Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 3/2010

01-06-2010

MicroRNA-21 in Cardiovascular Disease

Authors: Yunhui Cheng, Chunxiang Zhang

Published in: Journal of Cardiovascular Translational Research | Issue 3/2010

Login to get access

Abstract

MicroRNA-21 (miR-21) is a highly expressed microRNA (miRNA) in cardiovascular system. Recent studies have revealed that its expression is deregulated in heart and vasculature under cardiovascular disease conditions such as proliferative vascular disease, cardiac hypertrophy and heart failure, and ischemic heart disease. miR-21 is found to play important roles in vascular smooth muscle cell proliferation and apoptosis, cardiac cell growth and death, and cardiac fibroblast functions. Accordingly, miR-21 is proven to be involved in the pathogenesis of the above-mentioned cardiovascular diseases as demonstrated by both loss-of-function and gain-of-function approaches. Programmed cell death 4 (PDCD4), phosphatase and tensin homology deleted from chromosome 10 (PTEN), sprouty1 (SPRY1), and sprouty2 (SPRY2) are the current identified target genes of miR-21 that are involved in miR-21-mediated cardiovascular effects. miR-21 might be a novel therapeutic target in cardiovascular diseases. This review article summarizes the research progress regarding the roles of miR-21 in cardiovascular disease.
Literature
1.
go back to reference Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5), 843–854.CrossRefPubMed Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5), 843–854.CrossRefPubMed
2.
go back to reference Wightman, B., Ha, I., & Ruvkun, G. (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 75(5), 855–862.CrossRefPubMed Wightman, B., Ha, I., & Ruvkun, G. (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 75(5), 855–862.CrossRefPubMed
3.
go back to reference Lagos-Quintana, M., Rauhut, R., Lendeckel, W., & Tuschl, T. (2001). Identification of novel genes coding for small expressed RNAs. Science, 294(5543), 853–858.CrossRefPubMed Lagos-Quintana, M., Rauhut, R., Lendeckel, W., & Tuschl, T. (2001). Identification of novel genes coding for small expressed RNAs. Science, 294(5543), 853–858.CrossRefPubMed
4.
go back to reference Friedman, J. M., & Jones, P. A. (2008). MicroRNAs: critical mediators of differentiation, development and disease. Swiss Medical Weekly, 139(33–34), 466–472. Friedman, J. M., & Jones, P. A. (2008). MicroRNAs: critical mediators of differentiation, development and disease. Swiss Medical Weekly, 139(33–34), 466–472.
5.
go back to reference Bentwich, I., Avniel, A., Karov, Y., Aharonov, R., Gilad, S., Barad, O., et al. (2005). Identification of hundreds of conserved and nonconserved human microRNAs. Nature Genetics, 37(7), 766–770.CrossRefPubMed Bentwich, I., Avniel, A., Karov, Y., Aharonov, R., Gilad, S., Barad, O., et al. (2005). Identification of hundreds of conserved and nonconserved human microRNAs. Nature Genetics, 37(7), 766–770.CrossRefPubMed
6.
go back to reference Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.CrossRefPubMed Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.CrossRefPubMed
7.
go back to reference Pushparaj, P. N., Aarthi, J. J., Kumar, S. D., & Manikandan, J. (2008). RNAi and RNAa—the yin and yang of RNAome. Bioinformation, 2(6), 235–237.PubMed Pushparaj, P. N., Aarthi, J. J., Kumar, S. D., & Manikandan, J. (2008). RNAi and RNAa—the yin and yang of RNAome. Bioinformation, 2(6), 235–237.PubMed
8.
go back to reference Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120(1), 15–20.CrossRefPubMed Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120(1), 15–20.CrossRefPubMed
9.
go back to reference Krichevsky, A. M., & Gabriely, G. (2009). miR-21: a small multi-faceted RNA. Journal of Cellular and Molecular Medicine, 13(1), 39–53.CrossRefPubMed Krichevsky, A. M., & Gabriely, G. (2009). miR-21: a small multi-faceted RNA. Journal of Cellular and Molecular Medicine, 13(1), 39–53.CrossRefPubMed
