Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 4/2016

01-08-2016 | Original Article

Lysophospholipid Receptors, as Novel Conditional Danger Receptors and Homeostatic Receptors Modulate Inflammation—Novel Paradigm and Therapeutic Potential

Authors: Xin Wang, Ya-Feng Li, Gayani Nanayakkara, Ying Shao, Bin Liang, Lauren Cole, William Y. Yang, Xinyuan Li, Ramon Cueto, Jun Yu, Hong Wang, Xiao-Feng Yang

Published in: Journal of Cardiovascular Translational Research | Issue 4/2016

Login to get access

Abstract

There are limitations in the current classification of danger-associated molecular patterns (DAMP) receptors. To overcome these limitations, we propose a new paradigm by using endogenous metabolites lysophospholipids (LPLs) as a prototype. By utilizing a data mining method we pioneered, we made the following findings: (1) endogenous metabolites such as LPLs at basal level have physiological functions; (2) under sterile inflammation, expression of some LPLs is elevated. These LPLs act as conditional DAMPs or anti-inflammatory homeostasis-associated molecular pattern molecules (HAMPs) for regulating the progression of inflammation or inhibition of inflammation, respectively; (3) receptors for conditional DAMPs and HAMPs are differentially expressed in human and mouse tissues; and (4) complex signaling mechanism exists between pro-inflammatory mediators and classical DAMPs that regulate the expression of conditional DAMPs and HAMPs. This novel insight will facilitate identification of novel conditional DAMPs and HAMPs, thus promote development of new therapeutic targets to treat inflammatory disorders.
Literature
2.
go back to reference Yin, Y., Yan, Y., Jiang, X., Mai, J., Chen, N. C., Wang, H., et al. (2009). Inflammasomes are differentially expressed in cardiovascular and other tissues. International Journal of Immunopathology and Pharmacology, 22(2), 311–322.PubMedPubMedCentral Yin, Y., Yan, Y., Jiang, X., Mai, J., Chen, N. C., Wang, H., et al. (2009). Inflammasomes are differentially expressed in cardiovascular and other tissues. International Journal of Immunopathology and Pharmacology, 22(2), 311–322.PubMedPubMedCentral
3.
go back to reference Yin, Y., Pastrana, J. L., Li, X., Huang, X., Mallilankaraman, K., Choi, E. T., et al. (2013). Inflammasomes: sensors of metabolic stresses for vascular inflammation. [Research Support, N.I.H., Extramural]. Frontiers in Bioscience, 18, 638–649.CrossRef Yin, Y., Pastrana, J. L., Li, X., Huang, X., Mallilankaraman, K., Choi, E. T., et al. (2013). Inflammasomes: sensors of metabolic stresses for vascular inflammation. [Research Support, N.I.H., Extramural]. Frontiers in Bioscience, 18, 638–649.CrossRef
6.
go back to reference Medzhitov, R., & Horng, T. (2009). Transcriptional control of the inflammatory response. [Research Support, Non-U.S. Gov’t Review]. Nature Reviews Immunology, 9(10), 692–703. doi:10.1038/nri2634.CrossRefPubMed Medzhitov, R., & Horng, T. (2009). Transcriptional control of the inflammatory response. [Research Support, Non-U.S. Gov’t Review]. Nature Reviews Immunology, 9(10), 692–703. doi:10.​1038/​nri2634.CrossRefPubMed
7.
go back to reference Rosin, D. L., & Okusa, M. D. (2011). Dangers within: DAMP responses to damage and cell death in kidney disease. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Journal of the American Society of Nephrology, 22(3), 416–425. doi:10.1681/ASN.2010040430.CrossRefPubMedPubMedCentral Rosin, D. L., & Okusa, M. D. (2011). Dangers within: DAMP responses to damage and cell death in kidney disease. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Journal of the American Society of Nephrology, 22(3), 416–425. doi:10.​1681/​ASN.​2010040430.CrossRefPubMedPubMedCentral
8.
go back to reference Kuhn, T. S. (1996). The structure of scientific revolutions (3rd ed.). Chicago: University of Chicago Press.CrossRef Kuhn, T. S. (1996). The structure of scientific revolutions (3rd ed.). Chicago: University of Chicago Press.CrossRef
9.
go back to reference Chen, L., & Flies, D. B. (2013). Molecular mechanisms of T cell co-stimulation and co-inhibition. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Nature Reviews Immunology, 13(4), 227–242. doi:10.1038/nri3405.CrossRefPubMedPubMedCentral Chen, L., & Flies, D. B. (2013). Molecular mechanisms of T cell co-stimulation and co-inhibition. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Nature Reviews Immunology, 13(4), 227–242. doi:10.​1038/​nri3405.CrossRefPubMedPubMedCentral
10.
go back to reference Fathman, C. G., & Lineberry, N. B. (2007). Molecular mechanisms of CD4+ T-cell anergy. [Research Support, N.I.H., Extramural Review]. Nature Reviews Immunology, 7(8), 599–609. doi:10.1038/nri2131.CrossRefPubMed Fathman, C. G., & Lineberry, N. B. (2007). Molecular mechanisms of CD4+ T-cell anergy. [Research Support, N.I.H., Extramural Review]. Nature Reviews Immunology, 7(8), 599–609. doi:10.​1038/​nri2131.CrossRefPubMed
11.
