Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 5/2012

Open Access 01-10-2012

Myocardial Regenerative Properties of Macrophage Populations and Stem Cells

Authors: Maria Paola Santini, Nadia Rosenthal

Published in: Journal of Cardiovascular Translational Research | Issue 5/2012

Login to get access

Abstract

The capacity to regenerate damaged tissue and appendages is lost to some extent in higher vertebrates such as mammals, which form a scar tissue at the expenses of tissue reconstitution and functionality. Whereas this process can protect from further damage and elicit fast healing, it can lead to functional deterioration in organs such as the heart. Based on the analyses performed in the last years, stem cell therapies may not be sufficient to induce cardiac regeneration and additional approaches are required to overcome scar formation. Among these, the immune cells and their humoral response have become a key parameter in regenerative processes. In this review, we will describe the recent findings on the possible therapeutical use of progenitor and immune cells to rescue a damaged heart.
Literature
1.
go back to reference Kierdorf, U., & Kierdorf, H. (2011). Deer antlers—a model of mammalian appendage regeneration: an extensive review. Gerontology, 57, 53–65.PubMedCrossRef Kierdorf, U., & Kierdorf, H. (2011). Deer antlers—a model of mammalian appendage regeneration: an extensive review. Gerontology, 57, 53–65.PubMedCrossRef
2.
go back to reference Hsieh, P. C., Segers, V. F., Davis, M. E., MacGillivray, C., Gannon, J., Molkentin, J. D., et al. (2007). Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nature Medicine, 13, 970–974.PubMedCrossRef Hsieh, P. C., Segers, V. F., Davis, M. E., MacGillivray, C., Gannon, J., Molkentin, J. D., et al. (2007). Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nature Medicine, 13, 970–974.PubMedCrossRef
3.
go back to reference Porrello, E. R., Mahmoud, A. I., Simpson, E., Hill, J. A., Richardson, J. A., Olson, E. N., et al. (2011). Transient regenerative potential of the neonatal mouse heart. Science, 331, 1078–1080.PubMedCrossRef Porrello, E. R., Mahmoud, A. I., Simpson, E., Hill, J. A., Richardson, J. A., Olson, E. N., et al. (2011). Transient regenerative potential of the neonatal mouse heart. Science, 331, 1078–1080.PubMedCrossRef
4.
go back to reference Bergmann, O., Bhardwaj, R. D., Bernard, S., Zdunek, S., Barnabe-Heider, F., Walsh, S., et al. (2009). Evidence for cardiomyocyte renewal in humans. Science, 324, 98–102.PubMedCrossRef Bergmann, O., Bhardwaj, R. D., Bernard, S., Zdunek, S., Barnabe-Heider, F., Walsh, S., et al. (2009). Evidence for cardiomyocyte renewal in humans. Science, 324, 98–102.PubMedCrossRef
5.
go back to reference Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der Zee, R., Li, T., et al. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science, 275, 964–967.PubMedCrossRef Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der Zee, R., Li, T., et al. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science, 275, 964–967.PubMedCrossRef
6.
go back to reference Murry, C. E., Soonpaa, M. H., Reinecke, H., Nakajima, H., Nakajima, H. O., Rubart, M., et al. (2004). Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature, 428, 664–668.PubMedCrossRef Murry, C. E., Soonpaa, M. H., Reinecke, H., Nakajima, H., Nakajima, H. O., Rubart, M., et al. (2004). Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature, 428, 664–668.PubMedCrossRef
7.
go back to reference Nygren, J. M., Jovinge, S., Breitbach, M., Sawen, P., Roll, W., Hescheler, J., et al. (2004). Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nature Medicine, 10, 494–501.PubMedCrossRef Nygren, J. M., Jovinge, S., Breitbach, M., Sawen, P., Roll, W., Hescheler, J., et al. (2004). Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nature Medicine, 10, 494–501.PubMedCrossRef
8.
go back to reference Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410, 701–705.PubMedCrossRef Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410, 701–705.PubMedCrossRef
9.
go back to reference Hirschi, K. K., Ingram, D. A., & Yoder, M. C. (2008). Assessing identity, phenotype, and fate of endothelial progenitor cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 1584–1595.PubMedCrossRef Hirschi, K. K., Ingram, D. A., & Yoder, M. C. (2008). Assessing identity, phenotype, and fate of endothelial progenitor cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 1584–1595.PubMedCrossRef
10.
go back to reference Rajantie, I., Ilmonen, M., Alminaite, A., Ozerdem, U., Alitalo, K., & Salven, P. (2004). Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood, 104, 2084–2086.PubMedCrossRef Rajantie, I., Ilmonen, M., Alminaite, A., Ozerdem, U., Alitalo, K., & Salven, P. (2004). Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood, 104, 2084–2086.PubMedCrossRef
11.
go back to reference Ziegelhoeffer, T., Fernandez, B., Kostin, S., Heil, M., Voswinckel, R., Helisch, A., et al. (2004). Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circulation Research, 94, 230–238.PubMedCrossRef Ziegelhoeffer, T., Fernandez, B., Kostin, S., Heil, M., Voswinckel, R., Helisch, A., et al. (2004). Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circulation Research, 94, 230–238.PubMedCrossRef
12.
go back to reference Laugwitz, K. L., Moretti, A., Caron, L., Nakano, A., & Chien, K. R. (2008). Islet1 cardiovascular progenitors: a single source for heart lineages? Development, 135, 193–205.PubMedCrossRef Laugwitz, K. L., Moretti, A., Caron, L., Nakano, A., & Chien, K. R. (2008). Islet1 cardiovascular progenitors: a single source for heart lineages? Development, 135, 193–205.PubMedCrossRef
13.
go back to reference Cai, C. L., Liang, X., Shi, Y., Chu, P. H., Pfaff, S. L., Chen, J., et al. (2003). Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Developmental Cell, 5, 877–889.PubMedCrossRef Cai, C. L., Liang, X., Shi, Y., Chu, P. H., Pfaff, S. L., Chen, J., et al. (2003). Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Developmental Cell, 5, 877–889.PubMedCrossRef
14.
