Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 5-6/2017

01-12-2017 | Original Article

In Vitro Mechanical Property Evaluation of Chitosan-Based Hydrogels Intended for Vascular Graft Development

Authors: Audrey Aussel, Alexandra Montembault, Sébastien Malaise, Marie Pierre Foulc, William Faure, Sandro Cornet, Rachida Aid, Marc Chaouat, Thierry Delair, Didier Letourneur, Laurent David, Laurence Bordenave

Published in: Journal of Cardiovascular Translational Research | Issue 5-6/2017

Login to get access

Abstract

Vascular grafts made of synthetic polymers perform poorly in cardiac and peripheral bypass applications. In these applications, chitosan-based materials can be produced and shaped to provide a novel scaffold for vascular tissue engineering. The goal of this study was to evaluate in vitro the mechanical properties of a novel chitosan formulation to assess its potential for this scaffold. Two chitosan-based hydrogel tubes were produced by modulating chitosan concentration. Based on the standard ISO 7198:1998, the hydrogel tubes were characterized in vitro in terms of suture retention strength, tensile strength, compliance, and burst pressure. By increasing chitosan concentration, suture retention value increased to reach 1.1 N; average burst strength and elastic moduli also increased significantly. The compliance seemed to exhibit a low value for chitosan tubes of high concentration. By modulating chitosan concentration, we produced scaffolds with suitable mechanical properties to be implanted in vivo and withstand physiological blood pressures.
Literature
1.
go back to reference Li, S., Sengupta, D., & Chien, S. (2014). Vascular tissue engineering: from in vitro to in situ. Wiley interdisciplinary reviews Systems biology and medicine, 6(1), 61–76.CrossRef Li, S., Sengupta, D., & Chien, S. (2014). Vascular tissue engineering: from in vitro to in situ. Wiley interdisciplinary reviews Systems biology and medicine, 6(1), 61–76.CrossRef
2.
go back to reference Seifu, D. G., Purnama, A., Mequanint, K., & Mantovani, D. (2013). Small-diameter vascular tissue engineering. Nature Reviews Cardiology, 10(7), 410–421.CrossRef Seifu, D. G., Purnama, A., Mequanint, K., & Mantovani, D. (2013). Small-diameter vascular tissue engineering. Nature Reviews Cardiology, 10(7), 410–421.CrossRef
3.
go back to reference Pashneh-Tala S, MacNeil S, Claeyssens F. (2015). The tissue-engineered vascular graft—past, present, and future. Tissue engineering Part B, Reviews, Pashneh-Tala S, MacNeil S, Claeyssens F. (2015). The tissue-engineered vascular graft—past, present, and future. Tissue engineering Part B, Reviews,
4.
go back to reference Boucard, N., Viton, C., & Domard, A. (2005). New aspects of the formation of physical hydrogels of chitosan in a hydroalcoholic medium. Biomacromolecules, 6(6), 3227–3237.CrossRef Boucard, N., Viton, C., & Domard, A. (2005). New aspects of the formation of physical hydrogels of chitosan in a hydroalcoholic medium. Biomacromolecules, 6(6), 3227–3237.CrossRef
5.
go back to reference Baldrick, P. (2010). The safety of chitosan as a pharmaceutical excipient. Regulatory toxicology and pharmacology : RTP, 56(3), 290–299.CrossRef Baldrick, P. (2010). The safety of chitosan as a pharmaceutical excipient. Regulatory toxicology and pharmacology : RTP, 56(3), 290–299.CrossRef
6.
go back to reference Muzzarelli, R. A. (2010). Chitins and chitosans as immunoadjuvants and non-allergenic drug carriers. Marine Drugs, 8(2), 292–312.CrossRef Muzzarelli, R. A. (2010). Chitins and chitosans as immunoadjuvants and non-allergenic drug carriers. Marine Drugs, 8(2), 292–312.CrossRef
7.
go back to reference Fukunishi, T., Best, C. A., Sugiura, T., Shoji, T., Yi, T., Udelsman, B., et al. (2016). Tissue-engineered small diameter arterial vascular grafts from cell-free nanofiber PCL/chitosan scaffolds in a sheep model. PloS One, 11(7), e0158555.CrossRef Fukunishi, T., Best, C. A., Sugiura, T., Shoji, T., Yi, T., Udelsman, B., et al. (2016). Tissue-engineered small diameter arterial vascular grafts from cell-free nanofiber PCL/chitosan scaffolds in a sheep model. PloS One, 11(7), e0158555.CrossRef
8.