10.
go back to reference Selcuklu, S. D., Donoghue, M. T., & Spillane, C. (2009). miR-21 as a key regulator of oncogenic processes. Biochemical Society Transactions, 37(Pt 4), 918–925.CrossRefPubMed Selcuklu, S. D., Donoghue, M. T., & Spillane, C. (2009). miR-21 as a key regulator of oncogenic processes. Biochemical Society Transactions, 37(Pt 4), 918–925.CrossRefPubMed
11.
go back to reference Fujita, S., Ito, T., Mizutani, T., Minoguchi, S., Yamamichi, N., Sakurai, K., et al. (2008). miR-21 gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism. Journal of Molecular Biology, 378(3), 492–504.CrossRefPubMed Fujita, S., Ito, T., Mizutani, T., Minoguchi, S., Yamamichi, N., Sakurai, K., et al. (2008). miR-21 gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism. Journal of Molecular Biology, 378(3), 492–504.CrossRefPubMed
12.
go back to reference Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W., & Tuschl, T. (2002). Identification of tissue-specific microRNAs from mouse. Current Biology, 12(9), 735–739.CrossRefPubMed Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W., & Tuschl, T. (2002). Identification of tissue-specific microRNAs from mouse. Current Biology, 12(9), 735–739.CrossRefPubMed
13.
go back to reference Zhang, C. (2008). MicroRNomics: a newly emerging approach for disease biology. Physiological Genomics, 33(2), 139–147.CrossRefPubMed Zhang, C. (2008). MicroRNomics: a newly emerging approach for disease biology. Physiological Genomics, 33(2), 139–147.CrossRefPubMed
14.
go back to reference Ji, R., Cheng, Y., Yue, J., Yang, J., Liu, X., Chen, H., et al. (2007). MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circulation Research, 100(11), 1579–1588.CrossRefPubMed Ji, R., Cheng, Y., Yue, J., Yang, J., Liu, X., Chen, H., et al. (2007). MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circulation Research, 100(11), 1579–1588.CrossRefPubMed
15.
go back to reference Suarez, Y., Fernandez-Hernando, C., Pober, J. S., & Sessa, W. C. (2007). Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circulation Research, 100(8), 1164–1173.CrossRefPubMed Suarez, Y., Fernandez-Hernando, C., Pober, J. S., & Sessa, W. C. (2007). Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circulation Research, 100(8), 1164–1173.CrossRefPubMed
16.
go back to reference Cheng, Y., Ji, R., Yue, J., Yang, J., Liu, X., Chen, H., et al. (2007). MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy? American Journal of Pathology, 170(6), 1831–1840.CrossRefPubMed Cheng, Y., Ji, R., Yue, J., Yang, J., Liu, X., Chen, H., et al. (2007). MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy? American Journal of Pathology, 170(6), 1831–1840.CrossRefPubMed
17.
go back to reference Roy, S., Khanna, S., Hussain, S. R., Biswas, S., Azad, A., Rink, C., et al. (2009). MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovascular Research, 82(1), 21–29.CrossRefPubMed Roy, S., Khanna, S., Hussain, S. R., Biswas, S., Azad, A., Rink, C., et al. (2009). MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovascular Research, 82(1), 21–29.CrossRefPubMed
18.
go back to reference Lin, Y., Liu, X., Cheng, Y., Yang, J., Huo, Y., & Zhang, C. (2009). Involvement of MicroRNAs in hydrogen peroxide-mediated gene regulation and cellular injury response in vascular smooth muscle cells. Journal of Biological Chemistry, 284(12), 7903–7913.CrossRefPubMed Lin, Y., Liu, X., Cheng, Y., Yang, J., Huo, Y., & Zhang, C. (2009). Involvement of MicroRNAs in hydrogen peroxide-mediated gene regulation and cellular injury response in vascular smooth muscle cells. Journal of Biological Chemistry, 284(12), 7903–7913.CrossRefPubMed
19.