go back to reference Prall, O. W., Menon, M. K., Solloway, M. J., Watanabe, Y., Zaffran, S., Bajolle, F., et al. (2007). An nkx2-5/bmp2/smad1 negative feedback loop controls heart progenitor specification and proliferation. Cell, 128, 947–959.PubMedCrossRef Prall, O. W., Menon, M. K., Solloway, M. J., Watanabe, Y., Zaffran, S., Bajolle, F., et al. (2007). An nkx2-5/bmp2/smad1 negative feedback loop controls heart progenitor specification and proliferation. Cell, 128, 947–959.PubMedCrossRef
15.
go back to reference Brade, T., Gessert, S., Kuhl, M., & Pandur, P. (2007). The amphibian second heart field: xenopus islet-1 is required for cardiovascular development. Developmental Biology, 311, 297–310.PubMedCrossRef Brade, T., Gessert, S., Kuhl, M., & Pandur, P. (2007). The amphibian second heart field: xenopus islet-1 is required for cardiovascular development. Developmental Biology, 311, 297–310.PubMedCrossRef
16.
go back to reference Laugwitz, K. L., Moretti, A., Lam, J., Gruber, P., Chen, Y., Woodard, S., et al. (2005). Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature, 433, 647–653.PubMedCrossRef Laugwitz, K. L., Moretti, A., Lam, J., Gruber, P., Chen, Y., Woodard, S., et al. (2005). Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature, 433, 647–653.PubMedCrossRef
17.
go back to reference Weinberger, F., Mehrkens, D., Friedrich, F.W., Stubbendorff, M., Hua, X., Muller, J.C., Schrepfer, S., Evans, S., Carrier, L., Eschenhagen, T. (2012). Localization of islet-1-positive cells in the healthy and infarcted adult murine heart. Circulation Research (in press). Weinberger, F., Mehrkens, D., Friedrich, F.W., Stubbendorff, M., Hua, X., Muller, J.C., Schrepfer, S., Evans, S., Carrier, L., Eschenhagen, T. (2012). Localization of islet-1-positive cells in the healthy and infarcted adult murine heart. Circulation Research (in press).
18.
go back to reference Lepilina, A., Coon, A. N., Kikuchi, K., Holdway, J. E., Roberts, R. W., Burns, C. G., et al. (2006). A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell, 127, 607–619.PubMedCrossRef Lepilina, A., Coon, A. N., Kikuchi, K., Holdway, J. E., Roberts, R. W., Burns, C. G., et al. (2006). A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell, 127, 607–619.PubMedCrossRef
19.
go back to reference Chong, J. J., Chandrakanthan, V., Xaymardan, M., Asli, N. S., Li, J., Ahmed, I., et al. (2012). Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell Stem Cell, 9, 527–540.CrossRef Chong, J. J., Chandrakanthan, V., Xaymardan, M., Asli, N. S., Li, J., Ahmed, I., et al. (2012). Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell Stem Cell, 9, 527–540.CrossRef
20.
go back to reference Smart, N., Bollini, S., Dube, K. N., Vieira, J. M., Zhou, B., Davidson, S., et al. (2011). De novo cardiomyocytes from within the activated adult heart after injury. Nature, 474, 640–644.PubMedCrossRef Smart, N., Bollini, S., Dube, K. N., Vieira, J. M., Zhou, B., Davidson, S., et al. (2011). De novo cardiomyocytes from within the activated adult heart after injury. Nature, 474, 640–644.PubMedCrossRef
21.
go back to reference Limana, F., Zacheo, A., Mocini, D., Mangoni, A., Borsellino, G., Diamantini, A., et al. (2007). Identification of myocardial and vascular precursor cells in human and mouse epicardium. Circulation Research, 101, 1255–1265.PubMedCrossRef Limana, F., Zacheo, A., Mocini, D., Mangoni, A., Borsellino, G., Diamantini, A., et al. (2007). Identification of myocardial and vascular precursor cells in human and mouse epicardium. Circulation Research, 101, 1255–1265.PubMedCrossRef
22.
go back to reference van Tuyn, J., Atsma, D. E., Winter, E. M., van der Velde-van, D. I., Pijnappels, D. A., Bax, N. A., et al. (2007). Epicardial cells of human adults can undergo an epithelial-to-mesenchymal transition and obtain characteristics of smooth muscle cells in vitro. Stem Cells, 25, 271–278.PubMedCrossRef van Tuyn, J., Atsma, D. E., Winter, E. M., van der Velde-van, D. I., Pijnappels, D. A., Bax, N. A., et al. (2007). Epicardial cells of human adults can undergo an epithelial-to-mesenchymal transition and obtain characteristics of smooth muscle cells in vitro. Stem Cells, 25, 271–278.PubMedCrossRef
23.
go back to reference Beltrami, A. P., Barlucchi, L., Torella, D., Baker, M., Limana, F., Chimenti, S., et al. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114, 763–776.PubMedCrossRef Beltrami, A. P., Barlucchi, L., Torella, D., Baker, M., Limana, F., Chimenti, S., et al. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114, 763–776.PubMedCrossRef
24.
go back to reference Bearzi, C., Leri, A., Lo Monaco, F., Rota, M., Gonzalez, A., Hosoda, T., et al. (2009). Identification of a coronary vascular progenitor cell in the human heart. Proc Natl Acad Sci U S A, 106, 15885–15890.PubMedCrossRef Bearzi, C., Leri, A., Lo Monaco, F., Rota, M., Gonzalez, A., Hosoda, T., et al. (2009). Identification of a coronary vascular progenitor cell in the human heart. Proc Natl Acad Sci U S A, 106, 15885–15890.PubMedCrossRef
25.
go back to reference Tallini, Y. N., Greene, K. S., Craven, M., Spealman, A., Breitbach, M., Smith, J., et al. (2009). C-kit expression identifies cardiovascular precursors in the neonatal heart. Proc Natl Acad Sci U S A, 106, 1808–1813.PubMedCrossRef Tallini, Y. N., Greene, K. S., Craven, M., Spealman, A., Breitbach, M., Smith, J., et al. (2009). C-kit expression identifies cardiovascular precursors in the neonatal heart. Proc Natl Acad Sci U S A, 106, 1808–1813.PubMedCrossRef
26.
