Skip to main content
Top
Published in: Neuroscience Bulletin 3/2018

01-06-2018 | Original Article

Dendritic Cell Factor 1-Knockout Results in Visual Deficit Through the GABA System in Mouse Primary Visual Cortex

Authors: Jieyun Shi, Qian Li, Tieqiao Wen

Published in: Neuroscience Bulletin | Issue 3/2018

Login to get access

Abstract

The visual system plays an important role in our daily life. In this study, we found that loss of dendritic cell factor 1 (DCF1) in the primary visual cortex (V1) caused a sight deficit in mice and induced an abnormal increase in glutamic acid decarboxylase 67, an enzyme that catalyzes the decarboxylation of glutamate to gamma aminobutyric acid and CO2, particularly in layer 5. In vivo electrophysiological recordings confirmed a decrease in delta, theta, and beta oscillation power in DCF1-knockout mice. This study presents a previously unknown function of DCF1 in V1, suggests an unknown contact between DCF1 and GABA systems, and provides insight into the mechanism and treatment of visual deficits.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sarihi A, Mirnajafi-Zadeh J, Jiang B, Sohya K, Safari MS, Arami MK, et al. Cell type-specific, presynaptic LTP of inhibitory synapses on fast-spiking GABAergic neurons in the mouse visual cortex. J Neurosci 2012, 32: 13189–13199.CrossRefPubMed Sarihi A, Mirnajafi-Zadeh J, Jiang B, Sohya K, Safari MS, Arami MK, et al. Cell type-specific, presynaptic LTP of inhibitory synapses on fast-spiking GABAergic neurons in the mouse visual cortex. J Neurosci 2012, 32: 13189–13199.CrossRefPubMed
2.
go back to reference Kirmse K, Kirischuk S. Ambient GABA constrains the strength of GABAergic synapses at Cajal-Retzius cells in the developing visual cortex. J Neurosci 2006, 26: 4216–4227.CrossRefPubMed Kirmse K, Kirischuk S. Ambient GABA constrains the strength of GABAergic synapses at Cajal-Retzius cells in the developing visual cortex. J Neurosci 2006, 26: 4216–4227.CrossRefPubMed
4.
go back to reference Pinal CS, Tobin AJ. Uniqueness and redundancy in GABA production. Perspect Dev Neurobiol 1998, 5: 109–118.PubMed Pinal CS, Tobin AJ. Uniqueness and redundancy in GABA production. Perspect Dev Neurobiol 1998, 5: 109–118.PubMed
5.
go back to reference Soghomonian JJ, Martin DL. Two isoforms of glutamate decarboxylase: why? Trends Pharmacol Sci 1998, 19: 500–505.CrossRefPubMed Soghomonian JJ, Martin DL. Two isoforms of glutamate decarboxylase: why? Trends Pharmacol Sci 1998, 19: 500–505.CrossRefPubMed
6.
go back to reference Asada H, Kawamura Y, Maruyama K, Kume H, Ding RG, Kanbara N, et al. Cleft palate and decreased brain gamma-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase. Proc Natl Acad Sci U S A 1997, 94: 6496–6499.CrossRefPubMedPubMedCentral Asada H, Kawamura Y, Maruyama K, Kume H, Ding RG, Kanbara N, et al. Cleft palate and decreased brain gamma-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase. Proc Natl Acad Sci U S A 1997, 94: 6496–6499.CrossRefPubMedPubMedCentral
8.
go back to reference Wen T, Gu P, Chen F. Discovery of two novel functional genes from differentiation of neural stem cells in the striatum of the fetal rat. Neurosci Lett 2002, 329: 101–105.CrossRefPubMed Wen T, Gu P, Chen F. Discovery of two novel functional genes from differentiation of neural stem cells in the striatum of the fetal rat. Neurosci Lett 2002, 329: 101–105.CrossRefPubMed
9.
go back to reference Li X, Feng R, Huang C, Wang H, Wang J, Zhang Z, et al. MicroRNA-351 regulates TMEM 59 (DCF1) expression and mediates neural stem cell morphogenesis. RNA Biol 2012, 9: 292–301.CrossRefPubMed Li X, Feng R, Huang C, Wang H, Wang J, Zhang Z, et al. MicroRNA-351 regulates TMEM 59 (DCF1) expression and mediates neural stem cell morphogenesis. RNA Biol 2012, 9: 292–301.CrossRefPubMed
10.