go back to reference Oudit, G. Y., Sun, H., Kerfant, B. G., Crackower, M. A., Penninger, J. M., & Backx, P. H. (2004). The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease. Journal of Molecular and Cellular Cardiology, 37(2), 449–471.CrossRefPubMed Oudit, G. Y., Sun, H., Kerfant, B. G., Crackower, M. A., Penninger, J. M., & Backx, P. H. (2004). The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease. Journal of Molecular and Cellular Cardiology, 37(2), 449–471.CrossRefPubMed
20.
go back to reference Lankat-Buttgereit, B., & Göke, R. (2009). The tumour suppressor Pdcd4: recent advances in the elucidation of function and regulation. Biology of the Cell, 101(6), 309–317.CrossRefPubMed Lankat-Buttgereit, B., & Göke, R. (2009). The tumour suppressor Pdcd4: recent advances in the elucidation of function and regulation. Biology of the Cell, 101(6), 309–317.CrossRefPubMed
21.
go back to reference Cheng, Y., Liu, X., Zhang, S., Lin, Y., Yang, J., & Zhang, C. (2009). MicroRNA-21 protects against the H(2)O(2)-induced injury on cardiac myocytes via its target gene PDCD4. Journal of Molecular and Cellular Cardiology, 47(1), 5–14.CrossRefPubMed Cheng, Y., Liu, X., Zhang, S., Lin, Y., Yang, J., & Zhang, C. (2009). MicroRNA-21 protects against the H(2)O(2)-induced injury on cardiac myocytes via its target gene PDCD4. Journal of Molecular and Cellular Cardiology, 47(1), 5–14.CrossRefPubMed
22.
go back to reference Cordes, K. R., Sheehy, N. T., White, M. P., Berry, E. C., Morton, S. U., Muth, A. N., et al. (2009). miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature, 460(7256), 705–710.PubMed Cordes, K. R., Sheehy, N. T., White, M. P., Berry, E. C., Morton, S. U., Muth, A. N., et al. (2009). miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature, 460(7256), 705–710.PubMed
23.
go back to reference Matsumoto, T., & Hwang, P. M. (2007). Resizing the genomic regulation of restenosis. Circulation Research, 100(11), 1537–1539.CrossRefPubMed Matsumoto, T., & Hwang, P. M. (2007). Resizing the genomic regulation of restenosis. Circulation Research, 100(11), 1537–1539.CrossRefPubMed
24.
go back to reference Zhang, C. (2008). MicroRNAs: role in cardiovascular biology and disease. Clinical Science, 114(12), 699–706.CrossRefPubMed Zhang, C. (2008). MicroRNAs: role in cardiovascular biology and disease. Clinical Science, 114(12), 699–706.CrossRefPubMed
25.
go back to reference Sayed, D., Hong, C., Chen, I. Y., Lypowy, J., & Abdellatif, M. (2007). MicroRNAs play an essential role in the development of cardiac hypertrophy. Circulation Research, 100(3), 416–424.CrossRefPubMed Sayed, D., Hong, C., Chen, I. Y., Lypowy, J., & Abdellatif, M. (2007). MicroRNAs play an essential role in the development of cardiac hypertrophy. Circulation Research, 100(3), 416–424.CrossRefPubMed
26.
go back to reference van Rooij, E., Sutherland, L. B., Liu, N., Williams, A. H., McAnally, J., Gerard, R. D., et al. (2006). A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proceedings of the National Academy of Sciences of the United States of America, 103(48), 18255–18260.CrossRefPubMed van Rooij, E., Sutherland, L. B., Liu, N., Williams, A. H., McAnally, J., Gerard, R. D., et al. (2006). A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proceedings of the National Academy of Sciences of the United States of America, 103(48), 18255–18260.CrossRefPubMed
27.
go back to reference Carè, A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., Gallo, P., et al. (2007). MicroRNA-133 controls cardiac hypertrophy. Nature Medicine, 13(5), 613–618.CrossRefPubMed Carè, A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., Gallo, P., et al. (2007). MicroRNA-133 controls cardiac hypertrophy. Nature Medicine, 13(5), 613–618.CrossRefPubMed
28.
go back to reference Tatsuguchi, M., Seok, H. Y., Callis, T. E., Thomson, J. M., Chen, J. F., Newman, M., et al. (2007). Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. Journal of Molecular and Cellular Cardiology, 42(6), 1137–1141.CrossRefPubMed Tatsuguchi, M., Seok, H. Y., Callis, T. E., Thomson, J. M., Chen, J. F., Newman, M., et al. (2007). Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. Journal of Molecular and Cellular Cardiology, 42(6), 1137–1141.CrossRefPubMed
29.
go back to reference Thum, T., Gross, C., Fiedler, J., Fischer, T., Kissler, S., Bussen, M., et al. (2008). MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 456(7224), 980–984.CrossRefPubMed Thum, T., Gross, C., Fiedler, J., Fischer, T., Kissler, S., Bussen, M., et al. (2008). MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 456(7224), 980–984.CrossRefPubMed
30.
go back to reference Thum, T., Galuppo, P., Wolf, C., Fiedler, J., Kneitz, S., van Laake, L. W., et al. (2007). MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation, 116(3), 258–267.CrossRefPubMed Thum, T., Galuppo, P., Wolf, C., Fiedler, J., Kneitz, S., van Laake, L. W., et al. (2007). MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation, 116(3), 258–267.CrossRefPubMed
31.
go back to reference Dong, S., Cheng, Y., Yang, J., Li, J., Liu, X., Wang, X., et al. (2009). MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. Journal of Biological Chemistry, 284(43), 29514–29525.CrossRefPubMed Dong, S., Cheng, Y., Yang, J., Li, J., Liu, X., Wang, X., et al. (2009). MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. Journal of Biological Chemistry, 284(43), 29514–29525.CrossRefPubMed
32.
go back to reference Sayed, D., Rane, S., Lypowy, J., He, M., Chen, I. Y., Vashistha, H., et al. (2008). MicroRNA-21 targets Sprouty2 and promotes cellular outgrowths. Molecular Biology of the Cell, 19(8), 3272–3282.CrossRefPubMed Sayed, D., Rane, S., Lypowy, J., He, M., Chen, I. Y., Vashistha, H., et al. (2008). MicroRNA-21 targets Sprouty2 and promotes cellular outgrowths. Molecular Biology of the Cell, 19(8), 3272–3282.CrossRefPubMed
33.
go back to reference van Rooij, E., Sutherland, L. B., Thatcher, J. E., DiMaio, J. M., Naseem, R. H., Marshall, W. S., et al. (2008). Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 105(35), 13027–13032.CrossRefPubMed van Rooij, E., Sutherland, L. B., Thatcher, J. E., DiMaio, J. M., Naseem, R. H., Marshall, W. S., et al. (2008). Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 105(35), 13027–13032.CrossRefPubMed
34.
go back to reference Yin, C., Salloum, F. N., & Kukreja, R. C. (2009). A novel role of microRNA in late preconditioning: upregulation of endothelial nitric oxide synthase and heat shock protein 70. Circulation Research, 104(5), 572–575.CrossRefPubMed Yin, C., Salloum, F. N., & Kukreja, R. C. (2009). A novel role of microRNA in late preconditioning: upregulation of endothelial nitric oxide synthase and heat shock protein 70. Circulation Research, 104(5), 572–575.CrossRefPubMed
35.
go back to reference Yin, C., Wang, X., & Kukreja, R. C. (2008). Endogenous microRNAs induced by heat-shock reduce myocardial infarction following ischemia–reperfusion in mice. FEBS Letters, 582(30), 4137–4142.CrossRefPubMed Yin, C., Wang, X., & Kukreja, R. C. (2008). Endogenous microRNAs induced by heat-shock reduce myocardial infarction following ischemia–reperfusion in mice. FEBS Letters, 582(30), 4137–4142.CrossRefPubMed
36.
go back to reference Kota, J., Chivukula, R. R., O'Donnell, K. A., Wentzel, E. A., Montgomery, C. L., Hwang, H. W., et al. (2009). Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell, 137(6), 1005–1017.CrossRefPubMed Kota, J., Chivukula, R. R., O'Donnell, K. A., Wentzel, E. A., Montgomery, C. L., Hwang, H. W., et al. (2009). Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell, 137(6), 1005–1017.CrossRefPubMed
37.
go back to reference Schulz, R. (2007). Intracellular targets of matrix metalloproteinase-2 in cardiac disease: rationale and therapeutic approaches. Annual Review of Pharmacology and Toxicology, 47, 211–242.CrossRefPubMed Schulz, R. (2007). Intracellular targets of matrix metalloproteinase-2 in cardiac disease: rationale and therapeutic approaches. Annual Review of Pharmacology and Toxicology, 47, 211–242.CrossRefPubMed
38.
go back to reference Viappiani, S., Nicolescu, A. C., Holt, A., Sawicki, G., Crawford, B. D., León, H., et al. (2009). Activation and modulation of 72 kDa matrix metalloproteinase-2 by peroxynitrite and glutathione. Biochemical Pharmacology, 77(5), 826–834.CrossRefPubMed Viappiani, S., Nicolescu, A. C., Holt, A., Sawicki, G., Crawford, B. D., León, H., et al. (2009). Activation and modulation of 72 kDa matrix metalloproteinase-2 by peroxynitrite and glutathione. Biochemical Pharmacology, 77(5), 826–834.CrossRefPubMed
39.
go back to reference Guo, H., Shi, Y., Liu, L., Sun, A., Xu, F., & Chi, J. (2009). Rosuvastatin inhibits MMP-2 expression and limits the progression of atherosclerosis in LDLR-deficient mice. Archives of Medical Research, 40(5), 345–351.CrossRefPubMed Guo, H., Shi, Y., Liu, L., Sun, A., Xu, F., & Chi, J. (2009). Rosuvastatin inhibits MMP-2 expression and limits the progression of atherosclerosis in LDLR-deficient mice. Archives of Medical Research, 40(5), 345–351.CrossRefPubMed
40.
go back to reference Thompson, M., & Cockerill, G. (2006). Matrix metalloproteinase-2: the forgotten enzyme in aneurysm pathogenesis. Annals of the New York Academy of Sciences, 1085, 170–174.CrossRefPubMed Thompson, M., & Cockerill, G. (2006). Matrix metalloproteinase-2: the forgotten enzyme in aneurysm pathogenesis. Annals of the New York Academy of Sciences, 1085, 170–174.CrossRefPubMed
41.
go back to reference Pepper, M. S. (2001). Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 7, 1104–1117.CrossRef Pepper, M. S. (2001). Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 7, 1104–1117.CrossRef
42.
go back to reference Ikeda, S., Kong, S. W., Lu, J., Bisping, E., Zhang, H., Allen, P. D., et al. (2007). Altered microRNA expression in human heart disease. Physiological Genomics, 31(3), 367–373.CrossRefPubMed Ikeda, S., Kong, S. W., Lu, J., Bisping, E., Zhang, H., Allen, P. D., et al. (2007). Altered microRNA expression in human heart disease. Physiological Genomics, 31(3), 367–373.CrossRefPubMed
43.
go back to reference Thum, T., Catalucci, D., & Bauersachs, J. (2008). MicroRNAs: novel regulators in cardiac development and disease. Cardiovascular Research, 79(4), 562–570.CrossRefPubMed Thum, T., Catalucci, D., & Bauersachs, J. (2008). MicroRNAs: novel regulators in cardiac development and disease. Cardiovascular Research, 79(4), 562–570.CrossRefPubMed
44.
go back to reference Krutzfeldt, J., Poy, M. N., & Stoffel, M. (2006). Strategies to determine the biological function of microRNAs. Nature Genetics, 38, S14–19.CrossRefPubMed Krutzfeldt, J., Poy, M. N., & Stoffel, M. (2006). Strategies to determine the biological function of microRNAs. Nature Genetics, 38, S14–19.CrossRefPubMed
45.
go back to reference Cheng, A. M., Byrom, M. W., Shelton, J., & Ford, L. P. (2005). Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Research, 33(4), 1290–1297.CrossRefPubMed Cheng, A. M., Byrom, M. W., Shelton, J., & Ford, L. P. (2005). Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Research, 33(4), 1290–1297.CrossRefPubMed
46.
go back to reference Schroen, B., & Heymans, S. (2009). MicroRNAs and beyond: the heart reveals its treasures. Hypertension, 54(6), 1189–1194.CrossRefPubMed Schroen, B., & Heymans, S. (2009). MicroRNAs and beyond: the heart reveals its treasures. Hypertension, 54(6), 1189–1194.CrossRefPubMed
Metadata
Title
MicroRNA-21 in Cardiovascular Disease
Authors
Yunhui Cheng
Chunxiang Zhang
Publication date
01-06-2010
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 3/2010
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-010-9169-7

Other articles of this Issue 3/2010

Journal of Cardiovascular Translational Research 3/2010 Go to the issue