go back to reference Yang, W. Y., Shao, Y., Lopez-Pastrana, J., Mai, J., Wang, H., & Yang, X.-f. (2015). Pathological conditions re-shape physiological Tregs into pathological Tregs. Burns & Trauma, 3, 1–11. doi:10.1186/s41038-015-0001-0.CrossRef Yang, W. Y., Shao, Y., Lopez-Pastrana, J., Mai, J., Wang, H., & Yang, X.-f. (2015). Pathological conditions re-shape physiological Tregs into pathological Tregs. Burns & Trauma, 3, 1–11. doi:10.​1186/​s41038-015-0001-0.CrossRef
14.
go back to reference Sha, X., Meng, S., Li, X., Xi, H., Maddaloni, M., Pascual, D. W., et al. (2015). Interleukin-35 inhibits endothelial cell activation by suppressing MAPK-AP-1 pathway. [Research Support, N.I.H., Extramural]. Journal of Biological Chemistry, 290(31), 19307–19318. doi:10.1074/jbc.M115.663286.CrossRefPubMedPubMedCentral Sha, X., Meng, S., Li, X., Xi, H., Maddaloni, M., Pascual, D. W., et al. (2015). Interleukin-35 inhibits endothelial cell activation by suppressing MAPK-AP-1 pathway. [Research Support, N.I.H., Extramural]. Journal of Biological Chemistry, 290(31), 19307–19318. doi:10.​1074/​jbc.​M115.​663286.CrossRefPubMedPubMedCentral
16.
go back to reference Ng, B., Yang, F., Huston, D. P., Yan, Y., Yang, Y., Xiong, Z., et al. (2004). Increased noncanonical splicing of autoantigen transcripts provides the structural basis for expression of untolerized epitopes. Journal of Allergy and Clinical Immunology, 114(6), 1463–1470.CrossRefPubMedPubMedCentral Ng, B., Yang, F., Huston, D. P., Yan, Y., Yang, Y., Xiong, Z., et al. (2004). Increased noncanonical splicing of autoantigen transcripts provides the structural basis for expression of untolerized epitopes. Journal of Allergy and Clinical Immunology, 114(6), 1463–1470.CrossRefPubMedPubMedCentral
17.
go back to reference Li, Y. F., Li, R. S., Samuel, S. B., Cueto, R., Li, X. Y., Wang, H., et al. (2016). Lysophospholipids and their G protein-coupled receptors in atherosclerosis. Frontiers in Bioscience (Landmark Edition), 21, 70–88.CrossRef Li, Y. F., Li, R. S., Samuel, S. B., Cueto, R., Li, X. Y., Wang, H., et al. (2016). Lysophospholipids and their G protein-coupled receptors in atherosclerosis. Frontiers in Bioscience (Landmark Edition), 21, 70–88.CrossRef
18.
go back to reference Smyth, S. S., Mueller, P., Yang, F., Brandon, J. A., & Morris, A. J. (2014). Arguing the case for the autotaxin-lysophosphatidic acid-lipid phosphate phosphatase 3-signaling nexus in the development and complications of atherosclerosis. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Arteriosclerosis, Thrombosis, and Vascular Biology, 34(3), 479–486. doi:10.1161/ATVBAHA.113.302737.CrossRefPubMedPubMedCentral Smyth, S. S., Mueller, P., Yang, F., Brandon, J. A., & Morris, A. J. (2014). Arguing the case for the autotaxin-lysophosphatidic acid-lipid phosphate phosphatase 3-signaling nexus in the development and complications of atherosclerosis. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Arteriosclerosis, Thrombosis, and Vascular Biology, 34(3), 479–486. doi:10.​1161/​ATVBAHA.​113.​302737.CrossRefPubMedPubMedCentral
20.
go back to reference Tan, M., Hao, F., Xu, X., Chisolm, G. M., & Cui, M. Z. (2009). Lysophosphatidylcholine activates a novel PKD2-mediated signaling pathway that controls monocyte migration. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(9), 1376–1382. doi:10.1161/ATVBAHA.109.191585.CrossRefPubMedPubMedCentral Tan, M., Hao, F., Xu, X., Chisolm, G. M., & Cui, M. Z. (2009). Lysophosphatidylcholine activates a novel PKD2-mediated signaling pathway that controls monocyte migration. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Arteriosclerosis, Thrombosis, and Vascular Biology, 29(9), 1376–1382. doi:10.​1161/​ATVBAHA.​109.​191585.CrossRefPubMedPubMedCentral
21.
go back to reference Kurano, M., Suzuki, A., Inoue, A., Tokuhara, Y., Kano, K., Matsumoto, H., et al. (2015). Possible involvement of minor lysophospholipids in the increase in plasma lysophosphatidic acid in acute coronary syndrome. [Research Support, Non-U.S. Gov’t]. Arteriosclerosis, Thrombosis, and Vascular Biology, 35(2), 463–470. doi:10.1161/ATVBAHA.114.304748.CrossRefPubMed Kurano, M., Suzuki, A., Inoue, A., Tokuhara, Y., Kano, K., Matsumoto, H., et al. (2015). Possible involvement of minor lysophospholipids in the increase in plasma lysophosphatidic acid in acute coronary syndrome. [Research Support, Non-U.S. Gov’t]. Arteriosclerosis, Thrombosis, and Vascular Biology, 35(2), 463–470. doi:10.​1161/​ATVBAHA.​114.​304748.CrossRefPubMed
22.
