Skip to main content
Top
Published in: Indian Journal of Surgery 4/2021

01-08-2021 | Ultrasound | Original Article

Pediatric Empyema Thoracis: Jabalpur Image-Based Staging and Stage-Directed Decision-Making Algorithm

Authors: Vikesh Agrawal, Hemant Namdeo, Santosh Singh, Rekha Agrawal, Himanshu Acharya, Dhananjaya Sharma

Published in: Indian Journal of Surgery | Issue 4/2021

Login to get access

Abstract

Pneumonia in the pediatric age group is common and it can commonly progress to pediatric empyema thoracis (PET). The American Thoracic Society has described three stages of PET which have been the following: exudative, fibrinopurulent, and organized. We describe a new Jabalpur image-based staging system for empyema thoracis in children which has allowed focused intervention and improved outcomes. Pre-empted focused observation, gaps in the treatment and outcomes, and the triangulation of these resulted in the evolution of a new, image-based staging system for pediatric empyema thoracis. From 2009 to 2014, our team was a participant-observer of the usual practices to treat children up to 18 years of age with pneumonia who developed empyema. The prevalent classification into exudative, fibrinopurulent, and organized empyema was treated as per practice. Patients with chronic empyema, empyema necessitans, and tubercular and those with incomplete data were excluded. A staging system purely based on ultrasound (US) and computed tomography (CT) findings was evolved, and we call it Jabalpur image-based staging (JIBS) system for pediatric empyema thoracis. A decision-making algorithm was further evolved using the JIBS system to provide stage-directed treatment. This staging system and algorithm after a pilot run was prospectively applied to a set of patients accrued from January 2015 to December 2019 with PET which was strictly allocated as per new evolved staging and treated with discrete choices by all the methods inclusive of general supportive care, nutritional support, tube drainage, and open and video-assisted thoracoscopic surgery (VATS). The successful early outcome was defined statistically significant reduction of mean ICTD days, the number of CXRs, and the mean hospital days, which reflects earlier recovery. The long-term successful outcome was defined as the absence of fever, breathlessness, and adequate weight gain (according to age) at a minimum follow-up of 3 months. On the prospective evaluation of JIBS and the stage-directed decision-making algorithm on a set of 187 children accrued from January 2015 to December 2019, there was a significant improvement in the success of drainage and the number of VATS procedures, and their success significantly improved. There was a significant reduction in mean preoperative stay, mean intercostal tube drainage (ICTD) days, the number of chest x-rays (CXRs), mean hospital stay, and the number of open procedures in the prospective group. Accuracy of a new staging system to identify exudative, fibrinopurulent, and organized stages of PET was found to be 94.65%, 94.65%, and 97.86% respectively. The long-term successful outcome was observed in 179 (95.72%) children while 8 patients had chest deformity and a minimum secondary scoliosis which was addressed with physiotherapy. This study proposes a simple image-based staging system and stage-directed decision-making algorithm for empyema thoracis in children, which sharply defines the stages and allows the selection of appropriate surgical modality in cases of PET.
Literature
1.
go back to reference Mahon C, Walker W, Drage A, Best E (2016) Incidence, etiology and outcome of pleural empyema and parapneumonic effusion from 1998 to 2012 in a population of New Zealand children. J Paediatr Child Health 52:662–668CrossRef Mahon C, Walker W, Drage A, Best E (2016) Incidence, etiology and outcome of pleural empyema and parapneumonic effusion from 1998 to 2012 in a population of New Zealand children. J Paediatr Child Health 52:662–668CrossRef
2.
go back to reference Andrews NC, Parker EF, Shaw RR, Wilson NJ, Webb WR (1962) Management of nontuberculous empyema: a statement of the subcommittee on surgery. Am Rev Respir Dis 85:935–936 Andrews NC, Parker EF, Shaw RR, Wilson NJ, Webb WR (1962) Management of nontuberculous empyema: a statement of the subcommittee on surgery. Am Rev Respir Dis 85:935–936
3.
go back to reference Reichert M, Hecker M, Witte B, Bodner J, Padberg W, Weigand MA, Hecker A (2017) Stage-directed therapy of pleural empyema. Langenbeck's Arch Surg 402(1):15–26CrossRef Reichert M, Hecker M, Witte B, Bodner J, Padberg W, Weigand MA, Hecker A (2017) Stage-directed therapy of pleural empyema. Langenbeck's Arch Surg 402(1):15–26CrossRef