go back to reference Zhu, C., Ma, X., Xian, L., Zhou, Y., & Fan, D. (2014). Characterization of a co-electrospun scaffold of HLC/CS/PLA for vascular tissue engineering. Bio-medical Materials and Engineering, 24(6), 1999–2005.PubMed Zhu, C., Ma, X., Xian, L., Zhou, Y., & Fan, D. (2014). Characterization of a co-electrospun scaffold of HLC/CS/PLA for vascular tissue engineering. Bio-medical Materials and Engineering, 24(6), 1999–2005.PubMed
9.
go back to reference Yao, Y., Wang, J., Cui, Y., Xu, R., Wang, Z., Zhang, J., et al. (2014). Effect of sustained heparin release from PCL/chitosan hybrid small-diameter vascular grafts on anti-thrombogenic property and endothelialization. Acta Biomaterialia, 10(6), 2739–2749.CrossRef Yao, Y., Wang, J., Cui, Y., Xu, R., Wang, Z., Zhang, J., et al. (2014). Effect of sustained heparin release from PCL/chitosan hybrid small-diameter vascular grafts on anti-thrombogenic property and endothelialization. Acta Biomaterialia, 10(6), 2739–2749.CrossRef
10.
go back to reference Azevedo, E. P., Retarekar, R., Raghavan, M. L., & Kumar, V. (2013). Mechanical properties of cellulose: Chitosan blends for potential use as a coronary artery bypass graft. Journal of Biomaterials Science Polymer Edition, 24(3), 239–252.CrossRef Azevedo, E. P., Retarekar, R., Raghavan, M. L., & Kumar, V. (2013). Mechanical properties of cellulose: Chitosan blends for potential use as a coronary artery bypass graft. Journal of Biomaterials Science Polymer Edition, 24(3), 239–252.CrossRef
11.
go back to reference Kong, X., Han, B., Li, H., Liang, Y., Shao, K., & Liu, W. (2012). New biodegradable small-diameter artificial vascular prosthesis: a feasibility study. Journal of biomedical materials research Part A, 100(6), 1494–1504.CrossRef Kong, X., Han, B., Li, H., Liang, Y., Shao, K., & Liu, W. (2012). New biodegradable small-diameter artificial vascular prosthesis: a feasibility study. Journal of biomedical materials research Part A, 100(6), 1494–1504.CrossRef
12.
go back to reference Aussel A, Thebaud N, Berard X, Brizzi V, Delmond S, Bareille R, et al. (2017). Chitosan-based hydrogels for developing a small-diameter vascular graft: in vitro and in vivo evaluation. Biomedical materials.In Press. Aussel A, Thebaud N, Berard X, Brizzi V, Delmond S, Bareille R, et al. (2017). Chitosan-based hydrogels for developing a small-diameter vascular graft: in vitro and in vivo evaluation. Biomedical materials.In Press.
13.
go back to reference Salacinski, H. J., Goldner, S., Giudiceandrea, A., Hamilton, G., Seifalian, A. M., Edwards, A., et al. (2001). The mechanical behavior of vascular grafts: a review. Journal of Biomaterials Applications, 15(3), 241–278.CrossRef Salacinski, H. J., Goldner, S., Giudiceandrea, A., Hamilton, G., Seifalian, A. M., Edwards, A., et al. (2001). The mechanical behavior of vascular grafts: a review. Journal of Biomaterials Applications, 15(3), 241–278.CrossRef
14.
go back to reference Zilla, P., Bezuidenhout, D., & Human, P. (2007). Prosthetic vascular grafts: wrong models, wrong questions and no healing. Biomaterials, 28(34), 5009–5027.CrossRef Zilla, P., Bezuidenhout, D., & Human, P. (2007). Prosthetic vascular grafts: wrong models, wrong questions and no healing. Biomaterials, 28(34), 5009–5027.CrossRef
15.