23.
go back to reference Bourgoin, S. G., & Zhao, C. (2010). Autotaxin and lysophospholipids in rheumatoid arthritis. [Research Support, Non-U.S. Gov’t Review]. Current Opinion in Investigational Drugs, 11(5), 515–526.PubMed Bourgoin, S. G., & Zhao, C. (2010). Autotaxin and lysophospholipids in rheumatoid arthritis. [Research Support, Non-U.S. Gov’t Review]. Current Opinion in Investigational Drugs, 11(5), 515–526.PubMed
25.
go back to reference Hung, N. D., Kim, M. R., & Sok, D. E. (2011). 2-Polyunsaturated acyl lysophosphatidylethanolamine attenuates inflammatory response in zymosan A-induced peritonitis in mice. [Research Support, Non-U.S. Gov’t]. Lipids, 46(10), 893–906. doi:10.1007/s11745-011-3589-2.CrossRefPubMed Hung, N. D., Kim, M. R., & Sok, D. E. (2011). 2-Polyunsaturated acyl lysophosphatidylethanolamine attenuates inflammatory response in zymosan A-induced peritonitis in mice. [Research Support, Non-U.S. Gov’t]. Lipids, 46(10), 893–906. doi:10.​1007/​s11745-011-3589-2.CrossRefPubMed
28.
go back to reference Chen, N. C., Yang, F., Capecci, L. M., Gu, Z., Schafer, A. I., Durante, W., et al. (2010). Regulation of homocysteine metabolism and methylation in human and mouse tissues. [Research Support, N.I.H., Extramural]. FASEB Journal, 24(8), 2804–2817. doi:10.1096/fj.09-143651.CrossRefPubMedPubMedCentral Chen, N. C., Yang, F., Capecci, L. M., Gu, Z., Schafer, A. I., Durante, W., et al. (2010). Regulation of homocysteine metabolism and methylation in human and mouse tissues. [Research Support, N.I.H., Extramural]. FASEB Journal, 24(8), 2804–2817. doi:10.​1096/​fj.​09-143651.CrossRefPubMedPubMedCentral
29.
go back to reference Anliker, B., & Chun, J. (2004). Lysophospholipid G protein-coupled receptors. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review]. Journal of Biological Chemistry, 279(20), 20555–20558. doi:10.1074/jbc.R400013200.CrossRefPubMed Anliker, B., & Chun, J. (2004). Lysophospholipid G protein-coupled receptors. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review]. Journal of Biological Chemistry, 279(20), 20555–20558. doi:10.​1074/​jbc.​R400013200.CrossRefPubMed
30.
go back to reference Davenport, A. P., Alexander, S. P., Sharman, J. L., Pawson, A. J., Benson, H. E., Monaghan, A. E., et al. (2013). International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands. [Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov’t Review]. Pharmacological Reviews, 65(3), 967–986. doi:10.1124/pr.112.007179.CrossRefPubMedPubMedCentral Davenport, A. P., Alexander, S. P., Sharman, J. L., Pawson, A. J., Benson, H. E., Monaghan, A. E., et al. (2013). International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands. [Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov’t Review]. Pharmacological Reviews, 65(3), 967–986. doi:10.​1124/​pr.​112.​007179.CrossRefPubMedPubMedCentral
31.
go back to reference Foord, S. M., Bonner, T. I., Neubig, R. R., Rosser, E. M., Pin, J. P., Davenport, A. P., et al. (2005). International Union of Pharmacology. XLVI. G protein-coupled receptor list. [Review]. Pharmacological Reviews, 57(2), 279–288. doi:10.1124/pr.57.2.5.CrossRefPubMed Foord, S. M., Bonner, T. I., Neubig, R. R., Rosser, E. M., Pin, J. P., Davenport, A. P., et al. (2005). International Union of Pharmacology. XLVI. G protein-coupled receptor list. [Review]. Pharmacological Reviews, 57(2), 279–288. doi:10.​1124/​pr.​57.​2.​5.CrossRefPubMed
32.
go back to reference Chun, J., Goetzl, E. J., Hla, T., Igarashi, Y., Lynch, K. R., Moolenaar, W., et al. (2002). International Union of Pharmacology. XXXIV. Lysophospholipid receptor nomenclature. [Review]. Pharmacological Reviews, 54(2), 265–269.CrossRefPubMed Chun, J., Goetzl, E. J., Hla, T., Igarashi, Y., Lynch, K. R., Moolenaar, W., et al. (2002). International Union of Pharmacology. XXXIV. Lysophospholipid receptor nomenclature. [Review]. Pharmacological Reviews, 54(2), 265–269.CrossRefPubMed
34.