4.
go back to reference Redden MD, Chin TY, van Driel ML (2017) Surgical versus non-surgical management for pleural empyema. Cochrane Database Syst Rev 3:CD010651PubMed Redden MD, Chin TY, van Driel ML (2017) Surgical versus non-surgical management for pleural empyema. Cochrane Database Syst Rev 3:CD010651PubMed
5.
go back to reference Coote N, Kay E (2005) Surgical versus non-surgical management of pleural empyema. Cochrane Database Syst Rev 4:CD001956 Coote N, Kay E (2005) Surgical versus non-surgical management of pleural empyema. Cochrane Database Syst Rev 4:CD001956
6.
go back to reference Yu D, Buchvald F, Brandt B, Nielsen K (2014) Seventeen-year study shows rise in parapneumonic effusion and empyema with higher treatment failure after chest tube drainage. Acta Paediatr 103(1):93–99CrossRef Yu D, Buchvald F, Brandt B, Nielsen K (2014) Seventeen-year study shows rise in parapneumonic effusion and empyema with higher treatment failure after chest tube drainage. Acta Paediatr 103(1):93–99CrossRef
7.
go back to reference Goyal V, Kumar A, Gupta M, Sandhu HP, Dhir S (2014) Empyema thoracis in children: Still a challenge in developing countries. Afr J Paediatr Surg 11(3):206–210CrossRef Goyal V, Kumar A, Gupta M, Sandhu HP, Dhir S (2014) Empyema thoracis in children: Still a challenge in developing countries. Afr J Paediatr Surg 11(3):206–210CrossRef
8.
go back to reference Cremonesini D, Thomson AH (2007) How should we manage empyema: antibiotics alone, fibrinolytics, or primary video-assisted thoracoscopic surgery (VATS)? Semin Respir Crit Care Med 28(3):322–332CrossRef Cremonesini D, Thomson AH (2007) How should we manage empyema: antibiotics alone, fibrinolytics, or primary video-assisted thoracoscopic surgery (VATS)? Semin Respir Crit Care Med 28(3):322–332CrossRef
9.
go back to reference Falguera M, Carratalà J, Bielsa S, Ruiz-González A, Chica I, Gudiol F (2011) Predictive factors, microbiology and outcome of patients with parapneumonic effusion. Eur Respir J 38:1173–1179CrossRef Falguera M, Carratalà J, Bielsa S, Ruiz-González A, Chica I, Gudiol F (2011) Predictive factors, microbiology and outcome of patients with parapneumonic effusion. Eur Respir J 38:1173–1179CrossRef
10.
go back to reference Reissig A, Copetti R, Mathis G, Mempel C, Schuler A, Zechner P, Aliberti S, Neumann R, Kroegel C, Hoyer H (2012) Lung ultrasound in the diagnosis and follow-up of community-acquired pneumonia: a prospective, multicenter, diagnostic accuracy study. Chest 142:965–972CrossRef Reissig A, Copetti R, Mathis G, Mempel C, Schuler A, Zechner P, Aliberti S, Neumann R, Kroegel C, Hoyer H (2012) Lung ultrasound in the diagnosis and follow-up of community-acquired pneumonia: a prospective, multicenter, diagnostic accuracy study. Chest 142:965–972CrossRef
11.
go back to reference Scarci M, Abah U, Solli P, Page A, Waller D, Schil PV et al (2015) EACTS expert consensus statement for surgical management of pleural empyema. Eur J Cardiothorac Surg 48(5):642–653CrossRef Scarci M, Abah U, Solli P, Page A, Waller D, Schil PV et al (2015) EACTS expert consensus statement for surgical management of pleural empyema. Eur J Cardiothorac Surg 48(5):642–653CrossRef
12.
go back to reference Renner H, Gabor S, Pinter H, Maier A, Friehs G, Smolle-Juettner FM (1998) Is aggressive surgery in pleural empyema justified? Eur J Cardiothorac Surg 14:117–122CrossRef Renner H, Gabor S, Pinter H, Maier A, Friehs G, Smolle-Juettner FM (1998) Is aggressive surgery in pleural empyema justified? Eur J Cardiothorac Surg 14:117–122CrossRef
13.
go back to reference Helfritzsch H, Lesser T, Seifert S, Bartel M (2000) Stage-adapted therapy of pleural empyema. Results during 1992-1998. Zentralbl Chir 125(5):454–458PubMed Helfritzsch H, Lesser T, Seifert S, Bartel M (2000) Stage-adapted therapy of pleural empyema. Results during 1992-1998. Zentralbl Chir 125(5):454–458PubMed
14.
go back to reference Light RW (1995) A new classification of parapneumonic effusions and empyema. Chest 108(2):299–301CrossRef Light RW (1995) A new classification of parapneumonic effusions and empyema. Chest 108(2):299–301CrossRef
15.
16.
go back to reference Colice GL, Curtis A, Deslauriers J, Heffner J, Light R, Littenberg B, Sahn S, Weinstein RA, Yusen RD (2000) Medical and surgical treatment of parapneumonic effusions: an evidence-based guideline. Chest 118:1158–1171CrossRef Colice GL, Curtis A, Deslauriers J, Heffner J, Light R, Littenberg B, Sahn S, Weinstein RA, Yusen RD (2000) Medical and surgical treatment of parapneumonic effusions: an evidence-based guideline. Chest 118:1158–1171CrossRef