go back to reference Fiamingo, A., Montembault, A., Boitard, S. E., Naemetalla, H., Agbulut, O., Delair, T., et al. (2016). Chitosan hydrogels for the regeneration of infarcted myocardium: preparation, physicochemical characterization, and biological evaluation. Biomacromolecules, 17(5), 1662–1672.CrossRef Fiamingo, A., Montembault, A., Boitard, S. E., Naemetalla, H., Agbulut, O., Delair, T., et al. (2016). Chitosan hydrogels for the regeneration of infarcted myocardium: preparation, physicochemical characterization, and biological evaluation. Biomacromolecules, 17(5), 1662–1672.CrossRef
16.
go back to reference Montembault, A., Viton, C., & Domard, A. (2005). Rheometric study of the gelation of chitosan in a hydroalcoholic medium. Biomaterials, 26(14), 1633–1643.CrossRef Montembault, A., Viton, C., & Domard, A. (2005). Rheometric study of the gelation of chitosan in a hydroalcoholic medium. Biomaterials, 26(14), 1633–1643.CrossRef
17.
go back to reference Konig, G., McAllister, T. N., Dusserre, N., Garrido, S. A., Iyican, C., Marini, A., et al. (2009). Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery. Biomaterials, 30(8), 1542–1550.CrossRef Konig, G., McAllister, T. N., Dusserre, N., Garrido, S. A., Iyican, C., Marini, A., et al. (2009). Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery. Biomaterials, 30(8), 1542–1550.CrossRef
18.
go back to reference Zhang, L., Ao, Q., Wang, A., Lu, G., Kong, L., Gong, Y., et al. (2006). A sandwich tubular scaffold derived from chitosan for blood vessel tissue engineering. Journal of biomedical materials research Part A, 77(2), 277–284.CrossRef Zhang, L., Ao, Q., Wang, A., Lu, G., Kong, L., Gong, Y., et al. (2006). A sandwich tubular scaffold derived from chitosan for blood vessel tissue engineering. Journal of biomedical materials research Part A, 77(2), 277–284.CrossRef
19.
go back to reference Kong, X., Han, B., Wang, H., Li, H., Xu, W., & Liu, W. (2012). Mechanical properties of biodegradable small-diameter chitosan artificial vascular prosthesis. Journal of biomedical materials research Part A, 100(8), 1938–1945.CrossRef Kong, X., Han, B., Wang, H., Li, H., Xu, W., & Liu, W. (2012). Mechanical properties of biodegradable small-diameter chitosan artificial vascular prosthesis. Journal of biomedical materials research Part A, 100(8), 1938–1945.CrossRef
20.
go back to reference Ladet, S., David, L., & Domard, A. (2008). Multi-membrane hydrogels. Nature, 452(7183), 76–79.CrossRef Ladet, S., David, L., & Domard, A. (2008). Multi-membrane hydrogels. Nature, 452(7183), 76–79.CrossRef
21.
go back to reference Rami, L., Malaise, S., Delmond, S., Fricain, J. C., Siadous, R., Schlaubitz, S., et al. (2014). Physicochemical modulation of chitosan-based hydrogels induces different biological responses: interest for tissue engineering. Journal of biomedical materials research Part A, 102(10), 3666–3676.CrossRef Rami, L., Malaise, S., Delmond, S., Fricain, J. C., Siadous, R., Schlaubitz, S., et al. (2014). Physicochemical modulation of chitosan-based hydrogels induces different biological responses: interest for tissue engineering. Journal of biomedical materials research Part A, 102(10), 3666–3676.CrossRef
22.
go back to reference Hamedani BA, Navidbakhsh M, Tafti HA. (2012). Comparison between mechanical properties of human saphenous vein and umbilical vein. Biomedical engineering online, 11. Hamedani BA, Navidbakhsh M, Tafti HA. (2012). Comparison between mechanical properties of human saphenous vein and umbilical vein. Biomedical engineering online, 11.