go back to reference Wang L, Wang J, Wu Y, Wu J, Pang S, Pan R, et al. A novel function of dcf1 during the differentiation of neural stem cells in vitro. Cell Mol Neurobiol 2008, 28: 887–894.CrossRefPubMed Wang L, Wang J, Wu Y, Wu J, Pang S, Pan R, et al. A novel function of dcf1 during the differentiation of neural stem cells in vitro. Cell Mol Neurobiol 2008, 28: 887–894.CrossRefPubMed
11.
go back to reference Thaung C, Arnold K, Jackson IJ, Coffey PJ. Presence of visual head tracking differentiates normal sighted from retinal degenerate mice. Neurosci Lett 2002, 325: 21–24CrossRefPubMed Thaung C, Arnold K, Jackson IJ, Coffey PJ. Presence of visual head tracking differentiates normal sighted from retinal degenerate mice. Neurosci Lett 2002, 325: 21–24CrossRefPubMed
12.
go back to reference Leitner FC, Melzer S, Lutcke H, Pinna R, Seeburg PH, Helmchen F, et al. Spatially segregated feedforward and feedback neurons support differential odor processing in the lateral entorhinal cortex. Nat Neurosci 2016, 19: 935–944.CrossRefPubMed Leitner FC, Melzer S, Lutcke H, Pinna R, Seeburg PH, Helmchen F, et al. Spatially segregated feedforward and feedback neurons support differential odor processing in the lateral entorhinal cortex. Nat Neurosci 2016, 19: 935–944.CrossRefPubMed
13.
14.
go back to reference Watanabe M. Glutamate signaling and neural plasticity. No To Hattatsu 2013, 45: 267–274.PubMed Watanabe M. Glutamate signaling and neural plasticity. No To Hattatsu 2013, 45: 267–274.PubMed
15.
go back to reference Irwin RP, Allen CN. GABAergic signaling induces divergent neuronal Ca2+ responses in the suprachiasmatic nucleus network. Eur J Neurosci 2009, 30: 1462–1475.CrossRefPubMedPubMedCentral Irwin RP, Allen CN. GABAergic signaling induces divergent neuronal Ca2+ responses in the suprachiasmatic nucleus network. Eur J Neurosci 2009, 30: 1462–1475.CrossRefPubMedPubMedCentral
16.
go back to reference Jiang L, Kundu S, Lederman JD, Lopez-Hernandez GY, Ballinger EC, Wang S, et al. Cholinergic signaling controls conditioned fear behaviors and enhances plasticity of cortical-amygdala circuits. Neuron 2016, 90: 1057–1070.CrossRefPubMedPubMedCentral Jiang L, Kundu S, Lederman JD, Lopez-Hernandez GY, Ballinger EC, Wang S, et al. Cholinergic signaling controls conditioned fear behaviors and enhances plasticity of cortical-amygdala circuits. Neuron 2016, 90: 1057–1070.CrossRefPubMedPubMedCentral
17.
go back to reference Chattopadhyaya B, Di Cristo G, Wu CZ, Knott G, Kuhlman S, Fu Y, et al. GAD67-mediated GABA synthesis and signaling regulate inhibitory synaptic innervation in the visual cortex. Neuron 2007, 54: 889–903.CrossRefPubMedPubMedCentral Chattopadhyaya B, Di Cristo G, Wu CZ, Knott G, Kuhlman S, Fu Y, et al. GAD67-mediated GABA synthesis and signaling regulate inhibitory synaptic innervation in the visual cortex. Neuron 2007, 54: 889–903.CrossRefPubMedPubMedCentral
18.
go back to reference Pothuizen HH, Davies M, Albasser MM, Aggleton JP, Vann SD. Granular and dysgranular retrosplenial cortices provide qualitatively different contributions to spatial working memory: evidence from immediate-early gene imaging in rats. Euro J Neurosci 2009 30: 877–888.CrossRef Pothuizen HH, Davies M, Albasser MM, Aggleton JP, Vann SD. Granular and dysgranular retrosplenial cortices provide qualitatively different contributions to spatial working memory: evidence from immediate-early gene imaging in rats. Euro J Neurosci 2009 30: 877–888.CrossRef
19.
go back to reference Yamada Y, Hada Y, Imamura K, Mataga N, Watanabe Y, Yamamoto M. Differential expression of immediate-early genes, c-fos and zif268, in the visual cortex of young rats: Effects of a noradrenergic neurotoxin on their expression. Neuroscience 1999, 92: 473–484.CrossRefPubMed Yamada Y, Hada Y, Imamura K, Mataga N, Watanabe Y, Yamamoto M. Differential expression of immediate-early genes, c-fos and zif268, in the visual cortex of young rats: Effects of a noradrenergic neurotoxin on their expression. Neuroscience 1999, 92: 473–484.CrossRefPubMed
20.