go back to reference Chun, J., Hla, T., Lynch, K. R., Spiegel, S., & Moolenaar, W. H. (2010). International Union of Basic and Clinical Pharmacology. LXXVIII. Lysophospholipid receptor nomenclature. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Pharmacological Reviews, 62(4), 579–587. doi:10.1124/pr.110.003111.CrossRefPubMedPubMedCentral Chun, J., Hla, T., Lynch, K. R., Spiegel, S., & Moolenaar, W. H. (2010). International Union of Basic and Clinical Pharmacology. LXXVIII. Lysophospholipid receptor nomenclature. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Pharmacological Reviews, 62(4), 579–587. doi:10.​1124/​pr.​110.​003111.CrossRefPubMedPubMedCentral
35.
go back to reference Guy, A. T., Nagatsuka, Y., Ooashi, N., Inoue, M., Nakata, A., Greimel, P., et al. (2015). NEURONAL DEVELOPMENT. Glycerophospholipid regulation of modality-specific sensory axon guidance in the spinal cord. [Research Support, Non-U.S. Gov’t]. Science, 349(6251), 974–977. doi:10.1126/science.aab3516.CrossRefPubMed Guy, A. T., Nagatsuka, Y., Ooashi, N., Inoue, M., Nakata, A., Greimel, P., et al. (2015). NEURONAL DEVELOPMENT. Glycerophospholipid regulation of modality-specific sensory axon guidance in the spinal cord. [Research Support, Non-U.S. Gov’t]. Science, 349(6251), 974–977. doi:10.​1126/​science.​aab3516.CrossRefPubMed
36.
go back to reference Ikubo, M., Inoue, A., Nakamura, S., Jung, S., Sayama, M., Otani, Y., et al. (2015). Structure-activity relationships of lysophosphatidylserine analogs as agonists of G-protein-coupled receptors GPR34, P2Y10, and GPR174. [Research Support, Non-U.S. Gov’t]. Journal of Medicinal Chemistry, 58(10), 4204–4219. doi:10.1021/jm5020082.CrossRefPubMed Ikubo, M., Inoue, A., Nakamura, S., Jung, S., Sayama, M., Otani, Y., et al. (2015). Structure-activity relationships of lysophosphatidylserine analogs as agonists of G-protein-coupled receptors GPR34, P2Y10, and GPR174. [Research Support, Non-U.S. Gov’t]. Journal of Medicinal Chemistry, 58(10), 4204–4219. doi:10.​1021/​jm5020082.CrossRefPubMed
37.
go back to reference Makide, K., Uwamizu, A., Shinjo, Y., Ishiguro, J., Okutani, M., Inoue, A., et al. (2014). Novel lysophospholipid receptors: their structure and function. [Research Support, Non-U.S. Gov’t Review]. Journal of Lipid Research, 55(10), 1986–1995. doi:10.1194/jlr.R046920.CrossRefPubMedPubMedCentral Makide, K., Uwamizu, A., Shinjo, Y., Ishiguro, J., Okutani, M., Inoue, A., et al. (2014). Novel lysophospholipid receptors: their structure and function. [Research Support, Non-U.S. Gov’t Review]. Journal of Lipid Research, 55(10), 1986–1995. doi:10.​1194/​jlr.​R046920.CrossRefPubMedPubMedCentral
38.
go back to reference Torkhovskaya, T. I., Ipatova, O. M., Zakharova, T. S., Kochetova, M. M., & Khalilov, E. M. (2007). Lysophospholipid receptors in cell signaling. [Review]. Biochemistry (Mosc), 72(2), 125–131.CrossRef Torkhovskaya, T. I., Ipatova, O. M., Zakharova, T. S., Kochetova, M. M., & Khalilov, E. M. (2007). Lysophospholipid receptors in cell signaling. [Review]. Biochemistry (Mosc), 72(2), 125–131.CrossRef
39.
go back to reference Xiang, S. Y., Dusaban, S. S., & Brown, J. H. (2013). Lysophospholipid receptor activation of RhoA and lipid signaling pathways. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Biochimica et Biophysica Acta, 1831(1), 213–222. doi:10.1016/j.bbalip.2012.09.004.CrossRefPubMed Xiang, S. Y., Dusaban, S. S., & Brown, J. H. (2013). Lysophospholipid receptor activation of RhoA and lipid signaling pathways. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Biochimica et Biophysica Acta, 1831(1), 213–222. doi:10.​1016/​j.​bbalip.​2012.​09.​004.CrossRefPubMed
40.
go back to reference Jiang, S. Y., Wei, C. C., Shang, T. T., Lian, Q., Wu, C. X., & Deng, J. Y. (2012). High glucose induces inflammatory cytokine through protein kinase C-induced toll-like receptor 2 pathway in gingival fibroblasts. [Research Support, Non-U.S. Gov’t]. Biochemical and Biophysical Research Communications, 427(3), 666–670. doi:10.1016/j.bbrc.2012.09.118.CrossRefPubMed Jiang, S. Y., Wei, C. C., Shang, T. T., Lian, Q., Wu, C. X., & Deng, J. Y. (2012). High glucose induces inflammatory cytokine through protein kinase C-induced toll-like receptor 2 pathway in gingival fibroblasts. [Research Support, Non-U.S. Gov’t]. Biochemical and Biophysical Research Communications, 427(3), 666–670. doi:10.​1016/​j.​bbrc.​2012.​09.​118.CrossRefPubMed
42.
go back to reference Cataisson, C., Joseloff, E., Murillas, R., Wang, A., Atwell, C., Torgerson, S., et al. (2003). Activation of cutaneous protein kinase C alpha induces keratinocyte apoptosis and intraepidermal inflammation by independent signaling pathways. Journal of Immunology, 171(5), 2703–2713.CrossRef Cataisson, C., Joseloff, E., Murillas, R., Wang, A., Atwell, C., Torgerson, S., et al. (2003). Activation of cutaneous protein kinase C alpha induces keratinocyte apoptosis and intraepidermal inflammation by independent signaling pathways. Journal of Immunology, 171(5), 2703–2713.CrossRef
43.
go back to reference Kaminska, B. (2005). MAPK signalling pathways as molecular targets for anti-inflammatory therapy—from molecular mechanisms to therapeutic benefits. [Research Support, Non-U.S. Gov’t Review]. Biochimica et Biophysica Acta, 1754(1–2), 253–262. doi:10.1016/j.bbapap.2005.08.017.CrossRefPubMed Kaminska, B. (2005). MAPK signalling pathways as molecular targets for anti-inflammatory therapy—from molecular mechanisms to therapeutic benefits. [Research Support, Non-U.S. Gov’t Review]. Biochimica et Biophysica Acta, 1754(1–2), 253–262. doi:10.​1016/​j.​bbapap.​2005.​08.​017.CrossRefPubMed
45.
go back to reference Ma, Z., Zhang, J., Du, R., Ji, E., & Chu, L. (2011). Rho kinase inhibition by fasudil has anti-inflammatory effects in hypercholesterolemic rats. [Research Support, Non-U.S. Gov’t]. Biological and Pharmaceutical Bulletin, 34(11), 1684–1689.CrossRefPubMed Ma, Z., Zhang, J., Du, R., Ji, E., & Chu, L. (2011). Rho kinase inhibition by fasudil has anti-inflammatory effects in hypercholesterolemic rats. [Research Support, Non-U.S. Gov’t]. Biological and Pharmaceutical Bulletin, 34(11), 1684–1689.CrossRefPubMed
46.
47.
go back to reference Watson, L., Tullus, K., Marks, S. D., Holt, R. C., Pilkington, C., & Beresford, M. W. (2012). Increased serum concentration of sphingosine-1-phosphate in juvenile-onset systemic lupus erythematosus. [Research Support, Non-U.S. Gov’t]. Journal of Clinical Immunology, 32(5), 1019–1025. doi:10.1007/s10875-012-9710-3.CrossRefPubMed Watson, L., Tullus, K., Marks, S. D., Holt, R. C., Pilkington, C., & Beresford, M. W. (2012). Increased serum concentration of sphingosine-1-phosphate in juvenile-onset systemic lupus erythematosus. [Research Support, Non-U.S. Gov’t]. Journal of Clinical Immunology, 32(5), 1019–1025. doi:10.​1007/​s10875-012-9710-3.CrossRefPubMed
48.
go back to reference Abu El-Asrar, A. M., Nawaz, M. I., Mohammad, G., Siddiquei, M. M., Alam, K., Mousa, A., et al. (2014). Expression of bioactive lysophospholipids and processing enzymes in the vitreous from patients with proliferative diabetic retinopathy. [Research Support, Non-U.S. Gov’t]. Lipids in Health and Disease, 13, 187. doi:10.1186/1476-511X-13-187.CrossRefPubMedPubMedCentral Abu El-Asrar, A. M., Nawaz, M. I., Mohammad, G., Siddiquei, M. M., Alam, K., Mousa, A., et al. (2014). Expression of bioactive lysophospholipids and processing enzymes in the vitreous from patients with proliferative diabetic retinopathy. [Research Support, Non-U.S. Gov’t]. Lipids in Health and Disease, 13, 187. doi:10.​1186/​1476-511X-13-187.CrossRefPubMedPubMedCentral
49.
go back to reference Moreno-Navarrete, J. M., Catalan, V., Whyte, L., Diaz-Arteaga, A., Vazquez-Martinez, R., Rotellar, F., et al. (2012). The L-alpha-lysophosphatidylinositol/GPR55 system and its potential role in human obesity. [Research Support, Non-U.S. Gov’t]. Diabetes, 61(2), 281–291. doi:10.2337/db11-0649.CrossRefPubMedPubMedCentral Moreno-Navarrete, J. M., Catalan, V., Whyte, L., Diaz-Arteaga, A., Vazquez-Martinez, R., Rotellar, F., et al. (2012). The L-alpha-lysophosphatidylinositol/GPR55 system and its potential role in human obesity. [Research Support, Non-U.S. Gov’t]. Diabetes, 61(2), 281–291. doi:10.​2337/​db11-0649.CrossRefPubMedPubMedCentral
50.
go back to reference Zhao, C., Fernandes, M. J., Prestwich, G. D., Turgeon, M., Di Battista, J., Clair, T., et al. (2008). Regulation of lysophosphatidic acid receptor expression and function in human synoviocytes: implications for rheumatoid arthritis? [Comparative Study Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov’t]. Molecular Pharmacology, 73(2), 587–600. doi:10.1124/mol.107.038216.CrossRefPubMed Zhao, C., Fernandes, M. J., Prestwich, G. D., Turgeon, M., Di Battista, J., Clair, T., et al. (2008). Regulation of lysophosphatidic acid receptor expression and function in human synoviocytes: implications for rheumatoid arthritis? [Comparative Study Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov’t]. Molecular Pharmacology, 73(2), 587–600. doi:10.​1124/​mol.​107.​038216.CrossRefPubMed
51.
go back to reference Bektas, M., Allende, M. L., Lee, B. G., Chen, W., Amar, M. J., Remaley, A. T., et al. (2010). Sphingosine 1-phosphate lyase deficiency disrupts lipid homeostasis in liver. [Research Support, N.I.H., Extramural Research Support, N.I.H., intramural]. Journal of Biological Chemistry, 285(14), 10880–10889. doi:10.1074/jbc.M109.081489.CrossRefPubMedPubMedCentral Bektas, M., Allende, M. L., Lee, B. G., Chen, W., Amar, M. J., Remaley, A. T., et al. (2010). Sphingosine 1-phosphate lyase deficiency disrupts lipid homeostasis in liver. [Research Support, N.I.H., Extramural Research Support, N.I.H., intramural]. Journal of Biological Chemistry, 285(14), 10880–10889. doi:10.​1074/​jbc.​M109.​081489.CrossRefPubMedPubMedCentral
52.
go back to reference Takeshita, H., Kitano, M., Iwasaki, T., Kitano, S., Tsunemi, S., Sato, C., et al. (2012). Sphingosine 1-phosphate (S1P)/S1P receptor 1 signaling regulates receptor activator of NF-kappaB ligand (RANKL) expression in rheumatoid arthritis. [Research Support, Non-U.S. Gov’t]. Biochemical and Biophysical Research Communications, 419(2), 154–159. doi:10.1016/j.bbrc.2012.01.103.CrossRefPubMed Takeshita, H., Kitano, M., Iwasaki, T., Kitano, S., Tsunemi, S., Sato, C., et al. (2012). Sphingosine 1-phosphate (S1P)/S1P receptor 1 signaling regulates receptor activator of NF-kappaB ligand (RANKL) expression in rheumatoid arthritis. [Research Support, Non-U.S. Gov’t]. Biochemical and Biophysical Research Communications, 419(2), 154–159. doi:10.​1016/​j.​bbrc.​2012.​01.​103.CrossRefPubMed
53.
go back to reference Vladykovskaya, E., Ozhegov, E., Hoetker, J. D., Xie, Z., Ahmed, Y., Suttles, J., et al. (2011). Reductive metabolism increases the proinflammatory activity of aldehyde phospholipids. [Research Support, N.I.H., Extramural]. Journal of Lipid Research, 52(12), 2209–2225. doi:10.1194/jlr.M013854.CrossRefPubMedPubMedCentral Vladykovskaya, E., Ozhegov, E., Hoetker, J. D., Xie, Z., Ahmed, Y., Suttles, J., et al. (2011). Reductive metabolism increases the proinflammatory activity of aldehyde phospholipids. [Research Support, N.I.H., Extramural]. Journal of Lipid Research, 52(12), 2209–2225. doi:10.​1194/​jlr.​M013854.CrossRefPubMedPubMedCentral
54.
go back to reference Anavi-Goffer, S., Baillie, G., Irving, A. J., Gertsch, J., Greig, I. R., Pertwee, R. G., et al. (2012). Modulation of L-alpha-lysophosphatidylinositol/GPR55 mitogen-activated protein kinase (MAPK) signaling by cannabinoids. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Journal of Biological Chemistry, 287(1), 91–104. doi:10.1074/jbc.M111.296020.CrossRefPubMed Anavi-Goffer, S., Baillie, G., Irving, A. J., Gertsch, J., Greig, I. R., Pertwee, R. G., et al. (2012). Modulation of L-alpha-lysophosphatidylinositol/GPR55 mitogen-activated protein kinase (MAPK) signaling by cannabinoids. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Journal of Biological Chemistry, 287(1), 91–104. doi:10.​1074/​jbc.​M111.​296020.CrossRefPubMed
55.
go back to reference Henstridge, C. M., Balenga, N. A., Ford, L. A., Ross, R. A., Waldhoer, M., & Irving, A. J. (2009). The GPR55 ligand L-alpha-lysophosphatidylinositol promotes RhoA-dependent Ca2+ signaling and NFAT activation. [Research Support, Non-U.S. Gov’t]. FASEB Journal, 23(1), 183–193. doi:10.1096/fj.08-108670.CrossRefPubMed Henstridge, C. M., Balenga, N. A., Ford, L. A., Ross, R. A., Waldhoer, M., & Irving, A. J. (2009). The GPR55 ligand L-alpha-lysophosphatidylinositol promotes RhoA-dependent Ca2+ signaling and NFAT activation. [Research Support, Non-U.S. Gov’t]. FASEB Journal, 23(1), 183–193. doi:10.​1096/​fj.​08-108670.CrossRefPubMed
56.
go back to reference Imokawa, G., Takagi, Y., Higuchi, K., Kondo, H., & Yada, Y. (1999). Sphingosylphosphorylcholine is a potent inducer of intercellular adhesion molecule-1 expression in human keratinocytes. Journal of Investigative Dermatology, 112, 91–96.CrossRefPubMed Imokawa, G., Takagi, Y., Higuchi, K., Kondo, H., & Yada, Y. (1999). Sphingosylphosphorylcholine is a potent inducer of intercellular adhesion molecule-1 expression in human keratinocytes. Journal of Investigative Dermatology, 112, 91–96.CrossRefPubMed
57.
go back to reference Nishikawa, M., Kurano, M., Ikeda, H., Aoki, J., & Yatomi, Y. (2015). Lysophosphatidylserine has bilateral effects on macrophages in the pathogenesis of atherosclerosis. Journal of Atherosclerosis and Thrombosis, 22, 518–526.CrossRefPubMed Nishikawa, M., Kurano, M., Ikeda, H., Aoki, J., & Yatomi, Y. (2015). Lysophosphatidylserine has bilateral effects on macrophages in the pathogenesis of atherosclerosis. Journal of Atherosclerosis and Thrombosis, 22, 518–526.CrossRefPubMed
58.
59.
go back to reference Yudkin, J. S., Kumari, M., Humphries, S. E., & Mohamed-Ali, V. (2000). Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link? [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review]. Atherosclerosis, 148(2), 209–214.CrossRefPubMed Yudkin, J. S., Kumari, M., Humphries, S. E., & Mohamed-Ali, V. (2000). Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link? [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review]. Atherosclerosis, 148(2), 209–214.CrossRefPubMed
62.
go back to reference Kawai, T., & Akira, S. (2010). The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Nature Immunology, 11(5), 373–384. doi:10.1038/ni.1863.CrossRefPubMed Kawai, T., & Akira, S. (2010). The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Nature Immunology, 11(5), 373–384. doi:10.​1038/​ni.​1863.CrossRefPubMed
63.
64.
go back to reference Lopez-Pastrana, J., Ferrer, L. M., Li, Y. F., Xiong, X., Xi, H., Cueto, R., et al. (2015). Inhibition of caspase-1 activation in endothelial cells improves angiogenesis: A NOVEL THERAPEUTIC POTENTIAL FOR ISCHEMIA. [Research Support, N.I.H., Extramural]. Journal of Biological Chemistry, 290(28), 17485–17494. doi:10.1074/jbc.M115.641191.CrossRefPubMedPubMedCentral Lopez-Pastrana, J., Ferrer, L. M., Li, Y. F., Xiong, X., Xi, H., Cueto, R., et al. (2015). Inhibition of caspase-1 activation in endothelial cells improves angiogenesis: A NOVEL THERAPEUTIC POTENTIAL FOR ISCHEMIA. [Research Support, N.I.H., Extramural]. Journal of Biological Chemistry, 290(28), 17485–17494. doi:10.​1074/​jbc.​M115.​641191.CrossRefPubMedPubMedCentral
65.
go back to reference Li, X., Fang, P., Li, Y., Kuo, Y.-M., Andrews, A. J., Nanayakkara, G., et al. (2016). Mitochondrial reactive oxygen species mediate lysophosphatidylcholine-induced endothelial cell activation. Atherosclerosis, Thrombosis and Vascular Biology. Article in press. Li, X., Fang, P., Li, Y., Kuo, Y.-M., Andrews, A. J., Nanayakkara, G., et al. (2016). Mitochondrial reactive oxygen species mediate lysophosphatidylcholine-induced endothelial cell activation. Atherosclerosis, Thrombosis and Vascular Biology. Article in press.
66.
go back to reference Oda, S. K., Strauch, P., Fujiwara, Y., Al-Shami, A., Oravecz, T., Tigyi, G., et al. (2013). Lysophosphatidic acid inhibits CD8 T cell activation and control of tumor progression. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Cancer Immunology Research, 1(4), 245–255. doi:10.1158/2326-6066.CIR-13-0043-T.CrossRefPubMed Oda, S. K., Strauch, P., Fujiwara, Y., Al-Shami, A., Oravecz, T., Tigyi, G., et al. (2013). Lysophosphatidic acid inhibits CD8 T cell activation and control of tumor progression. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Cancer Immunology Research, 1(4), 245–255. doi:10.​1158/​2326-6066.​CIR-13-0043-T.CrossRefPubMed
67.
go back to reference Hu, J., Oda, S. K., Shotts, K., Donovan, E. E., Strauch, P., Pujanauski, L. M., et al. (2014). Lysophosphatidic acid receptor 5 inhibits B cell antigen receptor signaling and antibody response. [Research Support, N.I.H., Extramural]. Journal of Immunology, 193(1), 85–95. doi:10.4049/jimmunol.1300429.CrossRef Hu, J., Oda, S. K., Shotts, K., Donovan, E. E., Strauch, P., Pujanauski, L. M., et al. (2014). Lysophosphatidic acid receptor 5 inhibits B cell antigen receptor signaling and antibody response. [Research Support, N.I.H., Extramural]. Journal of Immunology, 193(1), 85–95. doi:10.​4049/​jimmunol.​1300429.CrossRef
68.
go back to reference Emo, J., Meednu, N., Chapman, T. J., Rezaee, F., Balys, M., Randall, T., et al. (2012). Lpa2 is a negative regulator of both dendritic cell activation and murine models of allergic lung inflammation. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Journal of Immunology, 188(8), 3784–3790. doi:10.4049/jimmunol.1102956.CrossRef Emo, J., Meednu, N., Chapman, T. J., Rezaee, F., Balys, M., Randall, T., et al. (2012). Lpa2 is a negative regulator of both dendritic cell activation and murine models of allergic lung inflammation. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Journal of Immunology, 188(8), 3784–3790. doi:10.​4049/​jimmunol.​1102956.CrossRef
69.
go back to reference Saatian, B., Zhao, Y., He, D., Georas, S. N., Watkins, T., Spannhake, E. W., et al. (2006). Transcriptional regulation of lysophosphatidic acid-induced interleukin-8 expression and secretion by p38 MAPK and JNK in human bronchial epithelial cells. [Research Support, N.I.H., Extramural]. The Biochemical Journal, 393(Pt 3), 657–668. doi:10.1042/BJ20050791.CrossRefPubMedPubMedCentral Saatian, B., Zhao, Y., He, D., Georas, S. N., Watkins, T., Spannhake, E. W., et al. (2006). Transcriptional regulation of lysophosphatidic acid-induced interleukin-8 expression and secretion by p38 MAPK and JNK in human bronchial epithelial cells. [Research Support, N.I.H., Extramural]. The Biochemical Journal, 393(Pt 3), 657–668. doi:10.​1042/​BJ20050791.CrossRefPubMedPubMedCentral
70.
go back to reference Sun, Q., Gao, W., Loughran, P., Shapiro, R., Fan, J., Billiar, T. R., et al. (2013). Caspase 1 activation is protective against hepatocyte cell death by up-regulating beclin 1 protein and mitochondrial autophagy in the setting of redox stress. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Journal of Biological Chemistry, 288(22), 15947–15958. doi:10.1074/jbc.M112.426791.CrossRefPubMedPubMedCentral Sun, Q., Gao, W., Loughran, P., Shapiro, R., Fan, J., Billiar, T. R., et al. (2013). Caspase 1 activation is protective against hepatocyte cell death by up-regulating beclin 1 protein and mitochondrial autophagy in the setting of redox stress. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Journal of Biological Chemistry, 288(22), 15947–15958. doi:10.​1074/​jbc.​M112.​426791.CrossRefPubMedPubMedCentral
71.
go back to reference Khan, D., & Ansar Ahmed, S. (2015). The immune system is a natural target for estrogen action: opposing effects of estrogen in two prototypical autoimmune diseases. [Review]. Frontiers in Immunology, 6, 635. doi:10.3389/fimmu.2015.00635.PubMed Khan, D., & Ansar Ahmed, S. (2015). The immune system is a natural target for estrogen action: opposing effects of estrogen in two prototypical autoimmune diseases. [Review]. Frontiers in Immunology, 6, 635. doi:10.​3389/​fimmu.​2015.​00635.PubMed
72.
go back to reference Mai, J., Nanayakkara, G., Lopez-Pastrana, J., Li, X., Li, Y. F., Wang, X., et al. (2016). Interleukin-17A promotes aortic endothelial cell activation via transcriptionally and post-translationally activating p38 MAPK pathway. Journal of Biological Chemistry. doi:10.1074/jbc.M115.690081.PubMed Mai, J., Nanayakkara, G., Lopez-Pastrana, J., Li, X., Li, Y. F., Wang, X., et al. (2016). Interleukin-17A promotes aortic endothelial cell activation via transcriptionally and post-translationally activating p38 MAPK pathway. Journal of Biological Chemistry. doi:10.​1074/​jbc.​M115.​690081.PubMed
73.
go back to reference Taleb, S., Tedgui, A., & Mallat, Z. (2015). IL-17 and Th17 cells in atherosclerosis: subtle and contextual roles. [Research Support, Non-U.S. Gov’t Review]. Arteriosclerosis, Thrombosis, and Vascular Biology, 35(2), 258–264. doi:10.1161/ATVBAHA.114.303567.CrossRefPubMed Taleb, S., Tedgui, A., & Mallat, Z. (2015). IL-17 and Th17 cells in atherosclerosis: subtle and contextual roles. [Research Support, Non-U.S. Gov’t Review]. Arteriosclerosis, Thrombosis, and Vascular Biology, 35(2), 258–264. doi:10.​1161/​ATVBAHA.​114.​303567.CrossRefPubMed
Metadata
Title
Lysophospholipid Receptors, as Novel Conditional Danger Receptors and Homeostatic Receptors Modulate Inflammation—Novel Paradigm and Therapeutic Potential
Authors
Xin Wang
Ya-Feng Li
Gayani Nanayakkara
Ying Shao
Bin Liang
Lauren Cole
William Y. Yang
Xinyuan Li
Ramon Cueto
Jun Yu
Hong Wang
Xiao-Feng Yang
Publication date
01-08-2016
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 4/2016
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-016-9700-6

Other articles of this Issue 4/2016

Journal of Cardiovascular Translational Research 4/2016 Go to the issue