23.
go back to reference Syedain, Z. H., Meier, L. A., Lahti, M. T., Johnson, S. L., & Tranquillo, R. T. (2014). Implantation of completely biological engineered grafts following decellularization into the sheep femoral artery. Tissue Engineering Part A, 20(11–12), 1726–1734.CrossRef Syedain, Z. H., Meier, L. A., Lahti, M. T., Johnson, S. L., & Tranquillo, R. T. (2014). Implantation of completely biological engineered grafts following decellularization into the sheep femoral artery. Tissue Engineering Part A, 20(11–12), 1726–1734.CrossRef
24.
go back to reference Dahl, S. L., Kypson, A. P., Lawson, J. H., Blum, J. L., Strader, J. T., Li, Y., et al. (2011). Readily available tissue-engineered vascular grafts. Science Translational Medicine, 3(68), 68ra69.CrossRef Dahl, S. L., Kypson, A. P., Lawson, J. H., Blum, J. L., Strader, J. T., Li, Y., et al. (2011). Readily available tissue-engineered vascular grafts. Science Translational Medicine, 3(68), 68ra69.CrossRef
25.
go back to reference Roh, J. D., Nelson, G. N., Brennan, M. P., Mirensky, T. L., Yi, T., Hazlett, T. F., et al. (2008). Small-diameter biodegradable scaffolds for functional vascular tissue engineering in the mouse model. Biomaterials, 29(10), 1454–1463.CrossRef Roh, J. D., Nelson, G. N., Brennan, M. P., Mirensky, T. L., Yi, T., Hazlett, T. F., et al. (2008). Small-diameter biodegradable scaffolds for functional vascular tissue engineering in the mouse model. Biomaterials, 29(10), 1454–1463.CrossRef
26.
go back to reference Centola, M., Rainer, A., Spadaccio, C., De Porcellinis, S., Genovese, J. A., & Trombetta, M. (2010). Combining electrospinning and fused deposition modeling for the fabrication of a hybrid vascular graft. Biofabrication, 2(1), 014102.CrossRef Centola, M., Rainer, A., Spadaccio, C., De Porcellinis, S., Genovese, J. A., & Trombetta, M. (2010). Combining electrospinning and fused deposition modeling for the fabrication of a hybrid vascular graft. Biofabrication, 2(1), 014102.CrossRef
27.
go back to reference Drilling, S., Gaumer, J., & Lannutti, J. (2009). Fabrication of burst pressure competent vascular grafts via electrospinning: effects of microstructure. Journal of biomedical materials research Part A, 88(4), 923–934.CrossRef Drilling, S., Gaumer, J., & Lannutti, J. (2009). Fabrication of burst pressure competent vascular grafts via electrospinning: effects of microstructure. Journal of biomedical materials research Part A, 88(4), 923–934.CrossRef
28.
go back to reference Lee, K. W., Stolz, D. B., & Wang, Y. (2011). Substantial expression of mature elastin in arterial constructs. Proceedings of the National Academy of Sciences of the United States of America, 108(7), 2705–2710.CrossRef Lee, K. W., Stolz, D. B., & Wang, Y. (2011). Substantial expression of mature elastin in arterial constructs. Proceedings of the National Academy of Sciences of the United States of America, 108(7), 2705–2710.CrossRef
29.
go back to reference He, W., Nieponice, A., Soletti, L., Hong, Y., Gharaibeh, B., Crisan, M., et al. (2010). Pericyte-based human tissue engineered vascular grafts. Biomaterials, 31(32), 8235–8244.CrossRef He, W., Nieponice, A., Soletti, L., Hong, Y., Gharaibeh, B., Crisan, M., et al. (2010). Pericyte-based human tissue engineered vascular grafts. Biomaterials, 31(32), 8235–8244.CrossRef
30.
go back to reference Soletti, L., Hong, Y., Guan, J., Stankus, J. J., El-Kurdi, M. S., Wagner, W. R., et al. (2010). A bilayered elastomeric scaffold for tissue engineering of small diameter vascular grafts. Acta Biomaterialia, 6(1), 110–122.CrossRef Soletti, L., Hong, Y., Guan, J., Stankus, J. J., El-Kurdi, M. S., Wagner, W. R., et al. (2010). A bilayered elastomeric scaffold for tissue engineering of small diameter vascular grafts. Acta Biomaterialia, 6(1), 110–122.CrossRef
31.
go back to reference Kim, S.-H., Mun, C. H., Jung, Y., Kim, S.-H., Kim, D.-I., & Kim, S. H. (2013). Mechanical properties of compliant double layered poly(L-lactide-co-ɛ-caprolactone) vascular graft. Macromolecular Research, 21(8), 886–891.CrossRef Kim, S.-H., Mun, C. H., Jung, Y., Kim, S.-H., Kim, D.-I., & Kim, S. H. (2013). Mechanical properties of compliant double layered poly(L-lactide-co-ɛ-caprolactone) vascular graft. Macromolecular Research, 21(8), 886–891.CrossRef
32.