go back to reference Zhu XO, McCabe BJ, Aggleton JP, Brown MW. Mapping visual recognition memory through expression of the immediate early gene c-fos. Neuroreport 1996, 7: 1871–1875.CrossRefPubMed Zhu XO, McCabe BJ, Aggleton JP, Brown MW. Mapping visual recognition memory through expression of the immediate early gene c-fos. Neuroreport 1996, 7: 1871–1875.CrossRefPubMed
21.
23.
go back to reference Bonds AB. Role of inhibition in the specification of orientation selectivity of cells in the cat striate cortex. Vis Neurosci 1989, 2: 41–55.CrossRefPubMed Bonds AB. Role of inhibition in the specification of orientation selectivity of cells in the cat striate cortex. Vis Neurosci 1989, 2: 41–55.CrossRefPubMed
24.
go back to reference Carandini M HD. Summation and division by neurons in primate visual cortex. Science 1994, 264: 1333–1336.CrossRefPubMed Carandini M HD. Summation and division by neurons in primate visual cortex. Science 1994, 264: 1333–1336.CrossRefPubMed
25.
go back to reference Carandini M HD, Movshon JA. Linearity and normalization in simple cells of the macaque primary visual cortex. J Neurosci 1997, 17: 8621–8644.CrossRefPubMed Carandini M HD, Movshon JA. Linearity and normalization in simple cells of the macaque primary visual cortex. J Neurosci 1997, 17: 8621–8644.CrossRefPubMed
26.
go back to reference Morrone MC, Burr DC, Maffei L. Functional implications of cross-orientation inhibition of cortical visual cells. I. Neurophysiological evidence. Proc R Soc Lond B Biol Sci 1982, 216: 335–354.CrossRefPubMed Morrone MC, Burr DC, Maffei L. Functional implications of cross-orientation inhibition of cortical visual cells. I. Neurophysiological evidence. Proc R Soc Lond B Biol Sci 1982, 216: 335–354.CrossRefPubMed
27.
go back to reference Somers DC, Todorov EV, Siapas AG, Toth LJ, Kim DS, Sur M. A local circuit approach to understanding integration of long-range inputs in primary visual cortex. Cereb Cortex 1998, 8: 204–217.CrossRefPubMed Somers DC, Todorov EV, Siapas AG, Toth LJ, Kim DS, Sur M. A local circuit approach to understanding integration of long-range inputs in primary visual cortex. Cereb Cortex 1998, 8: 204–217.CrossRefPubMed
29.
go back to reference Biau E, Torralba M, Fuentemilla L, de Diego Balaguer R, Soto-Faraco S. Speaker’s hand gestures modulate speech perception through phase resetting of ongoing neural oscillations. Cortex 2015, 68: 76–85.CrossRefPubMed Biau E, Torralba M, Fuentemilla L, de Diego Balaguer R, Soto-Faraco S. Speaker’s hand gestures modulate speech perception through phase resetting of ongoing neural oscillations. Cortex 2015, 68: 76–85.CrossRefPubMed
30.
go back to reference Rainer G, Lee H, Simpson GV, Logothetis NK. Working-memory related theta (4–7 Hz) frequency oscillations observed in monkey extrastriate visual cortex. Neurocomputing 2004, 58-60: 965–969.CrossRef Rainer G, Lee H, Simpson GV, Logothetis NK. Working-memory related theta (4–7 Hz) frequency oscillations observed in monkey extrastriate visual cortex. Neurocomputing 2004, 58-60: 965–969.CrossRef
31.
go back to reference Schubert JT, Buchholz VN, Focker J, Engel AK, Roder B, Heed T. Oscillatory activity reflects differential use of spatial reference frames by sighted and blind individuals in tactile attention. Neuroimage 2015, 117: 417–428.CrossRefPubMed Schubert JT, Buchholz VN, Focker J, Engel AK, Roder B, Heed T. Oscillatory activity reflects differential use of spatial reference frames by sighted and blind individuals in tactile attention. Neuroimage 2015, 117: 417–428.CrossRefPubMed
Metadata
Title
Dendritic Cell Factor 1-Knockout Results in Visual Deficit Through the GABA System in Mouse Primary Visual Cortex
Authors
Jieyun Shi
Qian Li
Tieqiao Wen
Publication date
01-06-2018
Publisher
Springer Singapore
Published in
Neuroscience Bulletin / Issue 3/2018
Print ISSN: 1673-7067
Electronic ISSN: 1995-8218
DOI
https://doi.org/10.1007/s12264-018-0211-0

Other articles of this Issue 3/2018

Neuroscience Bulletin 3/2018 Go to the issue