Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 5/2018

01-10-2018 | Review Paper

Stem Cell Homing: a Potential Therapeutic Strategy Unproven for Treatment of Myocardial Injury

Authors: Zhonghao Tao, Shihua Tan, Wen Chen, Xin Chen

Published in: Journal of Cardiovascular Translational Research | Issue 5/2018

Login to get access

Abstract

Despite advances in the prevention and therapeutic modalities of ischemic heart disease, morbidity and mortality post-infarction heart failure remain big challenges in modern society. Stem cell therapy is emerging as a promising therapeutic strategy. Stem cell homing, the ability of stem cells to find their destination, is receiving more attention. Identification of specific cues and understanding the signaling pathways that direct stem cells to targeted destination will improve stem cell homing efficiency. This review discusses the cellular and molecular mechanism of stem cell homing at length in the light of literature and analyzes the problem and considerations of this approach as a treatment strategy for the treatment of ischemic heart disease clinically.
Literature
3.
go back to reference Mohsin, S., Siddiqi, S., Collins, B., & Sussman, M. A. (2011). Empowering adult stem cells for myocardial regeneration. Circulation Research, 109(12), 1415–1428.CrossRef Mohsin, S., Siddiqi, S., Collins, B., & Sussman, M. A. (2011). Empowering adult stem cells for myocardial regeneration. Circulation Research, 109(12), 1415–1428.CrossRef
4.
go back to reference Pudil, R., Pidrman, V., Krejsek, J., Gregor, J., Tichý, M., Andrýs, C., et al. (1999). Cytokines and adhesion molecules in the course of acute myocardial infarction. Clinica Chimica Acta, 280(1–2), 127–134.CrossRef Pudil, R., Pidrman, V., Krejsek, J., Gregor, J., Tichý, M., Andrýs, C., et al. (1999). Cytokines and adhesion molecules in the course of acute myocardial infarction. Clinica Chimica Acta, 280(1–2), 127–134.CrossRef
5.
go back to reference Caiado, F., & Dias, S. (2012). Endothelial progenitor cells and integrins: Adhesive needs. Fibrogenesis & Tissue Repair, 5(1), 4.CrossRef Caiado, F., & Dias, S. (2012). Endothelial progenitor cells and integrins: Adhesive needs. Fibrogenesis & Tissue Repair, 5(1), 4.CrossRef
9.
go back to reference Leone, A. M., Rutella, S., Bonanno, G., Contemi, A. M., Ritis, D. G. D., Giannico, M. B., et al. (2006). Endogenous G-CSF and CD34 + cell mobilization after acute myocardial infarction. International Journal of Cardiology, 111(2), 202–208.CrossRef Leone, A. M., Rutella, S., Bonanno, G., Contemi, A. M., Ritis, D. G. D., Giannico, M. B., et al. (2006). Endogenous G-CSF and CD34 + cell mobilization after acute myocardial infarction. International Journal of Cardiology, 111(2), 202–208.CrossRef
10.
go back to reference Min, W. I., Mak, S., Mann, D. L., Qu, R., Penninger, J. M., Yan, A., et al. (1999). Tissue expression and immunolocalization of tumor necrosis factor-α in postinfarction dysfunctional myocardium. Circulation, 99(11), 1492–1498.CrossRef Min, W. I., Mak, S., Mann, D. L., Qu, R., Penninger, J. M., Yan, A., et al. (1999). Tissue expression and immunolocalization of tumor necrosis factor-α in postinfarction dysfunctional myocardium. Circulation, 99(11), 1492–1498.CrossRef
11.
go back to reference Frangogiannis, N. G., Smith, C. W., & Entman, M. L. (2002). The inflammatory response in myocardial infarction. Cardiovascular Research, 53(1), 31–47.CrossRef Frangogiannis, N. G., Smith, C. W., & Entman, M. L. (2002). The inflammatory response in myocardial infarction. Cardiovascular Research, 53(1), 31–47.CrossRef
12.
go back to reference Li, X., He, X. T., Yin, Y., Wu, R. X., Tian, B. M., & Chen, F. M. (2017). Administration of signalling molecules dictates stem cell homing for in situ regeneration. Journal of Cellular & Molecular Medicine, 21(12), 3162–3177.CrossRef Li, X., He, X. T., Yin, Y., Wu, R. X., Tian, B. M., & Chen, F. M. (2017). Administration of signalling molecules dictates stem cell homing for in situ regeneration. Journal of Cellular & Molecular Medicine, 21(12), 3162–3177.CrossRef
13.
go back to reference Xue, J., Du, G., Shi, J., Li, Y., Yasutake, M., Liu, L., et al. (2014). Combined treatment with erythropoietin and granulocyte colony-stimulating factor enhances neovascularization and improves cardiac function after myocardial infarction. Chinese Medical Journal (English), 127(9), 1677. Xue, J., Du, G., Shi, J., Li, Y., Yasutake, M., Liu, L., et al. (2014). Combined treatment with erythropoietin and granulocyte colony-stimulating factor enhances neovascularization and improves cardiac function after myocardial infarction. Chinese Medical Journal (English), 127(9), 1677.
