Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 2/2012

Open Access 01-04-2012

Mathematical Modeling and Simulation of Ventricular Activation Sequences: Implications for Cardiac Resynchronization Therapy

Author: Mark Potse

Published in: Journal of Cardiovascular Translational Research | Issue 2/2012

Login to get access

Abstract

Next to clinical and experimental research, mathematical modeling plays a crucial role in medicine. Biomedical research takes place on many different levels, from molecules to the whole organism. Due to the complexity of biological systems, the interactions between components are often difficult or impossible to understand without the help of mathematical models. Mathematical models of cardiac electrophysiology have made a tremendous progress since the first numerical ECG simulations in the 1960s. This paper briefly reviews the development of this field and discusses some example cases where models have helped us forward, emphasizing applications that are relevant for the study of heart failure and cardiac resynchronization therapy.
Literature
2.
go back to reference Aoki, M., Okamoto, Y., Musha, T., & Harumi, K. I. (1987). Three-dimensional simulation of the ventricular depolarization and repolarization processes and body surface potentials: Normal heart and bundle branch block. IEEE Transactions on Biomedical Engineering, 34(6), 454–462.PubMedCrossRef Aoki, M., Okamoto, Y., Musha, T., & Harumi, K. I. (1987). Three-dimensional simulation of the ventricular depolarization and repolarization processes and body surface potentials: Normal heart and bundle branch block. IEEE Transactions on Biomedical Engineering, 34(6), 454–462.PubMedCrossRef
3.
go back to reference Auricchio, A., Fantoni, C., Regoli, F., Carbucicchio, C., Goette, A., Geller, C., et al. (2004). Characterization of left ventricular activation in patients with heart failure and left bundle-branch block. Circulation, 109, 1133–1139.PubMedCrossRef Auricchio, A., Fantoni, C., Regoli, F., Carbucicchio, C., Goette, A., Geller, C., et al. (2004). Characterization of left ventricular activation in patients with heart failure and left bundle-branch block. Circulation, 109, 1133–1139.PubMedCrossRef
5.
go back to reference Barr, R. C., Pilkington, T. C., Boineau, J. P., & Spach, M. S. (1966). Determining surface potentials from current dipoles, with application to electrocardiography. IEEE Transactions on Biomedical Engineering, 13(2), 88–92.PubMedCrossRef Barr, R. C., Pilkington, T. C., Boineau, J. P., & Spach, M. S. (1966). Determining surface potentials from current dipoles, with application to electrocardiography. IEEE Transactions on Biomedical Engineering, 13(2), 88–92.PubMedCrossRef
6.
go back to reference Berenfeld, O., & Jalife, J. (1998). Purkinje-muscle reentry as a mechanism of polymorphic ventricular arrhythmias in a 3-dimensional model of the ventricles. Circulation Research, 82, 1063–1077.PubMed Berenfeld, O., & Jalife, J. (1998). Purkinje-muscle reentry as a mechanism of polymorphic ventricular arrhythmias in a 3-dimensional model of the ventricles. Circulation Research, 82, 1063–1077.PubMed
7.
go back to reference Bernus, O., van Eyck, B., Verschelde, H., & Panfilov, A. V. (2002). Transition from ventricular fibrillation to ventricular tachycardia: A simulation study on the role of Ca2 + -channel blockers in human ventricular tissue. Physics in Medicine & Biology, 47, 4167–4179.CrossRef Bernus, O., van Eyck, B., Verschelde, H., & Panfilov, A. V. (2002). Transition from ventricular fibrillation to ventricular tachycardia: A simulation study on the role of Ca2 + -channel blockers in human ventricular tissue. Physics in Medicine & Biology, 47, 4167–4179.CrossRef
8.
go back to reference Bishop, M. J., & Plank, G. (2011). Representing cardiac bidomain bath-loading effects by an augmented monodomain approach: Application to complex ventricular models. IEEE Transactions on Biomedical Engineering, 58, 1066–1075.PubMedCrossRef Bishop, M. J., & Plank, G. (2011). Representing cardiac bidomain bath-loading effects by an augmented monodomain approach: Application to complex ventricular models. IEEE Transactions on Biomedical Engineering, 58, 1066–1075.PubMedCrossRef
10.
go back to reference Boyle, P. M., Deo, M., Plank, G., & Vigmond, E. J. (2010). Purkinje-mediated effects in the response of quiescent ventricles to defibrillation shocks. Annals of Biomedical Engineering, 38, 456–468.PubMedCrossRef Boyle, P. M., Deo, M., Plank, G., & Vigmond, E. J. (2010). Purkinje-mediated effects in the response of quiescent ventricles to defibrillation shocks. Annals of Biomedical Engineering, 38, 456–468.PubMedCrossRef
11.
go back to reference Brody, D. A. (1956). A theoretical analysis of intracavitary blood mass influence on the heart–lead relationship. Circulation Research, 4, 731–738.PubMed Brody, D. A. (1956). A theoretical analysis of intracavitary blood mass influence on the heart–lead relationship. Circulation Research, 4, 731–738.PubMed
12.
go back to reference Brymer, J. F., Khaja, F., Marzilli, M., Goldstein, S., & Alban, J. (1985). “Ischemia at a distance” during intermittent coronary artery occlusion: A coronary anatomic explanation. Journal of the American College of Cardiology, 6(1), 41–45.PubMedCrossRef Brymer, J. F., Khaja, F., Marzilli, M., Goldstein, S., & Alban, J. (1985). “Ischemia at a distance” during intermittent coronary artery occlusion: A coronary anatomic explanation. Journal of the American College of Cardiology, 6(1), 41–45.PubMedCrossRef
13.
go back to reference Clancy, C. E., & Rudy, Y. (2002). Na +  channel mutation that causes both Brugada and long-QT syndrome phenotypes; a simulation study of mechanism. Circulation, 105, 1208–1213.PubMedCrossRef Clancy, C. E., & Rudy, Y. (2002). Na +  channel mutation that causes both Brugada and long-QT syndrome phenotypes; a simulation study of mechanism. Circulation, 105, 1208–1213.PubMedCrossRef
14.
go back to reference Clayton, R. H., Bernus, O., Cherry, E. M., Dierckx, H., Fenton, F. H., Mirabella, L., et al. (2011). Models of cardiac tissue electrophysiology: Progress, challenges and open questions. Progress in Biophysics and Molecular Biology, 104, 22–48 (review).PubMedCrossRef Clayton, R. H., Bernus, O., Cherry, E. M., Dierckx, H., Fenton, F. H., Mirabella, L., et al. (2011). Models of cardiac tissue electrophysiology: Progress, challenges and open questions. Progress in Biophysics and Molecular Biology, 104, 22–48 (review).PubMedCrossRef
15.
go back to reference Colli Franzone, P., Guerri, L., & Tentoni, S. (1990). Mathematical modeling of the excitation process in myocardial tissue: Influence of fiber rotation on wavefront propagation and potential field. Mathematical Biosciences, 101(2), 155–235.CrossRef Colli Franzone, P., Guerri, L., & Tentoni, S. (1990). Mathematical modeling of the excitation process in myocardial tissue: Influence of fiber rotation on wavefront propagation and potential field. Mathematical Biosciences, 101(2), 155–235.CrossRef
16.
go back to reference Colli-Franzone, P., Pavarino, L. F., & Scacchi, S. (2011). Exploring anodal and cathodal make and break cardiac excitation mechanisms in a 3D anisotropic bidomain model. Mathematical Biosciences, 230, 96–114.PubMedCrossRef Colli-Franzone, P., Pavarino, L. F., & Scacchi, S. (2011). Exploring anodal and cathodal make and break cardiac excitation mechanisms in a 3D anisotropic bidomain model. Mathematical Biosciences, 230, 96–114.PubMedCrossRef
17.
go back to reference Comtois, P., & Vinet, A. (2002). Resetting and annihilation of reentrant activity in a model of a one-dimensional loop of ventricular tissue. Chaos, 12(3), 903–922.PubMedCrossRef Comtois, P., & Vinet, A. (2002). Resetting and annihilation of reentrant activity in a model of a one-dimensional loop of ventricular tissue. Chaos, 12(3), 903–922.PubMedCrossRef
18.
go back to reference Comtois, P., Sakabe, M., Vigmond, E. J., Munoz, M., Texier, A., Shiroshita-Takeshita, A., et al. (2008). Mechanisms of atrial fibrillation termination by rapidly unbinding Na +  channel blockers: Insights from mathematical models and experimental correlates. American Journal of Physiology. Heart and Circulatory Physiology, 295, H1489–H1504.PubMedCrossRef Comtois, P., Sakabe, M., Vigmond, E. J., Munoz, M., Texier, A., Shiroshita-Takeshita, A., et al. (2008). Mechanisms of atrial fibrillation termination by rapidly unbinding Na +  channel blockers: Insights from mathematical models and experimental correlates. American Journal of Physiology. Heart and Circulatory Physiology, 295, H1489–H1504.PubMedCrossRef
19.
go back to reference Conrath, C. E., & Opthof, T. (2006). Ventricular repolarization: An overview of (patho)physiology, sympathetic effects and genetic aspects. Progress in Biophysics and Molecular Biology, 92(3), 269–307.PubMedCrossRef Conrath, C. E., & Opthof, T. (2006). Ventricular repolarization: An overview of (patho)physiology, sympathetic effects and genetic aspects. Progress in Biophysics and Molecular Biology, 92(3), 269–307.PubMedCrossRef
20.
go back to reference Conrath, C. E., Wilders, R., Coronel, R., de Bakker, J. M., Taggart, P., de Groot, J. R., et al. (2004). Intercellular coupling through gap junctions masks M cells in the human heart. Cardiovascular Research, 62, 407–414.PubMedCrossRef Conrath, C. E., Wilders, R., Coronel, R., de Bakker, J. M., Taggart, P., de Groot, J. R., et al. (2004). Intercellular coupling through gap junctions masks M cells in the human heart. Cardiovascular Research, 62, 407–414.PubMedCrossRef
21.
go back to reference Courtemanche, M., Ramirez, R., & Nattel, S. (1998). Ionic mechanisms underlying human atrial action potential properties: Insights from a mathematical model. American Journal of Physiology. Heart and Circulatory Physiology, 275, H301–H321. Courtemanche, M., Ramirez, R., & Nattel, S. (1998). Ionic mechanisms underlying human atrial action potential properties: Insights from a mathematical model. American Journal of Physiology. Heart and Circulatory Physiology, 275, H301–H321.
22.
go back to reference Desplantez, T., Dupont, E., Severs, N. J., & Weingart, R. (2007). Gap junction channels and cardiac impulse propagation. The Journal of Membrane Biology, 218, 13–28 (review).PubMedCrossRef Desplantez, T., Dupont, E., Severs, N. J., & Weingart, R. (2007). Gap junction channels and cardiac impulse propagation. The Journal of Membrane Biology, 218, 13–28 (review).PubMedCrossRef
23.
go back to reference Dubé, B., Gulrajani, R. M., Lorange, M., LeBlanc, A. R., Nasmith, J., Nadeau, R. A. (1996). A computer heart model incorporating anisotropic propagation: IV. Simulation of regional myocardial ischemia. Journal of Electrocardiology, 29(2), 91–103.PubMedCrossRef Dubé, B., Gulrajani, R. M., Lorange, M., LeBlanc, A. R., Nasmith, J., Nadeau, R. A. (1996). A computer heart model incorporating anisotropic propagation: IV. Simulation of regional myocardial ischemia. Journal of Electrocardiology, 29(2), 91–103.PubMedCrossRef
24.
go back to reference Durrer, D., van Dam, R. T., Freud, G. E., Janse, M. J., Meijler, F. L., & Arzbaecher, R. C. (1970). Total excitation of the isolated human heart. Circulation, 41(6), 899–912.PubMed Durrer, D., van Dam, R. T., Freud, G. E., Janse, M. J., Meijler, F. L., & Arzbaecher, R. C. (1970). Total excitation of the isolated human heart. Circulation, 41(6), 899–912.PubMed
25.
go back to reference Efimov, I. R., Gray, R. A., & Roth, B. J. (2000). Virtual electrodes and deexcitation: New insights into fibrillation induction and defibrillation. Journal of Cardiovascular Electrophysiology 11, 339–353.PubMedCrossRef Efimov, I. R., Gray, R. A., & Roth, B. J. (2000). Virtual electrodes and deexcitation: New insights into fibrillation induction and defibrillation. Journal of Cardiovascular Electrophysiology 11, 339–353.PubMedCrossRef
26.
go back to reference Eifler, W. J., Macchi, E., Ritsema van Eck, H. J., Horacek, B. M., & Rautaharju, P. M. (1981). Mechanism of generation of body surface electrocardiographic P-waves in normal, middle, and lower sinus rhythms. Circulation Research, 48, 168–182.PubMed Eifler, W. J., Macchi, E., Ritsema van Eck, H. J., Horacek, B. M., & Rautaharju, P. M. (1981). Mechanism of generation of body surface electrocardiographic P-waves in normal, middle, and lower sinus rhythms. Circulation Research, 48, 168–182.PubMed
27.
go back to reference Fast, V. G., & Kléber, A. G. (1995). Block of impulse propagation at an abrupt tissue expansion: Evaluation of the critical strand diameter in 2- and 3-dimensional computer models. Cardiovascular Research, 30, 449–459.PubMed Fast, V. G., & Kléber, A. G. (1995). Block of impulse propagation at an abrupt tissue expansion: Evaluation of the critical strand diameter in 2- and 3-dimensional computer models. Cardiovascular Research, 30, 449–459.PubMed
28.
go back to reference Franz, M. R., Bargheer, K., Rafflenbeul, W., Haverich, A., & Pichtlen, P. R. (1987). Monophasic action potential mapping in human subjects with normal electrocardiograms: Direct evidence for the genesis of the T wave. Circulation, 75, 379–386.PubMedCrossRef Franz, M. R., Bargheer, K., Rafflenbeul, W., Haverich, A., & Pichtlen, P. R. (1987). Monophasic action potential mapping in human subjects with normal electrocardiograms: Direct evidence for the genesis of the T wave. Circulation, 75, 379–386.PubMedCrossRef
29.
go back to reference Fung, J. W. H., Yu, C. M., Yip, G., Zhang, Y., Chan, H., Kum, C. C., et al. (2004). Variable left ventricular activation pattern in patients with heart failure and left bundle branch block. Heart, 90, 17–19.PubMedCrossRef Fung, J. W. H., Yu, C. M., Yip, G., Zhang, Y., Chan, H., Kum, C. C., et al. (2004). Variable left ventricular activation pattern in patients with heart failure and left bundle branch block. Heart, 90, 17–19.PubMedCrossRef
30.
go back to reference Gelernter, H. L., & Swihart, J. C. (1964). A mathematical–physical model of the genesis of the electrocardiogram. Biophysical Journal, 4, 285–301.PubMedCrossRef Gelernter, H. L., & Swihart, J. C. (1964). A mathematical–physical model of the genesis of the electrocardiogram. Biophysical Journal, 4, 285–301.PubMedCrossRef
31.
go back to reference Gelernter, H. L., Swihart, J. C., & Angell, M. A. K. (1966). The use of a mathematical model in the study of the properties of the full-surface electrocardiogram. I: Scher generators in a homogeneous torso. II: “Enlarged heart” potentials. Annals of the New York Academy of Sciences, 28, 1069–1084. Gelernter, H. L., Swihart, J. C., & Angell, M. A. K. (1966). The use of a mathematical model in the study of the properties of the full-surface electrocardiogram. I: Scher generators in a homogeneous torso. II: “Enlarged heart” potentials. Annals of the New York Academy of Sciences, 28, 1069–1084.
32.
go back to reference Ghosh, S., Cooper, D. H., Vijayakumar, R., Zhang, J., Pollak, S., Haïssaguerre, M., et al. (2010). Early repolarization associated with sudden death: Insights from noninvasive electrocardiographic imaging. Heart Rhythm, 534–537. Ghosh, S., Cooper, D. H., Vijayakumar, R., Zhang, J., Pollak, S., Haïssaguerre, M., et al. (2010). Early repolarization associated with sudden death: Insights from noninvasive electrocardiographic imaging. Heart Rhythm, 534–537.
33.
go back to reference Gima, K., & Rudy, Y. (2002). Ionic current basis of electrocardiographic waveforms; a model study. Circulation Research, 90, 889–896.PubMedCrossRef Gima, K., & Rudy, Y. (2002). Ionic current basis of electrocardiographic waveforms; a model study. Circulation Research, 90, 889–896.PubMedCrossRef
34.
go back to reference Grandi, E., Puglisi, J. L., Bers, D. M., & Severi, S. (2006). Compound mutations in long QT syndrome assessed by a computer model. In Comp. in Cardiol., Valencia. Grandi, E., Puglisi, J. L., Bers, D. M., & Severi, S. (2006). Compound mutations in long QT syndrome assessed by a computer model. In Comp. in Cardiol., Valencia.
35.
go back to reference Gulrajani, R. M., & Mailloux, G. E. (1983). A simulation study of the effects of torso inhomogeneities on electrocardiographic potentials, using realistic heart and torso models. Circulation Research, 52, 45–56.PubMed Gulrajani, R. M., & Mailloux, G. E. (1983). A simulation study of the effects of torso inhomogeneities on electrocardiographic potentials, using realistic heart and torso models. Circulation Research, 52, 45–56.PubMed
36.
go back to reference Hamlin, R. L., & Scher, A. M. (1961). Ventricular activation process and genesis of QRS complex in the goat. The American Journal of Physiology, 200, 223–228.PubMed Hamlin, R. L., & Scher, A. M. (1961). Ventricular activation process and genesis of QRS complex in the goat. The American Journal of Physiology, 200, 223–228.PubMed
38.
go back to reference Henriquez, C. S., Muzikant, A. L., & Smoak, C. K. (1996). Anisotropy, fiber curvature, and bath loading effects on activation in thin and thick cardiac tissue preparations: Simulations in a three-dimensional bidomain model. Journal of Cardiovascular Electrophysiology, 7, 424–444.PubMedCrossRef Henriquez, C. S., Muzikant, A. L., & Smoak, C. K. (1996). Anisotropy, fiber curvature, and bath loading effects on activation in thin and thick cardiac tissue preparations: Simulations in a three-dimensional bidomain model. Journal of Cardiovascular Electrophysiology, 7, 424–444.PubMedCrossRef
39.
go back to reference Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500–544.PubMed Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500–544.PubMed
40.
go back to reference Hoogendijk, M. G., Potse, M., Linnenbank, A. C., Verkerk, A. O., den Ruijter, H. M., van Amersfoorth, S. C. M., et al. (2010). Mechanism of right precordial ST-segment elevation in structural heart disease: Excitation failure by current-to-load mismatch. Heart Rhythm, 7, 238–248.PubMedCrossRef Hoogendijk, M. G., Potse, M., Linnenbank, A. C., Verkerk, A. O., den Ruijter, H. M., van Amersfoorth, S. C. M., et al. (2010). Mechanism of right precordial ST-segment elevation in structural heart disease: Excitation failure by current-to-load mismatch. Heart Rhythm, 7, 238–248.PubMedCrossRef
42.
go back to reference Hopenfeld, B., Stinstra, J. G., & MacLeod, R. S. (2004). Mechanism for ST depression associated with contiguous subendocardial ischemia. Journal of Cardiovascular Electrophysiology, 15(10), 1200–1206.PubMedCrossRef Hopenfeld, B., Stinstra, J. G., & MacLeod, R. S. (2004). Mechanism for ST depression associated with contiguous subendocardial ischemia. Journal of Cardiovascular Electrophysiology, 15(10), 1200–1206.PubMedCrossRef
43.
go back to reference Huygens, C. (1690). Treatise on light (English translation by S. P. Thompson, 1912). Chicago: University of Chicago Press. Huygens, C. (1690). Treatise on light (English translation by S. P. Thompson, 1912). Chicago: University of Chicago Press.
44.
go back to reference Iyer, V., Mazhari, R., & Winslow, R. L. (2004). A computational model of the human left-ventricular epicardial myocyte. Biophysical Journal, 87, 1507–1525.PubMedCrossRef Iyer, V., Mazhari, R., & Winslow, R. L. (2004). A computational model of the human left-ventricular epicardial myocyte. Biophysical Journal, 87, 1507–1525.PubMedCrossRef
45.
go back to reference Jacquemet, V., & Henriquez, C. S. (2009). Genesis of complex fractionated atrial electrograms in zones of slow conduction: A computer model of microfibrosis. Heart Rhythm, 6, 803–810.PubMedCrossRef Jacquemet, V., & Henriquez, C. S. (2009). Genesis of complex fractionated atrial electrograms in zones of slow conduction: A computer model of microfibrosis. Heart Rhythm, 6, 803–810.PubMedCrossRef
46.
go back to reference Jia, P., Ramanathan, C., Ghanem, R. N., Ryu, K., Varma, N., & Rudy, Y. (2006). Electrocardiographic imaging of cardiac resynchronization therapy in heart failure: Observation of variable electrophysiologic responses. Heart Rhythm, 3, 296–310.PubMedCrossRef Jia, P., Ramanathan, C., Ghanem, R. N., Ryu, K., Varma, N., & Rudy, Y. (2006). Electrocardiographic imaging of cardiac resynchronization therapy in heart failure: Observation of variable electrophysiologic responses. Heart Rhythm, 3, 296–310.PubMedCrossRef
47.
go back to reference Johnston, P. R., & Kilpatrick, D. (2003). The effect of conductivity values on ST segment shift in subendocardial ischaemia. IEEE Transactions on Biomedical Engineering, 50(2), 150–158.PubMedCrossRef Johnston, P. R., & Kilpatrick, D. (2003). The effect of conductivity values on ST segment shift in subendocardial ischaemia. IEEE Transactions on Biomedical Engineering, 50(2), 150–158.PubMedCrossRef
48.
go back to reference Keener, J. P. (1986). A geometrical theory for spiral waves in excitable media. SIAM Journal on Applied Mathematics, 46, 1039–1056.CrossRef Keener, J. P. (1986). A geometrical theory for spiral waves in excitable media. SIAM Journal on Applied Mathematics, 46, 1039–1056.CrossRef
49.
go back to reference Keener, J. P. (1991). An eikonal-curvature equation for action potential propagation in myocardium. Journal of Mathematical Biology, 29,629–651.PubMedCrossRef Keener, J. P. (1991). An eikonal-curvature equation for action potential propagation in myocardium. Journal of Mathematical Biology, 29,629–651.PubMedCrossRef
50.
go back to reference Keldermann, R. H., Nash, M. P., Gelderblom, H., Wang, V. Y., & Panfilov, A. V. (2010). Electromechanical wavebreak in a model of the human left ventricle. American Journal of Physiology. Heart and Circulatory Physiology, 299, H134–143.PubMedCrossRef Keldermann, R. H., Nash, M. P., Gelderblom, H., Wang, V. Y., & Panfilov, A. V. (2010). Electromechanical wavebreak in a model of the human left ventricle. American Journal of Physiology. Heart and Circulatory Physiology, 299, H134–143.PubMedCrossRef
51.
go back to reference Keller, D. U. J., Seemann, G., Weiss, D. L., Farina, D., Zehelein, J., & Dössel, O. (2007). Computer based modeling of the congenital long-QT 2 syndrome in the visible man torso: From genes to ECG. In 29th annu. int. conf. IEEE EMBS (pp. 1410–1413). Lyon, France. Keller, D. U. J., Seemann, G., Weiss, D. L., Farina, D., Zehelein, J., & Dössel, O. (2007). Computer based modeling of the congenital long-QT 2 syndrome in the visible man torso: From genes to ECG. In 29th annu. int. conf. IEEE EMBS (pp. 1410–1413). Lyon, France.
52.
go back to reference Keller, D. U. J., Jarrousse, O., Fritz, T., Ley, S., Dössel, O., Seemann, G. (2011). Impact of physiological ventricular deformation on the morphology of the T-wave: A hybrid, static-dynamic approach. IEEE Transactions on Biomedical Engineering, 58, 2109–2119.PubMedCrossRef Keller, D. U. J., Jarrousse, O., Fritz, T., Ley, S., Dössel, O., Seemann, G. (2011). Impact of physiological ventricular deformation on the morphology of the T-wave: A hybrid, static-dynamic approach. IEEE Transactions on Biomedical Engineering, 58, 2109–2119.PubMedCrossRef
53.
go back to reference Kerckhoffs, R. C. P., Faris, O. P., Bovendeerd, P. H. M., Prinzen, F. W., Smits, K., McVeigh, E. R., et al. (2003). Timing of depolarization and contraction in the paced canine left ventricle: Model and experiment. Journal of Cardiovascular Electrophysiology, 14 Suppl., S188–S195.PubMedCrossRef Kerckhoffs, R. C. P., Faris, O. P., Bovendeerd, P. H. M., Prinzen, F. W., Smits, K., McVeigh, E. R., et al. (2003). Timing of depolarization and contraction in the paced canine left ventricle: Model and experiment. Journal of Cardiovascular Electrophysiology, 14 Suppl., S188–S195.PubMedCrossRef
54.
go back to reference Kerckhoffs, R. C. P., Lumens, J., Vernooy, K., Omens, J. H., Mulligan, L. J., Delhaas, T., et al. (2008). Cardiac resynchronization: Insight from experimental and computational models. Progress in Biophysics and Molecular Biology, 97, 543–561.PubMedCrossRef Kerckhoffs, R. C. P., Lumens, J., Vernooy, K., Omens, J. H., Mulligan, L. J., Delhaas, T., et al. (2008). Cardiac resynchronization: Insight from experimental and computational models. Progress in Biophysics and Molecular Biology, 97, 543–561.PubMedCrossRef
55.
go back to reference Kuijpers, N. H. L., ten Eikelder, H. M. M., Bovendeerd, P. H. M., Verheule, S., Arts, T., Hilbers, P. A. J. (2008). Mechanoelectric feedback as a trigger mechanism for cardiac electrical remodeling: A model study. Annals of Biomedical Engineering, 36, 1816–1835.PubMedCrossRef Kuijpers, N. H. L., ten Eikelder, H. M. M., Bovendeerd, P. H. M., Verheule, S., Arts, T., Hilbers, P. A. J. (2008). Mechanoelectric feedback as a trigger mechanism for cardiac electrical remodeling: A model study. Annals of Biomedical Engineering, 36, 1816–1835.PubMedCrossRef
56.
go back to reference Kuijpers, N. H. L., Hermeling, E., Bovendeerd, P. H. M., Delhaas, T., & Prinzen, F. W. (2012). Mechano-electrical coupling in dyssynchronous and failing hearts. J. Cardiovasc Trans Res, 5. doi:10.1007/s12265-012-9346-y. Kuijpers, N. H. L., Hermeling, E., Bovendeerd, P. H. M., Delhaas, T., & Prinzen, F. W. (2012). Mechano-electrical coupling in dyssynchronous and failing hearts. J. Cardiovasc Trans Res, 5. doi:10.​1007/​s12265-012-9346-y.
57.
go back to reference Kurata, Y., Hisatome, I., Matsuda, H., & Shibamoto, T. (2005). Dynamical mechanisms of pacemaker generation in I K1-downregulated human ventricular myocytes: Insights from bifurcation analyses of a mathematical model. Biophysical Journal, 89, 2865–2887.PubMedCrossRef Kurata, Y., Hisatome, I., Matsuda, H., & Shibamoto, T. (2005). Dynamical mechanisms of pacemaker generation in I K1-downregulated human ventricular myocytes: Insights from bifurcation analyses of a mathematical model. Biophysical Journal, 89, 2865–2887.PubMedCrossRef
58.
go back to reference Lines, G. T., Buist, M. L., Grøttum, P., Pullan, A. J., Sundnes, J., & Tveito, A. (2003). Mathematical models and numerical methods for the forward problem in cardiac electrophysiology. Computing and Visualization in Science, 5, 215–239.CrossRef Lines, G. T., Buist, M. L., Grøttum, P., Pullan, A. J., Sundnes, J., & Tveito, A. (2003). Mathematical models and numerical methods for the forward problem in cardiac electrophysiology. Computing and Visualization in Science, 5, 215–239.CrossRef
59.
go back to reference Lorange, M., & Gulrajani, R. M. (1986). Computer simulation of the Wolff–Parkinson–White preexcitation syndrome with a modified Miller–Geselowitz heart model. IEEE Transactions on Biomedical Engineering, 33(9), 862–873.PubMedCrossRef Lorange, M., & Gulrajani, R. M. (1986). Computer simulation of the Wolff–Parkinson–White preexcitation syndrome with a modified Miller–Geselowitz heart model. IEEE Transactions on Biomedical Engineering, 33(9), 862–873.PubMedCrossRef
60.
go back to reference Lorange, M., & Gulrajani, R.M. (1993). A computer heart model incorporating anisotropic propagation: I. Model construction and simulation of normal activation. Journal of Electrocardiology, 26(4), 245–261.PubMedCrossRef Lorange, M., & Gulrajani, R.M. (1993). A computer heart model incorporating anisotropic propagation: I. Model construction and simulation of normal activation. Journal of Electrocardiology, 26(4), 245–261.PubMedCrossRef
61.
go back to reference Lorange, M., Gulrajani, R. M., Nadeau, R. A., & Préda, I. (1993). A computer heart model incorporating anisotropic propagation: II. Simulations of conduction block. Journal of Electrocardiology, 26(4), 263–277.PubMedCrossRef Lorange, M., Gulrajani, R. M., Nadeau, R. A., & Préda, I. (1993). A computer heart model incorporating anisotropic propagation: II. Simulations of conduction block. Journal of Electrocardiology, 26(4), 263–277.PubMedCrossRef
62.
go back to reference MacLeod, R. S., & Brooks, D. H. (1998). Recent progress in inverse problems in electrocardiology. IEEE Engineering in Medicine and Biology Magazine, 17(1), 73–83.PubMedCrossRef MacLeod, R. S., & Brooks, D. H. (1998). Recent progress in inverse problems in electrocardiology. IEEE Engineering in Medicine and Biology Magazine, 17(1), 73–83.PubMedCrossRef
63.
go back to reference MacLeod, R. S., Gardner, M., Miller, R. M., & Horáček, B. M. (1995). Application of an electrocardiographic inverse solution to localize ischemia during coronary angioplasty. Journal of Cardiovascular Electrophysiology, 6(1), 2–18.PubMedCrossRef MacLeod, R. S., Gardner, M., Miller, R. M., & Horáček, B. M. (1995). Application of an electrocardiographic inverse solution to localize ischemia during coronary angioplasty. Journal of Cardiovascular Electrophysiology, 6(1), 2–18.PubMedCrossRef
64.
go back to reference Miller, W. T. III., & Geselowitz, D. B. (1978). Simulation studies of the electrocardiogram; I. The normal heart. Circulation Research, 43(2), 301–315.PubMed Miller, W. T. III., & Geselowitz, D. B. (1978). Simulation studies of the electrocardiogram; I. The normal heart. Circulation Research, 43(2), 301–315.PubMed
65.
go back to reference Miri, R., Graf, I. M., & Dössel, O. (2009). Efficiency of timing delays and electrode positions in optimization of biventricular pacing: A simulation study. IEEE Transactions on Biomedical Engineering, 56(11), 2573–2582.PubMedCrossRef Miri, R., Graf, I. M., & Dössel, O. (2009). Efficiency of timing delays and electrode positions in optimization of biventricular pacing: A simulation study. IEEE Transactions on Biomedical Engineering, 56(11), 2573–2582.PubMedCrossRef
66.
go back to reference Modre, R., Tilg, B., Fischer, G., & Wach, P. (2002). Noninvasive myocardial activation time imaging: A novel inverse algorithm applied to clinical ECG mapping data. IEEE Transactions on Biomedical Engineering, 49, 1153–1161.PubMedCrossRef Modre, R., Tilg, B., Fischer, G., & Wach, P. (2002). Noninvasive myocardial activation time imaging: A novel inverse algorithm applied to clinical ECG mapping data. IEEE Transactions on Biomedical Engineering, 49, 1153–1161.PubMedCrossRef
67.
go back to reference Modre, R., Seger, M., Fischer, G., Hintermüller, C., Hayn, D., Pfeifer, B., et al. (2006). Cardiac anisotropy: Is it negligible regarding noninvasive activation time imaging? IEEE Transactions on Biomedical Engineering, 53(4), 569–580.PubMedCrossRef Modre, R., Seger, M., Fischer, G., Hintermüller, C., Hayn, D., Pfeifer, B., et al. (2006). Cardiac anisotropy: Is it negligible regarding noninvasive activation time imaging? IEEE Transactions on Biomedical Engineering, 53(4), 569–580.PubMedCrossRef
68.
go back to reference Moe, G. K., Rheinboldt, W. C., & Abildskov, J. A. (1964). A computer model of atrial fibrillation. American Heart Journal, 67, 200–220.PubMedCrossRef Moe, G. K., Rheinboldt, W. C., & Abildskov, J. A. (1964). A computer model of atrial fibrillation. American Heart Journal, 67, 200–220.PubMedCrossRef
69.
go back to reference Muzikant, A. L., & Henriquez, C. S. (1998). Bipolar stimulation of a three-dimensional bidomain incorporating rotational anisotropy. IEEE Transactions on Biomedical Engineering, 45(4), 449–462.PubMedCrossRef Muzikant, A. L., & Henriquez, C. S. (1998). Bipolar stimulation of a three-dimensional bidomain incorporating rotational anisotropy. IEEE Transactions on Biomedical Engineering, 45(4), 449–462.PubMedCrossRef
70.
go back to reference Nasmith, J. B., Pharand, C., Dubé, B., Matteau, S., LeBlanc, A. R., & Nadeau, R. (2001). Localization of maximal ST segment displacement in various ischemic settings by orthogonal ECG: Implications for lead selection and the mechanism of ST shift. Canadian Journal of Cardiology, 17(1), 57–62.PubMed Nasmith, J. B., Pharand, C., Dubé, B., Matteau, S., LeBlanc, A. R., & Nadeau, R. (2001). Localization of maximal ST segment displacement in various ischemic settings by orthogonal ECG: Implications for lead selection and the mechanism of ST shift. Canadian Journal of Cardiology, 17(1), 57–62.PubMed
72.
go back to reference Niimi, N., Sugiyama, S., Wada, M., Sugenoya, J., Oguri, H., Toyama, J., et al. (1977). Genesis of body surface potential distribution in right bundle branch block. Journal of Electrocardiology, 10, 257–266.PubMedCrossRef Niimi, N., Sugiyama, S., Wada, M., Sugenoya, J., Oguri, H., Toyama, J., et al. (1977). Genesis of body surface potential distribution in right bundle branch block. Journal of Electrocardiology, 10, 257–266.PubMedCrossRef
73.
go back to reference Noble, D., & Rudy, Y. (2001). Models of cardiac ventricular action potentials: Iterative interaction between experiment and simulation. Philosophical Transactions of the Royal Society A — Mathematical, Physical, and Engineering Sciences, 359, 1127–1142.CrossRef Noble, D., & Rudy, Y. (2001). Models of cardiac ventricular action potentials: Iterative interaction between experiment and simulation. Philosophical Transactions of the Royal Society A — Mathematical, Physical, and Engineering Sciences, 359, 1127–1142.CrossRef
74.
go back to reference Nygren, A., Fiset, C., Firek, L., Clark, J. W., Lindblad, D. S., Clark, R. B., et al. (1998). Mathematical model of an adult human atrial cell; the role of K +  currents in repolarization. Circulation Research, 82, 63–81.PubMed Nygren, A., Fiset, C., Firek, L., Clark, J. W., Lindblad, D. S., Clark, R. B., et al. (1998). Mathematical model of an adult human atrial cell; the role of K +  currents in repolarization. Circulation Research, 82, 63–81.PubMed
75.
go back to reference O’ Cannon R. III. (1985). Ischemia at a distance—so close yet so far. Journal of the American College of Cardiology, 6(1), 46–48.CrossRef O’ Cannon R. III. (1985). Ischemia at a distance—so close yet so far. Journal of the American College of Cardiology, 6(1), 46–48.CrossRef
76.
go back to reference Okajima, M., Fujino, T., Kobayashi, T., & Yamada, K. (1968). Computer simulation of the propagation process in excitation of the ventricles. Circulation Research, 23, 203–211.PubMed Okajima, M., Fujino, T., Kobayashi, T., & Yamada, K. (1968). Computer simulation of the propagation process in excitation of the ventricles. Circulation Research, 23, 203–211.PubMed
77.
go back to reference van Oosterom, A., & Oostendorp, T. F. (2004). ECGSIM: An interactive tool for simulating QRST waveforms. Heart, 90, 165–168.PubMedCrossRef van Oosterom, A., & Oostendorp, T. F. (2004). ECGSIM: An interactive tool for simulating QRST waveforms. Heart, 90, 165–168.PubMedCrossRef
78.
go back to reference van Oosterom, A., & Plonsey, R. (1991). The Brody effect revisited. Journal of Electrocardiology, 24(4), 339–348.PubMedCrossRef van Oosterom, A., & Plonsey, R. (1991). The Brody effect revisited. Journal of Electrocardiology, 24(4), 339–348.PubMedCrossRef
79.
go back to reference Plonsey, R. (1979). A contemporary view of the ventricular gradient of Wilson. Journal of Electrocardiology, 12, 337–341.PubMedCrossRef Plonsey, R. (1979). A contemporary view of the ventricular gradient of Wilson. Journal of Electrocardiology, 12, 337–341.PubMedCrossRef
80.
go back to reference Potse, M., Dubé, B., Richer, J., Vinet, A., & Gulrajani, R. M. (2006). A comparison of monodomain and bidomain reaction–diffusion models for action potential propagation in the human heart. IEEE Transactions on Biomedical Engineering, 53(12), 2425–2435. doi:10.1109/TBME.2006.880875.PubMedCrossRef Potse, M., Dubé, B., Richer, J., Vinet, A., & Gulrajani, R. M. (2006). A comparison of monodomain and bidomain reaction–diffusion models for action potential propagation in the human heart. IEEE Transactions on Biomedical Engineering, 53(12), 2425–2435. doi:10.​1109/​TBME.​2006.​880875.PubMedCrossRef
81.
go back to reference Potse, M., Coronel, R., Falcao, S., LeBlanc, A.R., & Vinet, A. (2007). The effect of lesion size and tissue remodeling on ST deviation in partial-thickness ischemia. Heart Rhythm 4(2), 200–206.PubMedCrossRef Potse, M., Coronel, R., Falcao, S., LeBlanc, A.R., & Vinet, A. (2007). The effect of lesion size and tissue remodeling on ST deviation in partial-thickness ischemia. Heart Rhythm 4(2), 200–206.PubMedCrossRef
82.
83.
84.
go back to reference Puglisi, J., Bers, D. M. (2001). LabHEART: An interactive computer model of rabbit ventricular myocyte ion channels and Ca transport. American Journal of Physiology. Cell Physiology, 281, C2049–2060.PubMed Puglisi, J., Bers, D. M. (2001). LabHEART: An interactive computer model of rabbit ventricular myocyte ion channels and Ca transport. American Journal of Physiology. Cell Physiology, 281, C2049–2060.PubMed
85.
go back to reference Pullan, A. J., Cheng, L. K., Nash, M. P., Bradley, C. P., & Paterson, D. J. (2001). Noninvasive electrical imaging of the heart: Theory and model development. Annals of Biomedical Engineering, 29, 817–836.PubMedCrossRef Pullan, A. J., Cheng, L. K., Nash, M. P., Bradley, C. P., & Paterson, D. J. (2001). Noninvasive electrical imaging of the heart: Theory and model development. Annals of Biomedical Engineering, 29, 817–836.PubMedCrossRef
86.
go back to reference Qu, F., Li, L., Nikolski, V. P., Sharma, V., & Efimov, I. R. (2005). Mechanisms of superiority of ascending ramp waveforms: New insights into mechanisms of shock-induced vulnerability and defibrillation. American Journal of Physiology. Heart and Circulatory Physiology, 289, H569–577.PubMedCrossRef Qu, F., Li, L., Nikolski, V. P., Sharma, V., & Efimov, I. R. (2005). Mechanisms of superiority of ascending ramp waveforms: New insights into mechanisms of shock-induced vulnerability and defibrillation. American Journal of Physiology. Heart and Circulatory Physiology, 289, H569–577.PubMedCrossRef
87.
go back to reference Reumann, M., Farina, D., Miri, R., Lurz, S., Osswald, B., & Dössel, O. (2007). Computer model for the optimization of AV and VV delay in cardiac resynchronization therapy. Medical & Biological Engineering & Computing, 45, 845–854.CrossRef Reumann, M., Farina, D., Miri, R., Lurz, S., Osswald, B., & Dössel, O. (2007). Computer model for the optimization of AV and VV delay in cardiac resynchronization therapy. Medical & Biological Engineering & Computing, 45, 845–854.CrossRef
88.
go back to reference Reumann, M., Gurev, V., & Rice, J. J. (2009). Computational modeling of cardiac disease: Potential for personalized medicine. Personalized Medicine, 6, 45–66.CrossRef Reumann, M., Gurev, V., & Rice, J. J. (2009). Computational modeling of cardiac disease: Potential for personalized medicine. Personalized Medicine, 6, 45–66.CrossRef
89.
go back to reference Rodríguez, B., Tice, B. M, Eason, J. C., Aguel, F., Ferrero, J. M. Jr, & Trayanova, N. (2004). Effect of acute global ischemia on the upper limit of vulnerability: A simulation study. American Journal of Physiology. Heart and Circulatory Physiology, 286, H2078–H2088.PubMedCrossRef Rodríguez, B., Tice, B. M, Eason, J. C., Aguel, F., Ferrero, J. M. Jr, & Trayanova, N. (2004). Effect of acute global ischemia on the upper limit of vulnerability: A simulation study. American Journal of Physiology. Heart and Circulatory Physiology, 286, H2078–H2088.PubMedCrossRef
90.
go back to reference Romero, D., Sebastian, R., Bijnens, B. H., Zimmerman, V., Boyle, P. M., Vigmond, E. J., et al. (2010). Effects of the Purkinje system and cardiac geometry on biventricular pacing: A model study. Annals of Biomedical Engineering, 38, 1388–1398.PubMedCrossRef Romero, D., Sebastian, R., Bijnens, B. H., Zimmerman, V., Boyle, P. M., Vigmond, E. J., et al. (2010). Effects of the Purkinje system and cardiac geometry on biventricular pacing: A model study. Annals of Biomedical Engineering, 38, 1388–1398.PubMedCrossRef
91.
go back to reference Rosenbaum, M. B., Elizari, M. V., Levi, R. J., Nau, G. J., Pisani, N., Lázzari, J. O., et al. (1969). Five cases of intermittent left anterior hemiblock. American Journal of Cardiology, 24, 1–7.PubMedCrossRef Rosenbaum, M. B., Elizari, M. V., Levi, R. J., Nau, G. J., Pisani, N., Lázzari, J. O., et al. (1969). Five cases of intermittent left anterior hemiblock. American Journal of Cardiology, 24, 1–7.PubMedCrossRef
92.
go back to reference Rudy, Y., Plonsey. R., Liebman. J. (1979). The effects of variations in conductivity and geometrical parameters on the electrocardiogram, using an eccentric spheres model. Circulation Research, 44, 104–111.PubMed Rudy, Y., Plonsey. R., Liebman. J. (1979). The effects of variations in conductivity and geometrical parameters on the electrocardiogram, using an eccentric spheres model. Circulation Research, 44, 104–111.PubMed
93.
go back to reference Salu, Y., Marcus, M. L. (1976). Computer simulation of the precordial QRS complex: Effects of simulated changes in ventricular wall thickness and volume. American Heart Journal, 92, 758–766.PubMedCrossRef Salu, Y., Marcus, M. L. (1976). Computer simulation of the precordial QRS complex: Effects of simulated changes in ventricular wall thickness and volume. American Heart Journal, 92, 758–766.PubMedCrossRef
94.
go back to reference Saucerman, J. J., Healy, S. N., Belik, M. E., Puglisi, J. L., McCulloch, A. D. (2004). Proarrhythmic consequences of a KCNQ1 AKAP-binding domain mutation; computational models of whole cells and heterogeneous tissue. Circulation Research, 95, 1216–1224.PubMedCrossRef Saucerman, J. J., Healy, S. N., Belik, M. E., Puglisi, J. L., McCulloch, A. D. (2004). Proarrhythmic consequences of a KCNQ1 AKAP-binding domain mutation; computational models of whole cells and heterogeneous tissue. Circulation Research, 95, 1216–1224.PubMedCrossRef
95.
go back to reference Scacchi, S., Colli Franzone, P., Pavarino, L. F., Taccardi, B. (2009). A reliability analysis of cardiac repolarization time markers. Mathematical Biosciences, 219, 113–128.PubMedCrossRef Scacchi, S., Colli Franzone, P., Pavarino, L. F., Taccardi, B. (2009). A reliability analysis of cardiac repolarization time markers. Mathematical Biosciences, 219, 113–128.PubMedCrossRef
96.
go back to reference Scher, A. M., & Young, A. C. (1957) Ventricular depolarization and the genesis of QRS. Annals of the New York Academy of Sciences, 65, 768–778.PubMedCrossRef Scher, A. M., & Young, A. C. (1957) Ventricular depolarization and the genesis of QRS. Annals of the New York Academy of Sciences, 65, 768–778.PubMedCrossRef
97.
go back to reference Schmitt, O. H. (1969). Biological information processing using the concept of interpenetrating domains. In: K. N. Leibovic (Ed.), Information processing in the nervous system (pp. 325–331). New York: Springer. Schmitt, O. H. (1969). Biological information processing using the concept of interpenetrating domains. In: K. N. Leibovic (Ed.), Information processing in the nervous system (pp. 325–331). New York: Springer.
98.
go back to reference Selvester, R. H., Solomon, J. C., & Gillespie, T. L. (1968). Digital computer model of a total body electrocardiographic surface map; an adult male-torso simulation with lungs. Circulation 38, 684–690.PubMed Selvester, R. H., Solomon, J. C., & Gillespie, T. L. (1968). Digital computer model of a total body electrocardiographic surface map; an adult male-torso simulation with lungs. Circulation 38, 684–690.PubMed
99.
go back to reference Solomon, J. C., & Selvester, R. H. (1973). Simulation of measured activation sequence in the human heart. American Heart Journal, 85, 518–523.PubMedCrossRef Solomon, J. C., & Selvester, R. H. (1973). Simulation of measured activation sequence in the human heart. American Heart Journal, 85, 518–523.PubMedCrossRef
100.
go back to reference Spach, M. S., Barr, R. C., Serwer, G. A., Kootsey, J. M., & Johnson, E. A. (1972). Extracellular potentials related to intracellular action potentials in the dog Purkinje system. Circulation Research, 30(5), 505–519.PubMed Spach, M. S., Barr, R. C., Serwer, G. A., Kootsey, J. M., & Johnson, E. A. (1972). Extracellular potentials related to intracellular action potentials in the dog Purkinje system. Circulation Research, 30(5), 505–519.PubMed
101.
go back to reference Spach, M. S., Miller, W. T. III., Miller-Jones, E., Warren, R. B., & Barr, R. C. (1979). Extracellular potentials related to intracellular action potentials during impulse conduction in anisotropic canine cardiac muscle. Circulation Research, 45, 188–204.PubMed Spach, M. S., Miller, W. T. III., Miller-Jones, E., Warren, R. B., & Barr, R. C. (1979). Extracellular potentials related to intracellular action potentials during impulse conduction in anisotropic canine cardiac muscle. Circulation Research, 45, 188–204.PubMed
102.
go back to reference Spach, M. S., Heidlage, J. F., Dolber, P. C., & Barr, R. C. (2007). Mechanism of origin of conduction disturbances in aging human atrial bundles: Experimental and model study. Heart Rhythm, 4, 175–185.PubMedCrossRef Spach, M. S., Heidlage, J. F., Dolber, P. C., & Barr, R. C. (2007). Mechanism of origin of conduction disturbances in aging human atrial bundles: Experimental and model study. Heart Rhythm, 4, 175–185.PubMedCrossRef
103.
go back to reference Strauss, D. G., Selvester, R. H., & Wagner, G. S. (2011) Defining left bundle branch block in the era of cardiac resynchronization therapy. American Journal of Cardiology, 107, 927–934.PubMedCrossRef Strauss, D. G., Selvester, R. H., & Wagner, G. S. (2011) Defining left bundle branch block in the era of cardiac resynchronization therapy. American Journal of Cardiology, 107, 927–934.PubMedCrossRef
104.
go back to reference Streeter, D. D. Jr., Spotnitz, H. M., Patel, D. P., Ross, J., & Sonnenblick, E. H. (1969). Fiber orientation in the canine left ventricle during diastole and systole. Circulation Research, 24, 339–347.PubMed Streeter, D. D. Jr., Spotnitz, H. M., Patel, D. P., Ross, J., & Sonnenblick, E. H. (1969). Fiber orientation in the canine left ventricle during diastole and systole. Circulation Research, 24, 339–347.PubMed
105.
go back to reference Sweeney, M. O., & Prinzen, F. W. (2006). A new paradigm for physiologic ventricular pacing. Journal of the American College of Cardiology, 47, 282–288.PubMedCrossRef Sweeney, M. O., & Prinzen, F. W. (2006). A new paradigm for physiologic ventricular pacing. Journal of the American College of Cardiology, 47, 282–288.PubMedCrossRef
106.
go back to reference Szilágyi, S., Szilágyi, L., & Benyó, Z. (2011). A patient specific electro-mechanical model of the heart. Computer Methods and Programs in Biomedicine, 101, 183–200.PubMedCrossRef Szilágyi, S., Szilágyi, L., & Benyó, Z. (2011). A patient specific electro-mechanical model of the heart. Computer Methods and Programs in Biomedicine, 101, 183–200.PubMedCrossRef
107.
go back to reference Taccardi, B. (1963). Distribution of heart potentials on the thoracic surface of normal human subjects. Circulation Research, 12, 341–352.PubMed Taccardi, B. (1963). Distribution of heart potentials on the thoracic surface of normal human subjects. Circulation Research, 12, 341–352.PubMed
108.
go back to reference Taccardi, B., Macchi, E., Lux, R. L., Ershler, P. R., Spaggiari, S., Baruffi, S., et al. (1994). Effect of myocardial fiber direction on epicardial potentials. Circulation, 90, 3076–3090.PubMed Taccardi, B., Macchi, E., Lux, R. L., Ershler, P. R., Spaggiari, S., Baruffi, S., et al. (1994). Effect of myocardial fiber direction on epicardial potentials. Circulation, 90, 3076–3090.PubMed
109.
go back to reference Taggart, P., Sutton, P. M. I., Opthof, T., Coronel, R., Trimlett, R., Pugsley, W., et al. (2001). Transmural repolarisation in the left ventricle in humans during normoxia and ischaemia. Cardiovascular Research, 50, 454–462.PubMedCrossRef Taggart, P., Sutton, P. M. I., Opthof, T., Coronel, R., Trimlett, R., Pugsley, W., et al. (2001). Transmural repolarisation in the left ventricle in humans during normoxia and ischaemia. Cardiovascular Research, 50, 454–462.PubMedCrossRef
110.
go back to reference Tranquillo, J. V., Franz, M. R., Knollmann, B. C., Henriquez, A. P., Taylor, D. A., & Henriquez, C. S. (2004). Genesis of the monophasic action potential: Role of interstitial resistance and boundary gradients. American Journal of Physiology. Heart and Circulatory Physiology, 286, H1370–1381.PubMedCrossRef Tranquillo, J. V., Franz, M. R., Knollmann, B. C., Henriquez, A. P., Taylor, D. A., & Henriquez, C. S. (2004). Genesis of the monophasic action potential: Role of interstitial resistance and boundary gradients. American Journal of Physiology. Heart and Circulatory Physiology, 286, H1370–1381.PubMedCrossRef
111.
go back to reference Trayanova, N., Plank, G., & Rodríguez, B. (2006). What have we learned from mathematical models of defibrillation and postshock arrhythmogenesis? Application of bidomain simulations. Heart Rhythm, 3, 1232–1235.PubMedCrossRef Trayanova, N., Plank, G., & Rodríguez, B. (2006). What have we learned from mathematical models of defibrillation and postshock arrhythmogenesis? Application of bidomain simulations. Heart Rhythm, 3, 1232–1235.PubMedCrossRef
113.
go back to reference Trudel, M. C., Dubé, B., Potse, M., Gulrajani, R. M., Leon, L. J. (2004). Simulation of propagation in a membrane-based computer heart model with parallel processing. IEEE Transactions on Biomedical Engineering, 51(8), 1319–1329.PubMedCrossRef Trudel, M. C., Dubé, B., Potse, M., Gulrajani, R. M., Leon, L. J. (2004). Simulation of propagation in a membrane-based computer heart model with parallel processing. IEEE Transactions on Biomedical Engineering, 51(8), 1319–1329.PubMedCrossRef
114.
go back to reference Tung, L. (1978). A bi-domain model for describing ischemic myocardial D-C potentials. Ph.D. thesis, MIT, Cambridge, MA, USA. Tung, L. (1978). A bi-domain model for describing ischemic myocardial D-C potentials. Ph.D. thesis, MIT, Cambridge, MA, USA.
116.
go back to reference ten Tusscher, K. H. W. J., Noble, D., Noble, P. J., & Panfilov, A. V. (2004). A model for human ventricular tissue. American Journal of Physiology. Heart and Circulatory Physiology, 286, H1573–H1589.PubMedCrossRef ten Tusscher, K. H. W. J., Noble, D., Noble, P. J., & Panfilov, A. V. (2004). A model for human ventricular tissue. American Journal of Physiology. Heart and Circulatory Physiology, 286, H1573–H1589.PubMedCrossRef
117.
go back to reference Varma, N., Jia, P., Rudy, Y. (2007). Electrocardiographic imaging of patients with heart failure with left bundle branch block and response to cardiac resynchronization therapy. Journal of Electrocardiology, 40, S174–178.PubMedCrossRef Varma, N., Jia, P., Rudy, Y. (2007). Electrocardiographic imaging of patients with heart failure with left bundle branch block and response to cardiac resynchronization therapy. Journal of Electrocardiology, 40, S174–178.PubMedCrossRef
118.
go back to reference Varma, N., Jia, C. P., Ramanathan, C., & Rudy, Y. (2010). RV electrical activation in heart failure during right, left, and biventricular pacing. Journal of the American College of Cardiology: Cardiovascular Imaging, 3, 567–575. Varma, N., Jia, C. P., Ramanathan, C., & Rudy, Y. (2010). RV electrical activation in heart failure during right, left, and biventricular pacing. Journal of the American College of Cardiology: Cardiovascular Imaging, 3, 567–575.
119.
go back to reference Vigmond, E. J. (2005). The electrophysiological basis of MAP recordings. Cardiovascular Research, 68, 502–503 (letter).PubMedCrossRef Vigmond, E. J. (2005). The electrophysiological basis of MAP recordings. Cardiovascular Research, 68, 502–503 (letter).PubMedCrossRef
120.
go back to reference Vigmond, E. J., & Leon, L. J. (1999). Electrophysiological basis of mono-phasic action potential recordings. Medical & Biological Engineering & Computing, 37, 359–365.CrossRef Vigmond, E. J., & Leon, L. J. (1999). Electrophysiological basis of mono-phasic action potential recordings. Medical & Biological Engineering & Computing, 37, 359–365.CrossRef
121.
go back to reference Wehrens, X. H. T., Abriel, H., Cabo, C., Benhorin, J., & Kass, R. S. (2000). Arrhythmogenic mechanism of an LQT-3 mutation of the human heart Na +  channel α-subunit; a computational analysis. Circulation, 102, 584–590.PubMed Wehrens, X. H. T., Abriel, H., Cabo, C., Benhorin, J., & Kass, R. S. (2000). Arrhythmogenic mechanism of an LQT-3 mutation of the human heart Na +  channel α-subunit; a computational analysis. Circulation, 102, 584–590.PubMed
122.
go back to reference Wikswo, J. P., Wisialowski, T. A., Altemeier, W. A., Balser, J. R., Kopelman, H. A., & Roden, D. M. (1991). Virtual cathode effects during stimulation of cardiac muscle; two-dimensional in vivo experiments. Circulation Research, 68, 513–530.PubMed Wikswo, J. P., Wisialowski, T. A., Altemeier, W. A., Balser, J. R., Kopelman, H. A., & Roden, D. M. (1991). Virtual cathode effects during stimulation of cardiac muscle; two-dimensional in vivo experiments. Circulation Research, 68, 513–530.PubMed
123.
go back to reference Williams, G. S. B., Smith, G. D., Sobie, E. A., & Jafri, M. S. (2010). Models of cardiac excitation–contraction coupling in ventricular myocytes. Mathematical Biosciences, 226 1–15, (review).PubMedCrossRef Williams, G. S. B., Smith, G. D., Sobie, E. A., & Jafri, M. S. (2010). Models of cardiac excitation–contraction coupling in ventricular myocytes. Mathematical Biosciences, 226 1–15, (review).PubMedCrossRef
Metadata
Title
Mathematical Modeling and Simulation of Ventricular Activation Sequences: Implications for Cardiac Resynchronization Therapy
Author
Mark Potse
Publication date
01-04-2012
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 2/2012
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-011-9343-6

Other articles of this Issue 2/2012

Journal of Cardiovascular Translational Research 2/2012 Go to the issue