go back to reference Zaruba, M. M., Soonpaa, M., Reuter, S., & Field, L. J. (2010). Cardiomyogenic potential of c-kit(+)-expressing cells derived from neonatal and adult mouse hearts. Circulation, 121, 1992–2000.PubMedCrossRef Zaruba, M. M., Soonpaa, M., Reuter, S., & Field, L. J. (2010). Cardiomyogenic potential of c-kit(+)-expressing cells derived from neonatal and adult mouse hearts. Circulation, 121, 1992–2000.PubMedCrossRef
27.
go back to reference Sandstedt, J., Jonsson, M., Lindahl, A., Jeppsson, A., & Asp, J. (2010). C-kit + cd45− cells found in the adult human heart represent a population of endothelial progenitor cells. Basic Research in Cardiology, 105, 545–556.PubMedCrossRef Sandstedt, J., Jonsson, M., Lindahl, A., Jeppsson, A., & Asp, J. (2010). C-kit + cd45− cells found in the adult human heart represent a population of endothelial progenitor cells. Basic Research in Cardiology, 105, 545–556.PubMedCrossRef
28.
go back to reference Messina, E., De Angelis, L., Frati, G., Morrone, S., Chimenti, S., Fiordaliso, F., et al. (2004). Isolation and expansion of adult cardiac stem cells from human and murine heart. Circulation Research, 95, 911–921.PubMedCrossRef Messina, E., De Angelis, L., Frati, G., Morrone, S., Chimenti, S., Fiordaliso, F., et al. (2004). Isolation and expansion of adult cardiac stem cells from human and murine heart. Circulation Research, 95, 911–921.PubMedCrossRef
29.
go back to reference Smith, R. R., Barile, L., Cho, H. C., Leppo, M. K., Hare, J. M., Messina, E., et al. (2007). Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation, 115, 896–908.PubMedCrossRef Smith, R. R., Barile, L., Cho, H. C., Leppo, M. K., Hare, J. M., Messina, E., et al. (2007). Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation, 115, 896–908.PubMedCrossRef
30.
go back to reference Malliaras, K., Li, T. S., Luthringer, D., Terrovitis, J., Cheng, K., Chakravarty, T., et al. (2012). Safety and efficacy of allogeneic cell therapy in infarcted rats transplanted with mismatched cardiosphere-derived cells. Circulation, 125, 100–112.PubMedCrossRef Malliaras, K., Li, T. S., Luthringer, D., Terrovitis, J., Cheng, K., Chakravarty, T., et al. (2012). Safety and efficacy of allogeneic cell therapy in infarcted rats transplanted with mismatched cardiosphere-derived cells. Circulation, 125, 100–112.PubMedCrossRef
31.
go back to reference Makkar, R. R., Smith, R. R., Cheng, K., Malliaras, K., Thomson, L. E., Berman, D., et al. (2012). Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (caduceus): a prospective, randomised phase 1 trial. Lancet, 379, 895–904.PubMedCrossRef Makkar, R. R., Smith, R. R., Cheng, K., Malliaras, K., Thomson, L. E., Berman, D., et al. (2012). Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (caduceus): a prospective, randomised phase 1 trial. Lancet, 379, 895–904.PubMedCrossRef
32.
go back to reference Oyama, T., Nagai, T., Wada, H., Naito, A. T., Matsuura, K., Iwanaga, K., et al. (2007). Cardiac side population cells have a potential to migrate and differentiate into cardiomyocytes in vitro and in vivo. J Cell Biol, 176, 329–341.PubMedCrossRef Oyama, T., Nagai, T., Wada, H., Naito, A. T., Matsuura, K., Iwanaga, K., et al. (2007). Cardiac side population cells have a potential to migrate and differentiate into cardiomyocytes in vitro and in vivo. J Cell Biol, 176, 329–341.PubMedCrossRef
33.
go back to reference He, J. Q., Ma, Y., Lee, Y., Thomson, J. A., & Kamp, T. J. (2003). Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circulation Research, 93, 32–39.PubMedCrossRef He, J. Q., Ma, Y., Lee, Y., Thomson, J. A., & Kamp, T. J. (2003). Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circulation Research, 93, 32–39.PubMedCrossRef
34.
go back to reference Kehat, I., Khimovich, L., Caspi, O., Gepstein, A., Shofti, R., Arbel, G., et al. (2004). Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nature Biotechnology, 22, 1282–1289.PubMedCrossRef Kehat, I., Khimovich, L., Caspi, O., Gepstein, A., Shofti, R., Arbel, G., et al. (2004). Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nature Biotechnology, 22, 1282–1289.PubMedCrossRef
35.
go back to reference Laflamme, M. A., Chen, K. Y., Naumova, A. V., Muskheli, V., Fugate, J. A., Dupras, S. K., et al. (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnology, 25, 1015–1024.PubMedCrossRef Laflamme, M. A., Chen, K. Y., Naumova, A. V., Muskheli, V., Fugate, J. A., Dupras, S. K., et al. (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnology, 25, 1015–1024.PubMedCrossRef
36.
go back to reference Leor, J., Gerecht, S., Cohen, S., Miller, L., Holbova, R., Ziskind, A., et al. (2007). Human embryonic stem cell transplantation to repair the infarcted myocardium. Heart, 93, 1278–1284.PubMedCrossRef Leor, J., Gerecht, S., Cohen, S., Miller, L., Holbova, R., Ziskind, A., et al. (2007). Human embryonic stem cell transplantation to repair the infarcted myocardium. Heart, 93, 1278–1284.PubMedCrossRef
37.
go back to reference van Laake, L. W., Passier, R., Monshouwer-Kloots, J., Verkleij, A. J., Lips, D. J., Freund, C., et al. (2007). Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction. Stem Cell Research, 1, 9–24.PubMedCrossRef van Laake, L. W., Passier, R., Monshouwer-Kloots, J., Verkleij, A. J., Lips, D. J., Freund, C., et al. (2007). Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction. Stem Cell Research, 1, 9–24.PubMedCrossRef
38.
go back to reference Passier, R., van Laake, L. W., & Mummery, C. L. (2008). Stem-cell-based therapy and lessons from the heart. Nature, 453, 322–329.PubMedCrossRef Passier, R., van Laake, L. W., & Mummery, C. L. (2008). Stem-cell-based therapy and lessons from the heart. Nature, 453, 322–329.PubMedCrossRef
39.
go back to reference Chidgey, A. P., Layton, D., Trounson, A., & Boyd, R. L. (2008). Tolerance strategies for stem-cell-based therapies. Nature, 453, 330–337.PubMedCrossRef Chidgey, A. P., Layton, D., Trounson, A., & Boyd, R. L. (2008). Tolerance strategies for stem-cell-based therapies. Nature, 453, 330–337.PubMedCrossRef
40.
go back to reference Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.PubMedCrossRef Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.PubMedCrossRef
41.
go back to reference Ieda, M., Fu, J.D., Delgado-Olguin, P., Vedantham, V., Hayashi, Y., Bruneau, B.G, Srivastava, D. (2010). Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142: 375–386 Ieda, M., Fu, J.D., Delgado-Olguin, P., Vedantham, V., Hayashi, Y., Bruneau, B.G, Srivastava, D. (2010). Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142: 375–386
42.
go back to reference Efe, J. A., Hilcove, S., Kim, J., Zhou, H., Ouyang, K., Wang, G., et al. (2011). Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nature Cell Biology, 13, 215–222.PubMedCrossRef Efe, J. A., Hilcove, S., Kim, J., Zhou, H., Ouyang, K., Wang, G., et al. (2011). Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nature Cell Biology, 13, 215–222.PubMedCrossRef
43.
go back to reference Quaini, F., Urbanek, K., Beltrami, A. P., Finato, N., Beltrami, C. A., Nadal-Ginard, B., et al. (2002). Chimerism of the transplanted heart. The New England Journal of Medicine, 346, 5–15.PubMedCrossRef Quaini, F., Urbanek, K., Beltrami, A. P., Finato, N., Beltrami, C. A., Nadal-Ginard, B., et al. (2002). Chimerism of the transplanted heart. The New England Journal of Medicine, 346, 5–15.PubMedCrossRef
44.
go back to reference Jackson, K. A., Majka, S. M., Wang, H., Pocius, J., Hartley, C. J., Majesky, M. W., et al. (2001). Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. The Journal of Clinical Investigation, 107, 1395–1402.PubMedCrossRef Jackson, K. A., Majka, S. M., Wang, H., Pocius, J., Hartley, C. J., Majesky, M. W., et al. (2001). Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. The Journal of Clinical Investigation, 107, 1395–1402.PubMedCrossRef
45.
go back to reference Balsam, L. B., Wagers, A. J., Christensen, J. L., Kofidis, T., Weissman, I. L., & Robbins, R. C. (2004). Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature, 428, 668–673.PubMedCrossRef Balsam, L. B., Wagers, A. J., Christensen, J. L., Kofidis, T., Weissman, I. L., & Robbins, R. C. (2004). Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature, 428, 668–673.PubMedCrossRef
46.
go back to reference Alvarez-Dolado, M., Pardal, R., Garcia-Verdugo, J. M., Fike, J. R., Lee, H. O., Pfeffer, K., et al. (2003). Fusion of bone-marrow-derived cells with purkinje neurons, cardiomyocytes and hepatocytes. Nature, 425, 968–973.PubMedCrossRef Alvarez-Dolado, M., Pardal, R., Garcia-Verdugo, J. M., Fike, J. R., Lee, H. O., Pfeffer, K., et al. (2003). Fusion of bone-marrow-derived cells with purkinje neurons, cardiomyocytes and hepatocytes. Nature, 425, 968–973.PubMedCrossRef
47.
go back to reference Gnecchi, M., He, H., Liang, O. D., Melo, L. G., Morello, F., Mu, H., et al. (2005). Paracrine action accounts for marked protection of ischemic heart by akt-modified mesenchymal stem cells. Nature Medicine, 11, 367–368.PubMedCrossRef Gnecchi, M., He, H., Liang, O. D., Melo, L. G., Morello, F., Mu, H., et al. (2005). Paracrine action accounts for marked protection of ischemic heart by akt-modified mesenchymal stem cells. Nature Medicine, 11, 367–368.PubMedCrossRef
48.
go back to reference Mollmann, H., Nef, H. M., Kostin, S., von Kalle, C., Pilz, I., Weber, M., et al. (2006). Bone marrow-derived cells contribute to infarct remodelling. Cardiovascular Research, 71, 661–671.PubMedCrossRef Mollmann, H., Nef, H. M., Kostin, S., von Kalle, C., Pilz, I., Weber, M., et al. (2006). Bone marrow-derived cells contribute to infarct remodelling. Cardiovascular Research, 71, 661–671.PubMedCrossRef
49.
go back to reference Ratajczak, M. Z., Kucia, M., Majka, M., Reca, R., & Ratajczak, J. (2004). Heterogeneous populations of bone marrow stem cells—are we spotting on the same cells from the different angles? Folia Histochemica et Cytobiologica, 42, 139–146.PubMed Ratajczak, M. Z., Kucia, M., Majka, M., Reca, R., & Ratajczak, J. (2004). Heterogeneous populations of bone marrow stem cells—are we spotting on the same cells from the different angles? Folia Histochemica et Cytobiologica, 42, 139–146.PubMed
50.
go back to reference Friedenstein, A. J., Petrakova, K. V., Kurolesova, A. I., & Frolova, G. P. (1968). Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation, 6, 230–247.PubMedCrossRef Friedenstein, A. J., Petrakova, K. V., Kurolesova, A. I., & Frolova, G. P. (1968). Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation, 6, 230–247.PubMedCrossRef
51.
go back to reference Gimble, J. M., Katz, A. J., & Bunnell, B. A. (2007). Adipose-derived stem cells for regenerative medicine. Circulation Research, 100, 1249–1260.PubMedCrossRef Gimble, J. M., Katz, A. J., & Bunnell, B. A. (2007). Adipose-derived stem cells for regenerative medicine. Circulation Research, 100, 1249–1260.PubMedCrossRef
52.
go back to reference Deans, R. J., & Moseley, A. B. (2000). Mesenchymal stem cells: biology and potential clinical uses. Experimental Hematology, 28, 875–884.PubMedCrossRef Deans, R. J., & Moseley, A. B. (2000). Mesenchymal stem cells: biology and potential clinical uses. Experimental Hematology, 28, 875–884.PubMedCrossRef
53.
go back to reference Makino, S., Fukuda, K., Miyoshi, S., Konishi, F., Kodama, H., Pan, J., et al. (1999). Cardiomyocytes can be generated from marrow stromal cells in vitro. The Journal of Clinical Investigation, 103, 697–705.PubMedCrossRef Makino, S., Fukuda, K., Miyoshi, S., Konishi, F., Kodama, H., Pan, J., et al. (1999). Cardiomyocytes can be generated from marrow stromal cells in vitro. The Journal of Clinical Investigation, 103, 697–705.PubMedCrossRef
54.
go back to reference Potapova, I. A., Brink, P. R., Cohen, I. S., & Doronin, S. V. (2008). Culturing of human mesenchymal stem cells as three-dimensional aggregates induces functional expression of cxcr4 that regulates adhesion to endothelial cells. The Journal of Biological Chemistry, 283, 13100–13107.PubMedCrossRef Potapova, I. A., Brink, P. R., Cohen, I. S., & Doronin, S. V. (2008). Culturing of human mesenchymal stem cells as three-dimensional aggregates induces functional expression of cxcr4 that regulates adhesion to endothelial cells. The Journal of Biological Chemistry, 283, 13100–13107.PubMedCrossRef
55.
go back to reference Hatzistergos, K. E., Quevedo, H., Oskouei, B. N., Hu, Q., Feigenbaum, G. S., Margitich, I. S., et al. (2010). Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circulation Research, 107, 913–922.PubMedCrossRef Hatzistergos, K. E., Quevedo, H., Oskouei, B. N., Hu, Q., Feigenbaum, G. S., Margitich, I. S., et al. (2010). Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circulation Research, 107, 913–922.PubMedCrossRef
56.
go back to reference Chen, S. L., Fang, W. W., Ye, F., Liu, Y. H., Qian, J., Shan, S. J., et al. (2004). Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. American Journal of Cardiology, 94, 92–95.PubMedCrossRef Chen, S. L., Fang, W. W., Ye, F., Liu, Y. H., Qian, J., Shan, S. J., et al. (2004). Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. American Journal of Cardiology, 94, 92–95.PubMedCrossRef
57.
go back to reference Hare, J. M., Traverse, J. H., Henry, T. D., Dib, N., Strumpf, R. K., Schulman, S. P., et al. (2009). A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. Journal of the American College of Cardiology, 54, 2277–2286.PubMedCrossRef Hare, J. M., Traverse, J. H., Henry, T. D., Dib, N., Strumpf, R. K., Schulman, S. P., et al. (2009). A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. Journal of the American College of Cardiology, 54, 2277–2286.PubMedCrossRef
58.
go back to reference De Miguel, M.P., Fuentes-Julian, S., Blazquez-Martinez, A., Pascual, C.Y., Aller, M.A., Arias, J., Arnalich-Montiel, F. (2012). Immunosuppressive properties of mesenchymal stem cells: Advances and applications. Current Molecular Medicine (in press). De Miguel, M.P., Fuentes-Julian, S., Blazquez-Martinez, A., Pascual, C.Y., Aller, M.A., Arias, J., Arnalich-Montiel, F. (2012). Immunosuppressive properties of mesenchymal stem cells: Advances and applications. Current Molecular Medicine (in press).
59.
go back to reference Assmus, B., Honold, J., Schachinger, V., Britten, M. B., Fischer-Rasokat, U., Lehmann, R., et al. (2006). Transcoronary transplantation of progenitor cells after myocardial infarction. The New England Journal of Medicine, 355, 1222–1232.PubMedCrossRef Assmus, B., Honold, J., Schachinger, V., Britten, M. B., Fischer-Rasokat, U., Lehmann, R., et al. (2006). Transcoronary transplantation of progenitor cells after myocardial infarction. The New England Journal of Medicine, 355, 1222–1232.PubMedCrossRef
60.
go back to reference Wollert, K. C., Meyer, G. P., Lotz, J., Ringes-Lichtenberg, S., Lippolt, P., Breidenbach, C., et al. (2004). Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the boost randomised controlled clinical trial. Lancet, 364, 141–148.PubMedCrossRef Wollert, K. C., Meyer, G. P., Lotz, J., Ringes-Lichtenberg, S., Lippolt, P., Breidenbach, C., et al. (2004). Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the boost randomised controlled clinical trial. Lancet, 364, 141–148.PubMedCrossRef
61.
go back to reference Schuldt, A. J., Rosen, M. R., Gaudette, G. R., & Cohen, I. S. (2008). Repairing damaged myocardium: evaluating cells used for cardiac regeneration. Current Treatment Options in Cardiovascular Medicine, 10, 59–72.PubMedCrossRef Schuldt, A. J., Rosen, M. R., Gaudette, G. R., & Cohen, I. S. (2008). Repairing damaged myocardium: evaluating cells used for cardiac regeneration. Current Treatment Options in Cardiovascular Medicine, 10, 59–72.PubMedCrossRef
62.
go back to reference Clifford, D.M., Fisher, S.A., Brunskill, S.J., Doree, C., Mathur, A., Watt, S., Martin-Rendon, E. (2012). Stem cell treatment for acute myocardial infarction. Cochrane Database Syst Rev 2: CD006536 Clifford, D.M., Fisher, S.A., Brunskill, S.J., Doree, C., Mathur, A., Watt, S., Martin-Rendon, E. (2012). Stem cell treatment for acute myocardial infarction. Cochrane Database Syst Rev 2: CD006536
63.
go back to reference Bolli, R., Chugh, A. R., D'Amario, D., Loughran, J. H., Stoddard, M. F., Ikram, S., et al. (2011). Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet, 378, 1847–1857.PubMedCrossRef Bolli, R., Chugh, A. R., D'Amario, D., Loughran, J. H., Stoddard, M. F., Ikram, S., et al. (2011). Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet, 378, 1847–1857.PubMedCrossRef
64.
go back to reference Williams, A. R., Trachtenberg, B., Velazquez, D. L., McNiece, I., Altman, P., Rouy, D., et al. (2011). Intramyocardial stem cell injection in patients with ischemic cardiomyopathy: functional recovery and reverse remodeling. Circulation Research, 108, 792–796.PubMedCrossRef Williams, A. R., Trachtenberg, B., Velazquez, D. L., McNiece, I., Altman, P., Rouy, D., et al. (2011). Intramyocardial stem cell injection in patients with ischemic cardiomyopathy: functional recovery and reverse remodeling. Circulation Research, 108, 792–796.PubMedCrossRef
65.
go back to reference Wall, S. T., Walker, J. C., Healy, K. E., Ratcliffe, M. B., & Guccione, J. M. (2006). Theoretical impact of the injection of material into the myocardium: a finite element model simulation. Circulation, 114, 2627–2635.PubMedCrossRef Wall, S. T., Walker, J. C., Healy, K. E., Ratcliffe, M. B., & Guccione, J. M. (2006). Theoretical impact of the injection of material into the myocardium: a finite element model simulation. Circulation, 114, 2627–2635.PubMedCrossRef
66.
go back to reference Gordon, S., & Taylor, P. R. (2005). Monocyte and macrophage heterogeneity. Nature Reviews Immunology, 5, 953–964.PubMedCrossRef Gordon, S., & Taylor, P. R. (2005). Monocyte and macrophage heterogeneity. Nature Reviews Immunology, 5, 953–964.PubMedCrossRef
67.
go back to reference Apostolakis, S., Lip, G. Y., & Shantsila, E. (2010). Monocytes in heart failure: relationship to a deteriorating immune overreaction or a desperate attempt for tissue repair? Cardiovascular Research, 85, 649–660.PubMedCrossRef Apostolakis, S., Lip, G. Y., & Shantsila, E. (2010). Monocytes in heart failure: relationship to a deteriorating immune overreaction or a desperate attempt for tissue repair? Cardiovascular Research, 85, 649–660.PubMedCrossRef
68.
go back to reference Passlick, B., Flieger, D., & Ziegler-Heitbrock, H. W. (1989). Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood, 74, 2527–2534.PubMed Passlick, B., Flieger, D., & Ziegler-Heitbrock, H. W. (1989). Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood, 74, 2527–2534.PubMed
69.
go back to reference Geissmann, F., Auffray, C., Palframan, R., Wirrig, C., Ciocca, A., Campisi, L., et al. (2008). Blood monocytes: distinct subsets, how they relate to dendritic cells, and their possible roles in the regulation of t-cell responses. Immunology and Cell Biology, 86, 398–408.PubMedCrossRef Geissmann, F., Auffray, C., Palframan, R., Wirrig, C., Ciocca, A., Campisi, L., et al. (2008). Blood monocytes: distinct subsets, how they relate to dendritic cells, and their possible roles in the regulation of t-cell responses. Immunology and Cell Biology, 86, 398–408.PubMedCrossRef
70.
go back to reference Arnold, L., Henry, A., Poron, F., Baba-Amer, Y., van Rooijen, N., Plonquet, A., et al. (2007). Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. The Journal of Experimental Medicine, 204, 1057–1069.PubMedCrossRef Arnold, L., Henry, A., Poron, F., Baba-Amer, Y., van Rooijen, N., Plonquet, A., et al. (2007). Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. The Journal of Experimental Medicine, 204, 1057–1069.PubMedCrossRef
71.
go back to reference Heil, M., Ziegelhoeffer, T., Pipp, F., Kostin, S., Martin, S., Clauss, M., et al. (2002). Blood monocyte concentration is critical for enhancement of collateral artery growth. American Journal of Physiology—Heart and Circulatory Physiology, 283, H2411–H2419.PubMed Heil, M., Ziegelhoeffer, T., Pipp, F., Kostin, S., Martin, S., Clauss, M., et al. (2002). Blood monocyte concentration is critical for enhancement of collateral artery growth. American Journal of Physiology—Heart and Circulatory Physiology, 283, H2411–H2419.PubMed
72.
go back to reference McLennan, I. S. (1996). Degenerating and regenerating skeletal muscles contain several subpopulations of macrophages with distinct spatial and temporal distributions. Journal of Anatomy, 188(Pt 1), 17–28.PubMed McLennan, I. S. (1996). Degenerating and regenerating skeletal muscles contain several subpopulations of macrophages with distinct spatial and temporal distributions. Journal of Anatomy, 188(Pt 1), 17–28.PubMed
73.
go back to reference Ruffell, D., Mourkioti, F., Gambardella, A., Kirstetter, P., Lopez, R. G., Rosenthal, N., et al. (2009). A creb-c/ebpbeta cascade induces m2 macrophage-specific gene expression and promotes muscle injury repair. Proc Natl Acad Sci U S A, 106, 17475–17480.PubMedCrossRef Ruffell, D., Mourkioti, F., Gambardella, A., Kirstetter, P., Lopez, R. G., Rosenthal, N., et al. (2009). A creb-c/ebpbeta cascade induces m2 macrophage-specific gene expression and promotes muscle injury repair. Proc Natl Acad Sci U S A, 106, 17475–17480.PubMedCrossRef
74.
go back to reference van Amerongen, M. J., Harmsen, M. C., van Rooijen, N., Petersen, A. H., & van Luyn, M. J. (2007). Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice. American Journal of Pathology, 170, 818–829.PubMedCrossRef van Amerongen, M. J., Harmsen, M. C., van Rooijen, N., Petersen, A. H., & van Luyn, M. J. (2007). Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice. American Journal of Pathology, 170, 818–829.PubMedCrossRef
75.
go back to reference Danenberg, H. D., Fishbein, I., Gao, J., Monkkonen, J., Reich, R., Gati, I., et al. (2002). Macrophage depletion by clodronate-containing liposomes reduces neointimal formation after balloon injury in rats and rabbits. Circulation, 106, 599–605.PubMedCrossRef Danenberg, H. D., Fishbein, I., Gao, J., Monkkonen, J., Reich, R., Gati, I., et al. (2002). Macrophage depletion by clodronate-containing liposomes reduces neointimal formation after balloon injury in rats and rabbits. Circulation, 106, 599–605.PubMedCrossRef
76.
go back to reference Moldovan, N. I., Goldschmidt-Clermont, P. J., Parker-Thornburg, J., Shapiro, S. D., & Kolattukudy, P. E. (2000). Contribution of monocytes/macrophages to compensatory neovascularization: the drilling of metalloelastase-positive tunnels in ischemic myocardium. Circulation Research, 87, 378–384.PubMedCrossRef Moldovan, N. I., Goldschmidt-Clermont, P. J., Parker-Thornburg, J., Shapiro, S. D., & Kolattukudy, P. E. (2000). Contribution of monocytes/macrophages to compensatory neovascularization: the drilling of metalloelastase-positive tunnels in ischemic myocardium. Circulation Research, 87, 378–384.PubMedCrossRef
77.
go back to reference Fantin, A., Vieira, J. M., Gestri, G., Denti, L., Schwarz, Q., Prykhozhij, S., et al. (2010). Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood, 116, 829–840.PubMedCrossRef Fantin, A., Vieira, J. M., Gestri, G., Denti, L., Schwarz, Q., Prykhozhij, S., et al. (2010). Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood, 116, 829–840.PubMedCrossRef
78.
go back to reference Urbich, C., Heeschen, C., Aicher, A., Dernbach, E., Zeiher, A. M., & Dimmeler, S. (2003). Relevance of monocytic features for neovascularization capacity of circulating endothelial progenitor cells. Circulation, 108, 2511–2516.PubMedCrossRef Urbich, C., Heeschen, C., Aicher, A., Dernbach, E., Zeiher, A. M., & Dimmeler, S. (2003). Relevance of monocytic features for neovascularization capacity of circulating endothelial progenitor cells. Circulation, 108, 2511–2516.PubMedCrossRef
79.
go back to reference De Palma, M., & Naldini, L. (2009). Tie2-expressing monocytes (tems): novel targets and vehicles of anticancer therapy? Biochimica et Biophysica Acta, 1796, 5–10.PubMed De Palma, M., & Naldini, L. (2009). Tie2-expressing monocytes (tems): novel targets and vehicles of anticancer therapy? Biochimica et Biophysica Acta, 1796, 5–10.PubMed
80.
go back to reference De Palma, M., Venneri, M. A., Galli, R., Sergi Sergi, L., Politi, L. S., Sampaolesi, M., et al. (2005). Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell, 8, 211–226.PubMedCrossRef De Palma, M., Venneri, M. A., Galli, R., Sergi Sergi, L., Politi, L. S., Sampaolesi, M., et al. (2005). Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell, 8, 211–226.PubMedCrossRef
81.
go back to reference Kim, S. J., Kim, J. S., Papadopoulos, J., Wook Kim, S., Maya, M., Zhang, F., et al. (2009). Circulating monocytes expressing cd31: implications for acute and chronic angiogenesis. American Journal of Pathology, 174, 1972–1980.PubMedCrossRef Kim, S. J., Kim, J. S., Papadopoulos, J., Wook Kim, S., Maya, M., Zhang, F., et al. (2009). Circulating monocytes expressing cd31: implications for acute and chronic angiogenesis. American Journal of Pathology, 174, 1972–1980.PubMedCrossRef
82.
go back to reference Pipp, F., Heil, M., Issbrucker, K., Ziegelhoeffer, T., Martin, S., van den Heuvel, J., et al. (2003). Vegfr-1-selective vegf homologue plgf is arteriogenic: evidence for a monocyte-mediated mechanism. Circulation Research, 92, 378–385.PubMedCrossRef Pipp, F., Heil, M., Issbrucker, K., Ziegelhoeffer, T., Martin, S., van den Heuvel, J., et al. (2003). Vegfr-1-selective vegf homologue plgf is arteriogenic: evidence for a monocyte-mediated mechanism. Circulation Research, 92, 378–385.PubMedCrossRef
83.
go back to reference Kuwana, M., Okazaki, Y., Kodama, H., Izumi, K., Yasuoka, H., Ogawa, Y., et al. (2003). Human circulating cd14+ monocytes as a source of progenitors that exhibit mesenchymal cell differentiation. Journal of Leukocyte Biology, 74, 833–845.PubMedCrossRef Kuwana, M., Okazaki, Y., Kodama, H., Izumi, K., Yasuoka, H., Ogawa, Y., et al. (2003). Human circulating cd14+ monocytes as a source of progenitors that exhibit mesenchymal cell differentiation. Journal of Leukocyte Biology, 74, 833–845.PubMedCrossRef
84.
go back to reference Kuwana, M., Okazaki, Y., Kodama, H., Satoh, T., Kawakami, Y., & Ikeda, Y. (2006). Endothelial differentiation potential of human monocyte-derived multipotential cells. Stem Cells, 24, 2733–2743.PubMedCrossRef Kuwana, M., Okazaki, Y., Kodama, H., Satoh, T., Kawakami, Y., & Ikeda, Y. (2006). Endothelial differentiation potential of human monocyte-derived multipotential cells. Stem Cells, 24, 2733–2743.PubMedCrossRef
85.
go back to reference Anghelina, M., Krishnan, P., Moldovan, L., & Moldovan, N. I. (2004). Monocytes and macrophages form branched cell columns in matrigel: implications for a role in neovascularization. Stem Cells and Development, 13, 665–676.PubMedCrossRef Anghelina, M., Krishnan, P., Moldovan, L., & Moldovan, N. I. (2004). Monocytes and macrophages form branched cell columns in matrigel: implications for a role in neovascularization. Stem Cells and Development, 13, 665–676.PubMedCrossRef
86.
go back to reference Anghelina, M., Krishnan, P., Moldovan, L., & Moldovan, N. I. (2006). Monocytes/macrophages cooperate with progenitor cells during neovascularization and tissue repair: conversion of cell columns into fibrovascular bundles. American Journal of Pathology, 168, 529–541.PubMedCrossRef Anghelina, M., Krishnan, P., Moldovan, L., & Moldovan, N. I. (2006). Monocytes/macrophages cooperate with progenitor cells during neovascularization and tissue repair: conversion of cell columns into fibrovascular bundles. American Journal of Pathology, 168, 529–541.PubMedCrossRef
87.
go back to reference Moldovan, N. I. (2002). Role of monocytes and macrophages in adult angiogenesis: a light at the tunnel's end. Journal of Hematotherapy and Stem Cell Research, 11, 179–194.PubMedCrossRef Moldovan, N. I. (2002). Role of monocytes and macrophages in adult angiogenesis: a light at the tunnel's end. Journal of Hematotherapy and Stem Cell Research, 11, 179–194.PubMedCrossRef
88.
go back to reference Goepfert, C., Sundberg, C., Sevigny, J., Enjyoji, K., Hoshi, T., Csizmadia, E., et al. (2001). Disordered cellular migration and angiogenesis in cd39-null mice. Circulation, 104, 3109–3115.PubMedCrossRef Goepfert, C., Sundberg, C., Sevigny, J., Enjyoji, K., Hoshi, T., Csizmadia, E., et al. (2001). Disordered cellular migration and angiogenesis in cd39-null mice. Circulation, 104, 3109–3115.PubMedCrossRef
89.
go back to reference Levine, H. A., Sleeman, B. D., & Nilsen-Hamilton, M. (2000). A mathematical model for the roles of pericytes and macrophages in the initiation of angiogenesis. I. The role of protease inhibitors in preventing angiogenesis. Mathematical Biosciences, 168, 77–115.PubMedCrossRef Levine, H. A., Sleeman, B. D., & Nilsen-Hamilton, M. (2000). A mathematical model for the roles of pericytes and macrophages in the initiation of angiogenesis. I. The role of protease inhibitors in preventing angiogenesis. Mathematical Biosciences, 168, 77–115.PubMedCrossRef
90.
go back to reference Takakura, N., Watanabe, T., Suenobu, S., Yamada, Y., Noda, T., Ito, Y., et al. (2000). A role for hematopoietic stem cells in promoting angiogenesis. Cell, 102, 199–209.PubMedCrossRef Takakura, N., Watanabe, T., Suenobu, S., Yamada, Y., Noda, T., Ito, Y., et al. (2000). A role for hematopoietic stem cells in promoting angiogenesis. Cell, 102, 199–209.PubMedCrossRef
91.
go back to reference Nahrendorf, M., Swirski, F. K., Aikawa, E., Stangenberg, L., Wurdinger, T., Figueiredo, J. L., et al. (2007). The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. The Journal of Experimental Medicine, 204, 3037–3047.PubMedCrossRef Nahrendorf, M., Swirski, F. K., Aikawa, E., Stangenberg, L., Wurdinger, T., Figueiredo, J. L., et al. (2007). The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. The Journal of Experimental Medicine, 204, 3037–3047.PubMedCrossRef
92.
go back to reference Swirski, F. K., Nahrendorf, M., Etzrodt, M., Wildgruber, M., Cortez-Retamozo, V., Panizzi, P., et al. (2009). Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science, 325, 612–616.PubMedCrossRef Swirski, F. K., Nahrendorf, M., Etzrodt, M., Wildgruber, M., Cortez-Retamozo, V., Panizzi, P., et al. (2009). Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science, 325, 612–616.PubMedCrossRef
93.
go back to reference Zandbergen, H. R., Sharma, U. C., Gupta, S., Verjans, J. W., van den Borne, S., Pokharel, S., et al. (2009). Macrophage depletion in hypertensive rats accelerates development of cardiomyopathy. Journal of Cardiovascular Pharmacology and Therapeutics, 14, 68–75.PubMedCrossRef Zandbergen, H. R., Sharma, U. C., Gupta, S., Verjans, J. W., van den Borne, S., Pokharel, S., et al. (2009). Macrophage depletion in hypertensive rats accelerates development of cardiomyopathy. Journal of Cardiovascular Pharmacology and Therapeutics, 14, 68–75.PubMedCrossRef
94.
go back to reference Assmus, B., Schachinger, V., Teupe, C., Britten, M., Lehmann, R., Dobert, N., et al. (2002). Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (topcare-ami). Circulation, 106, 3009–3017.PubMedCrossRef Assmus, B., Schachinger, V., Teupe, C., Britten, M., Lehmann, R., Dobert, N., et al. (2002). Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (topcare-ami). Circulation, 106, 3009–3017.PubMedCrossRef
95.
go back to reference Goss, R. J. (1992). The evolution of regeneration: adaptive or inherent? Journal of Theoretical Biology, 159, 241–260.PubMedCrossRef Goss, R. J. (1992). The evolution of regeneration: adaptive or inherent? Journal of Theoretical Biology, 159, 241–260.PubMedCrossRef
96.
go back to reference Mescher, A. L., & Neff, A. W. (2005). Regenerative capacity and the developing immune system. Advances in Biochemical Engineering/Biotechnology, 93, 39–66.PubMed Mescher, A. L., & Neff, A. W. (2005). Regenerative capacity and the developing immune system. Advances in Biochemical Engineering/Biotechnology, 93, 39–66.PubMed
97.
go back to reference Harty, M., Neff, A. W., King, M. W., & Mescher, A. L. (2003). Regeneration or scarring: an immunologic perspective. Developmental Dynamics, 226, 268–279.PubMedCrossRef Harty, M., Neff, A. W., King, M. W., & Mescher, A. L. (2003). Regeneration or scarring: an immunologic perspective. Developmental Dynamics, 226, 268–279.PubMedCrossRef
98.
go back to reference Tournefier, A., Laurens, V., Chapusot, C., Ducoroy, P., Padros, M. R., Salvadori, F., et al. (1998). Structure of MHC class I and class II CDNAs and possible immunodeficiency linked to class ii expression in the mexican axolotl. Immunological Reviews, 166, 259–277.PubMedCrossRef Tournefier, A., Laurens, V., Chapusot, C., Ducoroy, P., Padros, M. R., Salvadori, F., et al. (1998). Structure of MHC class I and class II CDNAs and possible immunodeficiency linked to class ii expression in the mexican axolotl. Immunological Reviews, 166, 259–277.PubMedCrossRef
99.
go back to reference Godwin, J. W., & Brockes, J. P. (2006). Regeneration, tissue injury and the immune response. Journal of Anatomy, 209, 423–432.PubMedCrossRef Godwin, J. W., & Brockes, J. P. (2006). Regeneration, tissue injury and the immune response. Journal of Anatomy, 209, 423–432.PubMedCrossRef
Metadata
Title
Myocardial Regenerative Properties of Macrophage Populations and Stem Cells
Authors
Maria Paola Santini
Nadia Rosenthal
Publication date
01-10-2012
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 5/2012
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-012-9383-6

Other articles of this Issue 5/2012

Journal of Cardiovascular Translational Research 5/2012 Go to the issue