15.
go back to reference Ping, J., Zhao, Y., Hui, L., Chen, J., Ren, J., Jin, J., et al. (2016). Interferon-γ and tumor necrosis factor-α polarize bone marrow stromal cells uniformly to a Th1 phenotype. Scientific Reports, 6, 26345.CrossRef Ping, J., Zhao, Y., Hui, L., Chen, J., Ren, J., Jin, J., et al. (2016). Interferon-γ and tumor necrosis factor-α polarize bone marrow stromal cells uniformly to a Th1 phenotype. Scientific Reports, 6, 26345.CrossRef
17.
go back to reference Fibbe, W. E., Pruijt, J. F. M., Kooyk, Y. V., Figdor, C. G., Opdenakker, G., & Willemze, R. (2000). The role of metalloproteinases and adhesion molecules in interleukin-8-induced stem-cell mobilization. Seminars in Hematology, 37(2), 19–24.CrossRef Fibbe, W. E., Pruijt, J. F. M., Kooyk, Y. V., Figdor, C. G., Opdenakker, G., & Willemze, R. (2000). The role of metalloproteinases and adhesion molecules in interleukin-8-induced stem-cell mobilization. Seminars in Hematology, 37(2), 19–24.CrossRef
18.
go back to reference Schömig, K., Busch, G., Steppich, B., Sepp, D., Kaufmann, J., Stein, A., et al. (2006). Interleukin-8 is associated with circulating CD133+ progenitor cells in acute myocardial infarction. European Heart Journal, 27(9), 1032–1037.CrossRef Schömig, K., Busch, G., Steppich, B., Sepp, D., Kaufmann, J., Stein, A., et al. (2006). Interleukin-8 is associated with circulating CD133+ progenitor cells in acute myocardial infarction. European Heart Journal, 27(9), 1032–1037.CrossRef
19.
go back to reference Zhao, Y., & Zhang, H. (2016). Update on the mechanisms of homing of adipose tissue-derived stem cells. Cytotherapy, 18(7), 816–827.CrossRef Zhao, Y., & Zhang, H. (2016). Update on the mechanisms of homing of adipose tissue-derived stem cells. Cytotherapy, 18(7), 816–827.CrossRef
20.
go back to reference Aicher, A., Zeiher, A. M., & Dimmeler, S. (2005). Mobilizing endothelial progenitor cells. Hypertension, 45(3), 321–325.CrossRef Aicher, A., Zeiher, A. M., & Dimmeler, S. (2005). Mobilizing endothelial progenitor cells. Hypertension, 45(3), 321–325.CrossRef
21.
go back to reference Wojakowski, W., Landmesser, U., Bachowski, R., Jadczyk, T., & Tendera, M. (2012). Mobilization of stem and progenitor cells in cardiovascular diseases. Leukemia, 26(1), 23.CrossRef Wojakowski, W., Landmesser, U., Bachowski, R., Jadczyk, T., & Tendera, M. (2012). Mobilization of stem and progenitor cells in cardiovascular diseases. Leukemia, 26(1), 23.CrossRef
22.
go back to reference Du, F., Zhou, J., Gong, R., Huang, X., Pansuria, M., Virtue, A., et al. (2012). Endothelial progenitor cells in atherosclerosis. Frontiers in Bioscience, 17(3), 2327.CrossRef Du, F., Zhou, J., Gong, R., Huang, X., Pansuria, M., Virtue, A., et al. (2012). Endothelial progenitor cells in atherosclerosis. Frontiers in Bioscience, 17(3), 2327.CrossRef
23.
go back to reference Wu, Y., Ip, J. E., Huang, J., Zhang, L., Matsushita, K., Liew, C. C., et al. (2006). Essential role of ICAM-1/CD18 in mediating EPC recruitment, angiogenesis, and repair to the infarcted myocardium. Circulation Research, 99(3), 315.CrossRef Wu, Y., Ip, J. E., Huang, J., Zhang, L., Matsushita, K., Liew, C. C., et al. (2006). Essential role of ICAM-1/CD18 in mediating EPC recruitment, angiogenesis, and repair to the infarcted myocardium. Circulation Research, 99(3), 315.CrossRef
26.
go back to reference Sasaki, T., Fukazawa, R., Ogawa, S., Kanno, S., Nitta, T., Ochi, M., et al. (2007). Stromal cell-derived factor-1alpha improves infarcted heart function through angiogenesis in mice. Pediatrics International, 49(6), 966–971.CrossRef Sasaki, T., Fukazawa, R., Ogawa, S., Kanno, S., Nitta, T., Ochi, M., et al. (2007). Stromal cell-derived factor-1alpha improves infarcted heart function through angiogenesis in mice. Pediatrics International, 49(6), 966–971.CrossRef
27.
go back to reference Huber, B. C., Fischer, R., Brunner, S., Groebner, M., Rischpler, C., Segeth, A., et al. (2010). Comparison of parathyroid hormone and G-CSF treatment after myocardial infarction on perfusion and stem cell homing. American Journal of Physiology. Heart and Circulatory Physiology, 298(5), H1466.CrossRef Huber, B. C., Fischer, R., Brunner, S., Groebner, M., Rischpler, C., Segeth, A., et al. (2010). Comparison of parathyroid hormone and G-CSF treatment after myocardial infarction on perfusion and stem cell homing. American Journal of Physiology. Heart and Circulatory Physiology, 298(5), H1466.CrossRef
30.
go back to reference Sun, J., Zhao, Y., Li, Q., Chen, B., Hou, X., Xiao, Z., et al. (2016). Controlled release of collagen-binding SDF-1α improves cardiac function after myocardial infarction by recruiting endogenous stem cells. Scientific Reports, 6, 26683.CrossRef Sun, J., Zhao, Y., Li, Q., Chen, B., Hou, X., Xiao, Z., et al. (2016). Controlled release of collagen-binding SDF-1α improves cardiac function after myocardial infarction by recruiting endogenous stem cells. Scientific Reports, 6, 26683.CrossRef
31.
go back to reference Sharma, M., Afrin, F., Satija, N., Tripathi, R. P., & Gangenahalli, G. U. (2011). Stromal-derived factor-1/CXCR4 signaling: indispensable role in homing and engraftment of hematopoietic stem cells in bone marrow. Stem Cells and Development, 20(6), 933.CrossRef Sharma, M., Afrin, F., Satija, N., Tripathi, R. P., & Gangenahalli, G. U. (2011). Stromal-derived factor-1/CXCR4 signaling: indispensable role in homing and engraftment of hematopoietic stem cells in bone marrow. Stem Cells and Development, 20(6), 933.CrossRef
32.
go back to reference Herrmann, M., Verrier, S., & Alini, M. (2015). Strategies to stimulate mobilization and homing of endogenous stem and progenitor cells for bone tissue repair. Frontiers in Bioengineering and Biotechnology, 3(4), 79.PubMedPubMedCentral Herrmann, M., Verrier, S., & Alini, M. (2015). Strategies to stimulate mobilization and homing of endogenous stem and progenitor cells for bone tissue repair. Frontiers in Bioengineering and Biotechnology, 3(4), 79.PubMedPubMedCentral
33.
go back to reference Zhao, T., Zhang, D., Millard, R. W., Ashraf, M., & Wang, Y. (2009). Stem cell homing and angiomyogenesis in transplanted hearts are enhanced by combined intramyocardial SDF-1alpha delivery and endogenous cytokine signaling. American Journal of Physiology. Heart and Circulatory Physiology, 296(4), H976.CrossRef Zhao, T., Zhang, D., Millard, R. W., Ashraf, M., & Wang, Y. (2009). Stem cell homing and angiomyogenesis in transplanted hearts are enhanced by combined intramyocardial SDF-1alpha delivery and endogenous cytokine signaling. American Journal of Physiology. Heart and Circulatory Physiology, 296(4), H976.CrossRef
34.
go back to reference Wang, Y., Haider, H. K., Ahmad, N., Zhang, D., & Ashraf, M. (2006). Evidence for ischemia induced host-derived bone marrow cell mobilization into cardiac allografts. Journal of Molecular and Cellular Cardiology, 41(3), 478–487.CrossRef Wang, Y., Haider, H. K., Ahmad, N., Zhang, D., & Ashraf, M. (2006). Evidence for ischemia induced host-derived bone marrow cell mobilization into cardiac allografts. Journal of Molecular and Cellular Cardiology, 41(3), 478–487.CrossRef
35.
go back to reference Shi, M., Li, J., Liao, L., Chen, B., Li, B., Chen, L., et al. (2007). Regulation of CXCR4 expression in human mesenchymal stem cells by cytokine treatment: role in homing efficiency in NOD/SCID mice. Haematologica, 92(7), 897.CrossRef Shi, M., Li, J., Liao, L., Chen, B., Li, B., Chen, L., et al. (2007). Regulation of CXCR4 expression in human mesenchymal stem cells by cytokine treatment: role in homing efficiency in NOD/SCID mice. Haematologica, 92(7), 897.CrossRef
36.
go back to reference Askari, A. T., Unzek, S., Popovic, Z. B., Goldman, C. K., Forudi, F., Kiedrowski, M., et al. (2003). Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet, 362(9385), 697.CrossRef Askari, A. T., Unzek, S., Popovic, Z. B., Goldman, C. K., Forudi, F., Kiedrowski, M., et al. (2003). Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet, 362(9385), 697.CrossRef
37.
go back to reference Pillarisetti, K., & Gupta, S. K. (2001). Cloning and relative expression analysis of rat stromal cell derived Factor-1 (SDF-1): SDF-1 α mRNA is selectively induced in rat model of myocardial infarction. Inflammation, 25(5), 293.CrossRef Pillarisetti, K., & Gupta, S. K. (2001). Cloning and relative expression analysis of rat stromal cell derived Factor-1 (SDF-1): SDF-1 α mRNA is selectively induced in rat model of myocardial infarction. Inflammation, 25(5), 293.CrossRef
38.
go back to reference Mirahmadi, M., Ahmadiankia, N., Naderi-Meshkin, H., Heirani-Tabasi, A., Bidkhori, H. R., Afsharian, P., et al. (2016). Hypoxia and laser enhance expression of SDF-1 in muscles cells. Cellular and Molecular Biology (Noisy-le-Grand, France), 62(5), 31. Mirahmadi, M., Ahmadiankia, N., Naderi-Meshkin, H., Heirani-Tabasi, A., Bidkhori, H. R., Afsharian, P., et al. (2016). Hypoxia and laser enhance expression of SDF-1 in muscles cells. Cellular and Molecular Biology (Noisy-le-Grand, France), 62(5), 31.
39.
go back to reference Lee, S. H., Wolf, P. L., Escudero, R., Deutsch, R., Jamieson, S. W., & Thistlethwaite, P. A. (2000). Early expression of angiogenesis factors in acute myocardial ischemia and infarction. New England Journal of Medicine, 342(9), 626.CrossRef Lee, S. H., Wolf, P. L., Escudero, R., Deutsch, R., Jamieson, S. W., & Thistlethwaite, P. A. (2000). Early expression of angiogenesis factors in acute myocardial ischemia and infarction. New England Journal of Medicine, 342(9), 626.CrossRef
40.
go back to reference Huang, B., Qian, J., Ma, J., Huang, Z., Shen, Y., Chen, X., et al. (2014). Myocardial transfection of hypoxia-inducible factor-1α and co-transplantation of mesenchymal stem cells enhance cardiac repair in rats with experimental myocardial infarction. Stem Cell Research & Therapy, 5(1), 22.CrossRef Huang, B., Qian, J., Ma, J., Huang, Z., Shen, Y., Chen, X., et al. (2014). Myocardial transfection of hypoxia-inducible factor-1α and co-transplantation of mesenchymal stem cells enhance cardiac repair in rats with experimental myocardial infarction. Stem Cell Research & Therapy, 5(1), 22.CrossRef
41.
go back to reference Tang, Y. L., Zhu, W., Cheng, M., Chen, L., Zhang, J., Sun, T., et al. (2009). Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression. Circulation Research, 104(10), 1209.CrossRef Tang, Y. L., Zhu, W., Cheng, M., Chen, L., Zhang, J., Sun, T., et al. (2009). Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression. Circulation Research, 104(10), 1209.CrossRef
43.
go back to reference Ratajczak, M. Z., Zubasurma, E., Kucia, M., Reca, R., Wojakowski, W., & Ratajczak, J. (2006). The pleiotropic effects of the SDF-1|[ndash]|CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia, 20(11), 1915.CrossRef Ratajczak, M. Z., Zubasurma, E., Kucia, M., Reca, R., Wojakowski, W., & Ratajczak, J. (2006). The pleiotropic effects of the SDF-1|[ndash]|CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia, 20(11), 1915.CrossRef
44.
go back to reference Chavakis, E., Urbich, C., & Dimmeler, S. (2008). Homing and engraftment of progenitor cells: a prerequisite for cell therapy. Journal of Molecular and Cellular Cardiology, 45(4), 514.CrossRef Chavakis, E., Urbich, C., & Dimmeler, S. (2008). Homing and engraftment of progenitor cells: a prerequisite for cell therapy. Journal of Molecular and Cellular Cardiology, 45(4), 514.CrossRef
45.
go back to reference Jujo, K., Hamada, H., Iwakura, A., Thorne, T., Sekiguchi, H., Clarke, T., et al. (2010). CXCR4 blockade augments bone marrow progenitor cell recruitment to the neovasculature and reduces mortality after myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 107(24), 11008–11013.CrossRef Jujo, K., Hamada, H., Iwakura, A., Thorne, T., Sekiguchi, H., Clarke, T., et al. (2010). CXCR4 blockade augments bone marrow progenitor cell recruitment to the neovasculature and reduces mortality after myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 107(24), 11008–11013.CrossRef
47.
go back to reference Yu, M., Takemura, G., Arai, M., Ohno, T., Onogi, H., Takahashi, T., et al. (2006). Importance of recruitment of bone marrow-derived CXCR4+ cells in post-infarct cardiac repair mediated by G-CSF. Cardiovascular Research, 71(3), 455–465.CrossRef Yu, M., Takemura, G., Arai, M., Ohno, T., Onogi, H., Takahashi, T., et al. (2006). Importance of recruitment of bone marrow-derived CXCR4+ cells in post-infarct cardiac repair mediated by G-CSF. Cardiovascular Research, 71(3), 455–465.CrossRef
48.
go back to reference Petit, I., Szyper-Kravitz, M., Nagler, A., Lahav, M., Peled, A., Habler, L., et al. (2002). G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nature Immunology, 3(7), 687.CrossRef Petit, I., Szyper-Kravitz, M., Nagler, A., Lahav, M., Peled, A., Habler, L., et al. (2002). G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nature Immunology, 3(7), 687.CrossRef
49.
go back to reference Trougakos, I. P., Poulakou, M., Stathatos, M., Chalikia, A., Melidonis, A., & Gonos, E. S. (2002). Serum levels of the senescence biomarker clusterin/apolipoprotein J increase significantly in diabetes type II and during development of coronary heart disease or at myocardial infarction. Experimental Gerontology, 37(10–11), 1175–1187.CrossRef Trougakos, I. P., Poulakou, M., Stathatos, M., Chalikia, A., Melidonis, A., & Gonos, E. S. (2002). Serum levels of the senescence biomarker clusterin/apolipoprotein J increase significantly in diabetes type II and during development of coronary heart disease or at myocardial infarction. Experimental Gerontology, 37(10–11), 1175–1187.CrossRef
51.
go back to reference Tang, J., Wang, J., Kong, X., Yang, J., Guo, L., Zheng, F., et al. (2009). Vascular endothelial growth factor promotes cardiac stem cell migration via the PI3K/Akt pathway. Experimental Cell Research, 315(20), 3521.CrossRef Tang, J., Wang, J., Kong, X., Yang, J., Guo, L., Zheng, F., et al. (2009). Vascular endothelial growth factor promotes cardiac stem cell migration via the PI3K/Akt pathway. Experimental Cell Research, 315(20), 3521.CrossRef
54.
go back to reference Wan, J., Deng, Y., Guo, J., Xiao, G., Kuang, D., Zhu, Y., et al. (2011). Hyperhomocysteinemia inhibited cardiac stem cell homing into the peri-infarcted area post myocardial infarction in rats. Experimental and Molecular Pathology, 91(1), 411–418.CrossRef Wan, J., Deng, Y., Guo, J., Xiao, G., Kuang, D., Zhu, Y., et al. (2011). Hyperhomocysteinemia inhibited cardiac stem cell homing into the peri-infarcted area post myocardial infarction in rats. Experimental and Molecular Pathology, 91(1), 411–418.CrossRef
55.
go back to reference Kuang, D., Zhao, X., Xiao, G., Ni, J., Feng, Y., Wu, R., et al. (2008). Stem cell factor/c-kit signaling mediated cardiac stem cell migration via activation of p38 MAPK. Basic Research in Cardiology, 103(3), 265.CrossRef Kuang, D., Zhao, X., Xiao, G., Ni, J., Feng, Y., Wu, R., et al. (2008). Stem cell factor/c-kit signaling mediated cardiac stem cell migration via activation of p38 MAPK. Basic Research in Cardiology, 103(3), 265.CrossRef
59.
go back to reference Wang, Y., Johnsen, H. E., Mortensen, S., Bindslev, L., Ripa, R. S., Haack-Sorensen, M., et al. (2006). Changes in circulating mesenchymal stem cells, stem cell homing factor, and vascular growth factors in patients with acute ST elevation myocardial infarction treated with primary percutaneous coronary intervention. Heart, 92(6), 768–774. https://doi.org/10.1136/hrt.2005.069799.CrossRefPubMed Wang, Y., Johnsen, H. E., Mortensen, S., Bindslev, L., Ripa, R. S., Haack-Sorensen, M., et al. (2006). Changes in circulating mesenchymal stem cells, stem cell homing factor, and vascular growth factors in patients with acute ST elevation myocardial infarction treated with primary percutaneous coronary intervention. Heart, 92(6), 768–774. https://​doi.​org/​10.​1136/​hrt.​2005.​069799.CrossRefPubMed
61.
go back to reference Zhang, G., Nakamura, Y., Wang, X., Hu, Q., Suggs, L. J., & Zhang, J. (2007). Controlled release of stromal cell-derived factor-1 alpha in situ increases c-kit+ cell homing to the infarcted heart. Tissue Engineering, 13(8), 2063.CrossRef Zhang, G., Nakamura, Y., Wang, X., Hu, Q., Suggs, L. J., & Zhang, J. (2007). Controlled release of stromal cell-derived factor-1 alpha in situ increases c-kit+ cell homing to the infarcted heart. Tissue Engineering, 13(8), 2063.CrossRef
62.
go back to reference Sougawa, N., Miyagawa, S., Fukushima, S., Saito, A., Yokoyama, J., Kitahara, M., et al. (2017). Abstract 15587: novel stem cell niches laminin 511 promotes functional angiogenesis through enhanced stem cell homing by modulating “stem cell beds” in the failed heart. Circulation, 136(Suppl 1), A15587–A15587. Sougawa, N., Miyagawa, S., Fukushima, S., Saito, A., Yokoyama, J., Kitahara, M., et al. (2017). Abstract 15587: novel stem cell niches laminin 511 promotes functional angiogenesis through enhanced stem cell homing by modulating “stem cell beds” in the failed heart. Circulation, 136(Suppl 1), A15587–A15587.
64.
go back to reference Schantz, J. T., Chim, H., & Whiteman, M. (2007). Cell guidance in tissue engineering: SDF-1 mediates site-directed homing of mesenchymal stem cells within three-dimensional polycaprolactone scaffolds. Tissue Engineering Part A, 13(11), 2615–2624.CrossRef Schantz, J. T., Chim, H., & Whiteman, M. (2007). Cell guidance in tissue engineering: SDF-1 mediates site-directed homing of mesenchymal stem cells within three-dimensional polycaprolactone scaffolds. Tissue Engineering Part A, 13(11), 2615–2624.CrossRef
65.
go back to reference Thevenot, P. T., Nair, A. M., Shen, J., Lotfi, P., Ko, C. Y., & Tang, L. (2010). The effect of incorporation of SDF-1alpha into PLGA scaffolds on stem cell recruitment and the inflammatory response. Biomaterials, 31(14), 3997.CrossRef Thevenot, P. T., Nair, A. M., Shen, J., Lotfi, P., Ko, C. Y., & Tang, L. (2010). The effect of incorporation of SDF-1alpha into PLGA scaffolds on stem cell recruitment and the inflammatory response. Biomaterials, 31(14), 3997.CrossRef
66.
go back to reference Elmadbouh, I., & Ashraf, M. (2017). Tadalafil, a long acting phosphodiesterase inhibitor, promotes bone marrow stem cell survival and their homing into ischemic myocardium for cardiac repair. Physiological Reports, 5(21), e13480.CrossRef Elmadbouh, I., & Ashraf, M. (2017). Tadalafil, a long acting phosphodiesterase inhibitor, promotes bone marrow stem cell survival and their homing into ischemic myocardium for cardiac repair. Physiological Reports, 5(21), e13480.CrossRef
67.
go back to reference Zhang, P., Duval, S., Su, L., et al. (2013). Thymosin beta 4 increases the potency of transplanted mesenchymal stem;cells for myocardial repair. Circulation, 128(11), S32–S41.PubMed Zhang, P., Duval, S., Su, L., et al. (2013). Thymosin beta 4 increases the potency of transplanted mesenchymal stem;cells for myocardial repair. Circulation, 128(11), S32–S41.PubMed
68.
go back to reference Burks, S. R., Ziadloo, A., Kim, S. J., Nguyen, B. A., & Frank, J. A. (2013). Noninvasive pulsed focused ultrasound allows spatiotemporal control of targeted homing for multiple stem cell types in murine skeletal muscle and the magnitude of cell homing can be increased through repeated applications. Stem Cells, 31(11), 2551–2560. https://doi.org/10.1002/stem.1495.CrossRefPubMed Burks, S. R., Ziadloo, A., Kim, S. J., Nguyen, B. A., & Frank, J. A. (2013). Noninvasive pulsed focused ultrasound allows spatiotemporal control of targeted homing for multiple stem cell types in murine skeletal muscle and the magnitude of cell homing can be increased through repeated applications. Stem Cells, 31(11), 2551–2560. https://​doi.​org/​10.​1002/​stem.​1495.CrossRefPubMed
69.
go back to reference Walczak, P., Zhang, J., Gilad, A. A., et al. (2008). Dual-modality monitoring of targeted Intraarterial delivery of mesenchymal stem cells after transient ischemia. Stroke, 39(5), 1569.CrossRef Walczak, P., Zhang, J., Gilad, A. A., et al. (2008). Dual-modality monitoring of targeted Intraarterial delivery of mesenchymal stem cells after transient ischemia. Stroke, 39(5), 1569.CrossRef
70.
go back to reference Mäkelä, J., Anttila, V., Ylitalo, K., Takalo, R., Lehtonen, S., Mäkikallio, T., et al. (2009). Acute homing of bone marrow-derived mononuclear cells in intramyocardial vs. intracoronary transplantation. Scandinavian Cardiovascular Journal, 43(6), 366–373.CrossRef Mäkelä, J., Anttila, V., Ylitalo, K., Takalo, R., Lehtonen, S., Mäkikallio, T., et al. (2009). Acute homing of bone marrow-derived mononuclear cells in intramyocardial vs. intracoronary transplantation. Scandinavian Cardiovascular Journal, 43(6), 366–373.CrossRef
71.
go back to reference Jiang, W., Ma, A., Wang, T., Han, K., Liu, Y., Zhang, Y., et al. (2006). Intravenous transplantation of mesenchymal stem cells improves cardiac performance after acute myocardial ischemia in female rats. Transplant International, 19(7), 570.CrossRef Jiang, W., Ma, A., Wang, T., Han, K., Liu, Y., Zhang, Y., et al. (2006). Intravenous transplantation of mesenchymal stem cells improves cardiac performance after acute myocardial ischemia in female rats. Transplant International, 19(7), 570.CrossRef
74.
go back to reference Kawada, H., Fujita, J., Kinjo, K., Matsuzaki, Y., Tsuma, M., Miyatake, H., et al. (2004). Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood, 104(12), 3581.CrossRef Kawada, H., Fujita, J., Kinjo, K., Matsuzaki, Y., Tsuma, M., Miyatake, H., et al. (2004). Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction. Blood, 104(12), 3581.CrossRef
75.
go back to reference Devine, S. M., Bartholomew, A. M., Mahmud, N., Nelson, M., Patil, S., Hardy, W., et al. (2001). Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Experimental Hematology, 29(2), 244–255.CrossRef Devine, S. M., Bartholomew, A. M., Mahmud, N., Nelson, M., Patil, S., Hardy, W., et al. (2001). Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Experimental Hematology, 29(2), 244–255.CrossRef
76.
go back to reference Jasmin, de Souza, G. T., Louzada, R. A., Rosadodecastro, P. H., Mendezotero, R., & Ac, C. D. C.,. (2017). Tracking stem cells with superparamagnetic iron oxide nanoparticles: perspectives and considerations. International Journal of Nanomedicine, 12, 779–793.CrossRef Jasmin, de Souza, G. T., Louzada, R. A., Rosadodecastro, P. H., Mendezotero, R., & Ac, C. D. C.,. (2017). Tracking stem cells with superparamagnetic iron oxide nanoparticles: perspectives and considerations. International Journal of Nanomedicine, 12, 779–793.CrossRef
77.
go back to reference Bos, C., Delmas, Y., Desmoulière, A., Solanilla, A., Hauger, O., Grosset, C., et al. (2004). In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology, 233(3), 781–789.CrossRef Bos, C., Delmas, Y., Desmoulière, A., Solanilla, A., Hauger, O., Grosset, C., et al. (2004). In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology, 233(3), 781–789.CrossRef
78.
go back to reference Wu, J., Sun, Z., Sun, H. S., Wu, J., Weisel, R. D., Keating, A., et al. (2008). Intravenously administered bone marrow cells migrate to damaged brain tissue and improve neural function in ischemic rats. Cell Transplantation, 16(10), 993.CrossRef Wu, J., Sun, Z., Sun, H. S., Wu, J., Weisel, R. D., Keating, A., et al. (2008). Intravenously administered bone marrow cells migrate to damaged brain tissue and improve neural function in ischemic rats. Cell Transplantation, 16(10), 993.CrossRef
80.
go back to reference Kraitchman, D. L., Heldman, A. W., Atalar, E., Amado, L. C., Martin, B. J., Pittenger, M. F., et al. (2003). In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation, 107(18), 2290–2293.CrossRef Kraitchman, D. L., Heldman, A. W., Atalar, E., Amado, L. C., Martin, B. J., Pittenger, M. F., et al. (2003). In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation, 107(18), 2290–2293.CrossRef
81.
go back to reference Kraitchman, D. L., Tatsumi, M., Gilson, W. D., Ishimori, T., Kedziorek, D., Walczak, P., et al. (2005). Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation, 112(10), 1451.CrossRef Kraitchman, D. L., Tatsumi, M., Gilson, W. D., Ishimori, T., Kedziorek, D., Walczak, P., et al. (2005). Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation, 112(10), 1451.CrossRef
82.
go back to reference Crich, S. G., Biancone, L. V., Duo, D., Esposito, G., Russo, S., Camussi, G., et al. (2004). Improved route for the visualization of stem cells labeled with a Gd-/Eu-chelate as dual (MRI and fluorescence) agent. Magnetic Resonance in Medicine, 51(5), 938–944.CrossRef Crich, S. G., Biancone, L. V., Duo, D., Esposito, G., Russo, S., Camussi, G., et al. (2004). Improved route for the visualization of stem cells labeled with a Gd-/Eu-chelate as dual (MRI and fluorescence) agent. Magnetic Resonance in Medicine, 51(5), 938–944.CrossRef
83.
85.
go back to reference Hofmann, M., Wollert, K. C., Meyer, G. P., Menke, A., Arseniev, L., Hertenstein, B., et al. (2005). Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation, 111(17), 2198.CrossRef Hofmann, M., Wollert, K. C., Meyer, G. P., Menke, A., Arseniev, L., Hertenstein, B., et al. (2005). Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation, 111(17), 2198.CrossRef
86.
go back to reference Brenner, W., Aicher, A., Eckey, T., Massoudi, S., Zuhayra, M., Koehl, U., et al. (2004). 111In-labeled CD34+ hematopoietic progenitor cells in a rat myocardial infarction model. Journal of Nuclear Medicine, 45(3), 512–518.PubMed Brenner, W., Aicher, A., Eckey, T., Massoudi, S., Zuhayra, M., Koehl, U., et al. (2004). 111In-labeled CD34+ hematopoietic progenitor cells in a rat myocardial infarction model. Journal of Nuclear Medicine, 45(3), 512–518.PubMed
87.
go back to reference Sheikh, A. Y., Lin, S. A., Cao, F., Cao, Y., Bogt, K. E. A. V. D., Chu, P., et al. (2007). Molecular imaging of bone marrow mononuclear cell homing and engraftment in ischemic myocardium. Stem Cells, 25(10), 2677–2684.CrossRef Sheikh, A. Y., Lin, S. A., Cao, F., Cao, Y., Bogt, K. E. A. V. D., Chu, P., et al. (2007). Molecular imaging of bone marrow mononuclear cell homing and engraftment in ischemic myocardium. Stem Cells, 25(10), 2677–2684.CrossRef
88.
89.
go back to reference Wu, J. C., Chen, I. Y., Sundaresan, G., Min, J. J., De, A., Qiao, J. H., et al. (2003). Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography. Circulation, 2(3), 1302–1305.CrossRef Wu, J. C., Chen, I. Y., Sundaresan, G., Min, J. J., De, A., Qiao, J. H., et al. (2003). Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography. Circulation, 2(3), 1302–1305.CrossRef
91.
go back to reference Theiss, H. D., Brenner, C., Engelmann, M. G., Zaruba, M. M., Huber, B., Henschel, V., et al. (2010). Safety and efficacy of SITAgliptin plus GRanulocyte-colony-stimulating factor in patients suffering from Acute Myocardial Infarction (SITAGRAMI-trial)--rationale, design and first interim analysis. International Journal of Cardiology, 145(2), 282–284. https://doi.org/10.1016/j.ijcard.2009.09.555.CrossRefPubMed Theiss, H. D., Brenner, C., Engelmann, M. G., Zaruba, M. M., Huber, B., Henschel, V., et al. (2010). Safety and efficacy of SITAgliptin plus GRanulocyte-colony-stimulating factor in patients suffering from Acute Myocardial Infarction (SITAGRAMI-trial)--rationale, design and first interim analysis. International Journal of Cardiology, 145(2), 282–284. https://​doi.​org/​10.​1016/​j.​ijcard.​2009.​09.​555.CrossRefPubMed
92.
go back to reference Brenner, C., Adrion, C., Grabmaier, U., Theisen, D., von Ziegler, F., Leber, A., et al. (2016). Sitagliptin plus granulocyte colony-stimulating factor in patients suffering from acute myocardial infarction: a double-blind, randomized placebo-controlled trial of efficacy and safety (SITAGRAMI trial). International Journal of Cardiology, 205, 23–30. https://doi.org/10.1016/j.ijcard.2015.11.180.CrossRefPubMed Brenner, C., Adrion, C., Grabmaier, U., Theisen, D., von Ziegler, F., Leber, A., et al. (2016). Sitagliptin plus granulocyte colony-stimulating factor in patients suffering from acute myocardial infarction: a double-blind, randomized placebo-controlled trial of efficacy and safety (SITAGRAMI trial). International Journal of Cardiology, 205, 23–30. https://​doi.​org/​10.​1016/​j.​ijcard.​2015.​11.​180.CrossRefPubMed
Metadata
Title
Stem Cell Homing: a Potential Therapeutic Strategy Unproven for Treatment of Myocardial Injury
Authors
Zhonghao Tao
Shihua Tan
Wen Chen
Xin Chen
Publication date
01-10-2018
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 5/2018
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-018-9823-z

Other articles of this Issue 5/2018

Journal of Cardiovascular Translational Research 5/2018 Go to the issue