go back to reference Rapoport, H. S., Fish, J., Basu, J., Campbell, J., Genheimer, C., Payne, R., et al. (2012). Construction of a tubular scaffold that mimics J-shaped stress/strain mechanics using an innovative electrospinning technique. Tissue engineering Part C, Methods, 18(8), 567–574.CrossRef Rapoport, H. S., Fish, J., Basu, J., Campbell, J., Genheimer, C., Payne, R., et al. (2012). Construction of a tubular scaffold that mimics J-shaped stress/strain mechanics using an innovative electrospinning technique. Tissue engineering Part C, Methods, 18(8), 567–574.CrossRef
33.
go back to reference Madhavan, K., Elliott, W. H., Bonani, W., Monnet, E., & Tan, W. (2013). Mechanical and biocompatible characterizations of a readily available multilayer vascular graft. Journal of biomedical materials research Part B, Applied biomaterials, 101(4), 506–519.CrossRef Madhavan, K., Elliott, W. H., Bonani, W., Monnet, E., & Tan, W. (2013). Mechanical and biocompatible characterizations of a readily available multilayer vascular graft. Journal of biomedical materials research Part B, Applied biomaterials, 101(4), 506–519.CrossRef
34.
go back to reference Tai, N. R., Salacinski, H. J., Edwards, A., Hamilton, G., & Seifalian, A. M. (2000). Compliance properties of conduits used in vascular reconstruction. The British Journal of Surgery, 87(11), 1516–1524.CrossRef Tai, N. R., Salacinski, H. J., Edwards, A., Hamilton, G., & Seifalian, A. M. (2000). Compliance properties of conduits used in vascular reconstruction. The British Journal of Surgery, 87(11), 1516–1524.CrossRef
35.
go back to reference Seifalian A.M. GA, Schmitz-Rixen T., Hamilton G. (1999). Noncompliance: the silent acceptance of a Villain. Tissue Engineering of Prosthetic Vascular Grafts, Chapter 2. Seifalian A.M. GA, Schmitz-Rixen T., Hamilton G. (1999). Noncompliance: the silent acceptance of a Villain. Tissue Engineering of Prosthetic Vascular Grafts, Chapter 2.
36.
go back to reference Marelli, B., Achilli, M., Alessandrino, A., Freddi, G., Tanzi, M. C., Fare, S., et al. (2012). Collagen-reinforced electrospun silk fibroin tubular construct as small calibre vascular graft. Macromolecular Bioscience, 12(11), 1566–1574.CrossRef Marelli, B., Achilli, M., Alessandrino, A., Freddi, G., Tanzi, M. C., Fare, S., et al. (2012). Collagen-reinforced electrospun silk fibroin tubular construct as small calibre vascular graft. Macromolecular Bioscience, 12(11), 1566–1574.CrossRef
37.
go back to reference L'Heureux, N., Dusserre, N., Konig, G., Victor, B., Keire, P., Wight, T. N., et al. (2006). Human tissue-engineered blood vessels for adult arterial revascularization. Nature Medicine, 12(3), 361–365.CrossRef L'Heureux, N., Dusserre, N., Konig, G., Victor, B., Keire, P., Wight, T. N., et al. (2006). Human tissue-engineered blood vessels for adult arterial revascularization. Nature Medicine, 12(3), 361–365.CrossRef
38.
go back to reference Soffer, L., Wang, X., Zhang, X., Kluge, J., Dorfmann, L., Kaplan, D. L., et al. (2008). Silk-based electrospun tubular scaffolds for tissue-engineered vascular grafts. Journal of Biomaterials Science Polymer Edition, 19(5), 653–664.CrossRef Soffer, L., Wang, X., Zhang, X., Kluge, J., Dorfmann, L., Kaplan, D. L., et al. (2008). Silk-based electrospun tubular scaffolds for tissue-engineered vascular grafts. Journal of Biomaterials Science Polymer Edition, 19(5), 653–664.CrossRef
39.
