T, Saji S, Sugie T, Suzuki T, et al. Clinicopathological characteristics of breast cancer and trends in the management of breast cancer patients in Japan: Based on the Breast Cancer Registry of the Japanese Breast Cancer Society between 2004 and 2011. Breast Cancer. 2015;22(3):235–44.
18.
go back to reference Japanese Breast Cancer Society. General rules for clinical and pathological recording of breast cancer, the 17 Kanehara & Co. Ltd, Tokyo; 2012. Japanese Breast Cancer Society. General rules for clinical and pathological recording of breast cancer, the 17 Kanehara & Co. Ltd, Tokyo; 2012.
19.
go back to reference Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol. 2013;31(31):3997–4013.CrossRefPubMed Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, et al. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol. 2013;31(31):3997–4013.CrossRefPubMed
20.
go back to reference Aruga T, Suzuki E, Saji S, Horiguchi S, Horiguchi K, Kitagawa D, et al. A low number of tumor-infiltrating FOXP3-positive cells during primary systemic chemotherapy correlates with favorable anti-tumor response in patients with breast cancer. Oncol Rep. 2009;22:273–8.PubMed Aruga T, Suzuki E, Saji S, Horiguchi S, Horiguchi K, Kitagawa D, et al. A low number of tumor-infiltrating FOXP3-positive cells during primary systemic chemotherapy correlates with favorable anti-tumor response in patients with breast cancer. Oncol Rep. 2009;22:273–8.PubMed
21.
go back to reference Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transpl. 2013;48(3):452–8.CrossRef Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transpl. 2013;48(3):452–8.CrossRef
22.
go back to reference Padmanabhan N, Subramanyan A, Radhakrishna S. Synchronous bilateral breast cancers. J Clin Diagn Res. 2015;9(9):XC05–8. Padmanabhan N, Subramanyan A, Radhakrishna S. Synchronous bilateral breast cancers. J Clin Diagn Res. 2015;9(9):XC05–8.
23.
go back to reference Renz DM, Böttcher J, Baltzer PA, Dietzel M, Vag T, Gajda M, et al. The contralateral synchronous breast carcinoma: a comparison of histology, localization, and magnetic resonance imaging characteristics with the primary index cancer. Breast Cancer Res Treat. 2010;120(2):449–59.CrossRefPubMed Renz DM, Böttcher J, Baltzer PA, Dietzel M, Vag T, Gajda M, et al. The contralateral synchronous breast carcinoma: a comparison of histology, localization, and magnetic resonance imaging characteristics with the primary index cancer. Breast Cancer Res Treat. 2010;120(2):449–59.CrossRefPubMed
24.
go back to reference Baker B, Morcos B, Daoud F, Sughayer M, Shabani H, Salameh H, et al. Histo-biological comparative analysis of bilateral breast cancer. Med Oncol. 2013;30(4):711.CrossRefPubMed Baker B, Morcos B, Daoud F, Sughayer M, Shabani H, Salameh H, et al. Histo-biological comparative analysis of bilateral breast cancer. Med Oncol. 2013;30(4):711.CrossRefPubMed
25.
go back to reference Liu F, Lang R, Zhao J, Zhang X, Fan Y, et al. CD8+ cytotoxic T cell and FOXP3+ regulatory T cell infiltration in relation to breast cancer survival and molecular subtypes. Breast Cancer Res Treat. 2011;130(2):645–55.CrossRefPubMed Liu F, Lang R, Zhao J, Zhang X, Fan Y, et al. CD8+ cytotoxic T cell and FOXP3+ regulatory T cell infiltration in relation to breast cancer survival and molecular subtypes. Breast Cancer Res Treat. 2011;130(2):645–55.CrossRefPubMed
26.
go back to reference Martin F, Ladoire S, Mignot G, Apetoh L, Ghiringhelli G. Human FOXP3 and cancer. Oncogene. 2010;29:4121–9.CrossRefPubMed Martin F, Ladoire S, Mignot G, Apetoh L, Ghiringhelli G. Human FOXP3 and cancer. Oncogene. 2010;29:4121–9.CrossRefPubMed
Metadata
Title
The number of FoxP3-positive tumor-infiltrating lymphocytes in patients with synchronous bilateral breast cancer
Authors
Risa Goto
Yuko Hirota
Tomoyuki Aruga
Shinichiro Horiguchi
Sakiko Miura
Seigo Nakamura
Masafumi Takimoto
Publication date
01-07-2020
Publisher
Springer Japan
Published in
Breast Cancer / Issue 4/2020
Print ISSN: 1340-6868
Electronic ISSN: 1880-4233
DOI
https://doi.org/10.1007/s12282-020-01049-4

Other articles of this Issue 4/2020

Breast Cancer 4/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine