Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 1/2014

01-02-2014

Non Optical Semi-Conductor Next Generation Sequencing of the Main Cardiac QT-Interval Duration Genes in Pooled DNA Samples

Authors: Juan Gómez, Julian R. Reguero, César Morís, Victoria Alvarez, Eliecer Coto

Published in: Journal of Cardiovascular Translational Research | Issue 1/2014

Login to get access

Abstract

DNA variants at the genes encoding cardiac channels have been associated with inherited arrhythmias and the QT interval in the general population. Next generation sequencing technologies would be of special interest to uncover the genetic variation at these genes. The amplification and sequencing of DNA pools (instead of single individuals) would facilitate the rapid and cost-effective screening of large amounts of individuals. However, this pooling strategy could result in a signal of the rare variants below the detection capacity. To validate this approach, a pool of 20 individuals with known rare unique variants in five genes was amplified in only two tubes and sequenced using the non optical semi-conductor (Ion Torrent PGM, Life Technologies) technology. We show that this could be an effective strategy for the screening of large cohorts. Among others, this would facilitate the discovery of new sequence variants linked to cardiac arrhythmia in the general population.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cerrone, M., Napolitano, C., & Priori, S. G. (2012). Genetics of ion-channel disorders. Current Opinion in Cardiology, 27, 242–52.PubMedCrossRef Cerrone, M., Napolitano, C., & Priori, S. G. (2012). Genetics of ion-channel disorders. Current Opinion in Cardiology, 27, 242–52.PubMedCrossRef
2.
go back to reference Napolitano, C., Bloise, R., Monteforte, N., et al. (2012). Sudden cardiac death and genetic ion channelopathies: long QT, Brugada, short QT, catecholaminergic polymorphic ventricular tachycardia, and idiopathic ventricular fibrillation. Circulation, 125, 2027–34.PubMedCrossRef Napolitano, C., Bloise, R., Monteforte, N., et al. (2012). Sudden cardiac death and genetic ion channelopathies: long QT, Brugada, short QT, catecholaminergic polymorphic ventricular tachycardia, and idiopathic ventricular fibrillation. Circulation, 125, 2027–34.PubMedCrossRef
3.
go back to reference Kapa, S., Tester, D. J., Salisbury, B. A., et al. (2009). Genetic testing for long-QT syndrome: distinguishing pathogenic mutations from benign variants. Circulation, 120, 1752–60.PubMedCentralPubMedCrossRef Kapa, S., Tester, D. J., Salisbury, B. A., et al. (2009). Genetic testing for long-QT syndrome: distinguishing pathogenic mutations from benign variants. Circulation, 120, 1752–60.PubMedCentralPubMedCrossRef
4.
go back to reference Giudicessi, J. R., & Ackerman, M. J. (2013). Genetic testing in heritable cardiac arrhythmia syndromes: differentiating pathogenic mutations from background genetic noise. Current Opinion in Cardiology, 28, 63–71.PubMedCentralPubMedCrossRef Giudicessi, J. R., & Ackerman, M. J. (2013). Genetic testing in heritable cardiac arrhythmia syndromes: differentiating pathogenic mutations from background genetic noise. Current Opinion in Cardiology, 28, 63–71.PubMedCentralPubMedCrossRef
5.
go back to reference Gouas, L., Nicaud, V., Chaouch, S., et al. (2007). Confirmation of associations between ion channel gene SNPs and QTc interval duration in healthy subjects. European Journal of Human Genetics, 15, 974–9.PubMedCentralPubMedCrossRef Gouas, L., Nicaud, V., Chaouch, S., et al. (2007). Confirmation of associations between ion channel gene SNPs and QTc interval duration in healthy subjects. European Journal of Human Genetics, 15, 974–9.PubMedCentralPubMedCrossRef
6.
go back to reference Marjamaa, A., Newton-Cheh, C., Porthan, K., et al. (2009). Common candidate gene variants are associated with QT interval duration in the general population. Journal of Internal Medicine, 265, 448–58.PubMedCentralPubMedCrossRef Marjamaa, A., Newton-Cheh, C., Porthan, K., et al. (2009). Common candidate gene variants are associated with QT interval duration in the general population. Journal of Internal Medicine, 265, 448–58.PubMedCentralPubMedCrossRef
7.
go back to reference Yang, P., Kanki, H., Drolet, B., et al. (2002). Allelic variants in long-QT disease genes in patients with drug-associated torsades de pointes. Circulation, 105, 1943–8.PubMedCrossRef Yang, P., Kanki, H., Drolet, B., et al. (2002). Allelic variants in long-QT disease genes in patients with drug-associated torsades de pointes. Circulation, 105, 1943–8.PubMedCrossRef
8.
go back to reference Paulussen, A. D., Gilissen, R. A., Armstrong, M., et al. (2004). Genetic variations of KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2 in drug-induced long QT syndrome patients. Journal of Molecular Medicine, 82, 182–8.PubMedCrossRef Paulussen, A. D., Gilissen, R. A., Armstrong, M., et al. (2004). Genetic variations of KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2 in drug-induced long QT syndrome patients. Journal of Molecular Medicine, 82, 182–8.PubMedCrossRef
9.
go back to reference Rothberg, J. M., Hinz, W., Rearick, T. M., et al. (2011). An integrated semiconductor device enabling non-optical genome sequencing. Nature, 475, 348–52.PubMedCrossRef Rothberg, J. M., Hinz, W., Rearick, T. M., et al. (2011). An integrated semiconductor device enabling non-optical genome sequencing. Nature, 475, 348–52.PubMedCrossRef
10.
go back to reference Loman, N. J., Misra, R. V., Dallman, T. J., et al. (2012). Performance comparison of benchtop high-throughput sequencing platforms. Nature Biotechnology, 30, 434–9.PubMedCrossRef Loman, N. J., Misra, R. V., Dallman, T. J., et al. (2012). Performance comparison of benchtop high-throughput sequencing platforms. Nature Biotechnology, 30, 434–9.PubMedCrossRef
11.
go back to reference Quail, M. A., Smith, M., Coupland, P., et al. (2012). A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics, 13, 341.PubMedCentralPubMedCrossRef Quail, M. A., Smith, M., Coupland, P., et al. (2012). A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics, 13, 341.PubMedCentralPubMedCrossRef
12.
go back to reference Elliott, A. M., Radecki, J., Moghis, B., et al. (2012). Rapid detection of the ACMG/ACOG-recommended 23 CFTR disease-causing mutations using ion torrent semiconductor sequencing. Journal of Biomolecular Techniques, 23, 24–30.PubMedCrossRef Elliott, A. M., Radecki, J., Moghis, B., et al. (2012). Rapid detection of the ACMG/ACOG-recommended 23 CFTR disease-causing mutations using ion torrent semiconductor sequencing. Journal of Biomolecular Techniques, 23, 24–30.PubMedCrossRef
13.
go back to reference Costa, J. L., Sousa, S., Justino, A., et al. (2013). Nonoptical massive parallel DNA sequencing of BRCA1 and BRCA2 genes in a diagnostic setting. Human Mutation, 34, 629–35.PubMedCrossRef Costa, J. L., Sousa, S., Justino, A., et al. (2013). Nonoptical massive parallel DNA sequencing of BRCA1 and BRCA2 genes in a diagnostic setting. Human Mutation, 34, 629–35.PubMedCrossRef
14.
go back to reference Li, X., Buckton, A. J., Wilkinson, S. L., et al. (2013). Towards clinical molecular diagnosis of inherited cardiac conditions: a comparison of bench-top genome DNA sequencers. PLoS One, 8, e67744.PubMedCentralPubMedCrossRef Li, X., Buckton, A. J., Wilkinson, S. L., et al. (2013). Towards clinical molecular diagnosis of inherited cardiac conditions: a comparison of bench-top genome DNA sequencers. PLoS One, 8, e67744.PubMedCentralPubMedCrossRef
15.
go back to reference Nejentsev, S., Walker, N., Riches, D., et al. (2009). Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science, 324, 387–9.PubMedCentralPubMedCrossRef Nejentsev, S., Walker, N., Riches, D., et al. (2009). Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science, 324, 387–9.PubMedCentralPubMedCrossRef
16.
go back to reference Jin, S. C., Pastor, P., Cooper, B., et al. (2012). Pooled-DNA sequencing identifies novel causative variants in PSEN1, GRN and MAPT in a clinical early onset and familial Alzheimer's disease Ibero-American cohort. Alzheimer's Research & Therapy, 4, 34.CrossRef Jin, S. C., Pastor, P., Cooper, B., et al. (2012). Pooled-DNA sequencing identifies novel causative variants in PSEN1, GRN and MAPT in a clinical early onset and familial Alzheimer's disease Ibero-American cohort. Alzheimer's Research & Therapy, 4, 34.CrossRef
17.
go back to reference Harakalova, M., Nijman, I. J., Medic, J., et al. (2011). Genomic DNA pooling strategy for next-generation sequencing-based rare variant discovery in abdominal aortic aneurysm regions of interest-challenges and limitations. Journal of Cardiovascular Translational Research, 4, 271–80.PubMedCentralPubMedCrossRef Harakalova, M., Nijman, I. J., Medic, J., et al. (2011). Genomic DNA pooling strategy for next-generation sequencing-based rare variant discovery in abdominal aortic aneurysm regions of interest-challenges and limitations. Journal of Cardiovascular Translational Research, 4, 271–80.PubMedCentralPubMedCrossRef
Metadata
Title
Non Optical Semi-Conductor Next Generation Sequencing of the Main Cardiac QT-Interval Duration Genes in Pooled DNA Samples
Authors
Juan Gómez
Julian R. Reguero
César Morís
Victoria Alvarez
Eliecer Coto
Publication date
01-02-2014
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 1/2014
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-013-9516-6

Other articles of this Issue 1/2014

Journal of Cardiovascular Translational Research 1/2014 Go to the issue