go back to reference Schneider, K. H., Aigner, P., Holnthoner, W., Monforte, X., Nurnberger, S., Runzler, D., et al. (2016). Decellularized human placenta chorion matrix as a favorable source of small-diameter vascular grafts. Acta Biomaterialia, 29, 125–134.CrossRef Schneider, K. H., Aigner, P., Holnthoner, W., Monforte, X., Nurnberger, S., Runzler, D., et al. (2016). Decellularized human placenta chorion matrix as a favorable source of small-diameter vascular grafts. Acta Biomaterialia, 29, 125–134.CrossRef
40.
go back to reference Tosun, Z., Villegas-Montoya, C., & McFetridge, P. S. (2011). The influence of early-phase remodeling events on the biomechanical properties of engineered vascular tissues. Journal of Vascular Surgery, 54(5), 1451–1460.CrossRef Tosun, Z., Villegas-Montoya, C., & McFetridge, P. S. (2011). The influence of early-phase remodeling events on the biomechanical properties of engineered vascular tissues. Journal of Vascular Surgery, 54(5), 1451–1460.CrossRef
41.
go back to reference Tajaddini, A., Kilpatrick, D. L., Schoenhagen, P., Tuzcu, E. M., Lieber, M., & Vince, D. G. (2005). Impact of age and hyperglycemia on the mechanical behavior of intact human coronary arteries: an ex vivo intravascular ultrasound study. American Journal of Physiology Heart and Circulatory Physiology, 288(1), H250–H255.CrossRef Tajaddini, A., Kilpatrick, D. L., Schoenhagen, P., Tuzcu, E. M., Lieber, M., & Vince, D. G. (2005). Impact of age and hyperglycemia on the mechanical behavior of intact human coronary arteries: an ex vivo intravascular ultrasound study. American Journal of Physiology Heart and Circulatory Physiology, 288(1), H250–H255.CrossRef
42.
go back to reference Chaouat, M., Le Visage, C., Baille, W. E., Escoubet, B., Chaubet, F., Mateescu, M. A., et al. (2008). A novel cross-linked poly(vinyl alcohol) (PVA) for vascular grafts. Advanced Functional Materials, 18(19), 2855–2861.CrossRef Chaouat, M., Le Visage, C., Baille, W. E., Escoubet, B., Chaubet, F., Mateescu, M. A., et al. (2008). A novel cross-linked poly(vinyl alcohol) (PVA) for vascular grafts. Advanced Functional Materials, 18(19), 2855–2861.CrossRef
43.
go back to reference Zhu, G., Yuan, Q., Hock Yeo, J., & Nakao, M. (2015). Thermal treatment of expanded polytetraflu-oroethylene (ePTFE) membranes for reconstruction of a valved conduit. Bio-medical Materials and Engineering, 26(Suppl 1), S55–S62.CrossRef Zhu, G., Yuan, Q., Hock Yeo, J., & Nakao, M. (2015). Thermal treatment of expanded polytetraflu-oroethylene (ePTFE) membranes for reconstruction of a valved conduit. Bio-medical Materials and Engineering, 26(Suppl 1), S55–S62.CrossRef
44.
go back to reference Sell, S. A., McClure, M. J., Barnes, C. P., Knapp, D. C., Walpoth, B. H., Simpson, D. G., et al. (2006). Electrospun polydioxanone-elastin blends: potential for bioresorbable vascular grafts. Biomedical Materials, 1(2), 72–80.CrossRef Sell, S. A., McClure, M. J., Barnes, C. P., Knapp, D. C., Walpoth, B. H., Simpson, D. G., et al. (2006). Electrospun polydioxanone-elastin blends: potential for bioresorbable vascular grafts. Biomedical Materials, 1(2), 72–80.CrossRef
Metadata
Title
In Vitro Mechanical Property Evaluation of Chitosan-Based Hydrogels Intended for Vascular Graft Development
Authors
Audrey Aussel
Alexandra Montembault
Sébastien Malaise
Marie Pierre Foulc
William Faure
Sandro Cornet
Rachida Aid
Marc Chaouat
Thierry Delair
Didier Letourneur
Laurent David
Laurence Bordenave
Publication date
01-12-2017
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 5-6/2017
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-017-9763-z

Other articles of this Issue 5-6/2017

Journal of Cardiovascular Translational Research 5-6/2017 Go to the issue