17.
go back to reference Davies CW, Gleeson FV, Davies RJ (2003) BTS guidelines for the management of pleural infection. Thorax 58(2):ii18–ii28CrossRef Davies CW, Gleeson FV, Davies RJ (2003) BTS guidelines for the management of pleural infection. Thorax 58(2):ii18–ii28CrossRef
18.
go back to reference Yang PC, Luh KT, Chang DB, Wu HD, Yu CJ, Kuo SH (1992) Value of sonography in determining the nature of pleural effusion: analysis of 320 cases. AJR Am J Roentgenol 159(1):29–33CrossRef Yang PC, Luh KT, Chang DB, Wu HD, Yu CJ, Kuo SH (1992) Value of sonography in determining the nature of pleural effusion: analysis of 320 cases. AJR Am J Roentgenol 159(1):29–33CrossRef
19.
go back to reference Bongiolatti S, Voltolini L, Borgianni S, Borrelli R, Tancredi G, Viggiano D, Gonfiotti A (2017) Uniportal thoracoscopic decortication for pleural empyema and the role of ultrasonographic preoperative staging. Interact Cardiovasc Thorac Surg 24(4):560–566PubMed Bongiolatti S, Voltolini L, Borgianni S, Borrelli R, Tancredi G, Viggiano D, Gonfiotti A (2017) Uniportal thoracoscopic decortication for pleural empyema and the role of ultrasonographic preoperative staging. Interact Cardiovasc Thorac Surg 24(4):560–566PubMed
20.
go back to reference Islam S, Calkins CM, Goldin AB, Chen C, Downard CD, Huang EY, Cassidy L, Saito J, Blakely ML, Rangel SJ, Arca MJ, Abdullah F, St Peter SD, APSA Outcomes and Clinical Trials Committee, 2011-2012 (2012) APSA Outcomes and Clinical Trials Committee, 2011-2012. The diagnosis and management of empyema in children: a comprehensive review from the APSA Outcomes and Clinical Trials Committee. J Pediatr Surg 47(11):2101–2110CrossRef Islam S, Calkins CM, Goldin AB, Chen C, Downard CD, Huang EY, Cassidy L, Saito J, Blakely ML, Rangel SJ, Arca MJ, Abdullah F, St Peter SD, APSA Outcomes and Clinical Trials Committee, 2011-2012 (2012) APSA Outcomes and Clinical Trials Committee, 2011-2012. The diagnosis and management of empyema in children: a comprehensive review from the APSA Outcomes and Clinical Trials Committee. J Pediatr Surg 47(11):2101–2110CrossRef
21.
go back to reference Tsujimoto N, Saraya T, Light RW, Tsukahara Y, Koide T, Kurai D, Ishii H, Kimura H, Goto H, Takizawa H (2015) A simple method for differentiating complicated parapneumonic effusion/empyema from parapneumonic effusion using the split pleura sign and the amount of pleural effusion on thoracic CT. PLoS One 10:e0130141CrossRef Tsujimoto N, Saraya T, Light RW, Tsukahara Y, Koide T, Kurai D, Ishii H, Kimura H, Goto H, Takizawa H (2015) A simple method for differentiating complicated parapneumonic effusion/empyema from parapneumonic effusion using the split pleura sign and the amount of pleural effusion on thoracic CT. PLoS One 10:e0130141CrossRef
22.
go back to reference Porcel JM, Pardina M, Alemán C, Pallisa E, Light RW, Bielsa S (2017) Computed tomography scoring system for discriminating between parapneumonic effusions eventually drained and those cured only with antibiotics. Respirology. 22(6):1199–1204CrossRef Porcel JM, Pardina M, Alemán C, Pallisa E, Light RW, Bielsa S (2017) Computed tomography scoring system for discriminating between parapneumonic effusions eventually drained and those cured only with antibiotics. Respirology. 22(6):1199–1204CrossRef
24.
go back to reference Pan H, He J, Shen J, Jiang L, Liang W, He J (2017) A meta-analysis of video-assisted thoracoscopic decortication versus open thoracotomy decortication for patients with empyema. J Thorac Dis 9(7):2006–2014CrossRef Pan H, He J, Shen J, Jiang L, Liang W, He J (2017) A meta-analysis of video-assisted thoracoscopic decortication versus open thoracotomy decortication for patients with empyema. J Thorac Dis 9(7):2006–2014CrossRef
25.
go back to reference Shankar G, Sahadev R, Santhanakrishnan R (2020) Pediatric empyema thoracis management: should the consensus be different for the developing countries? J Pediatr Surg 55(3):513–517CrossRef Shankar G, Sahadev R, Santhanakrishnan R (2020) Pediatric empyema thoracis management: should the consensus be different for the developing countries? J Pediatr Surg 55(3):513–517CrossRef
26.
go back to reference Cameron R (2000) Intra-pleural fibrinolytic therapy vs. conservative management in the treatment of parapneumonic effusions and empyema. Cochrane Database Syst Rev 3:CD002312 Cameron R (2000) Intra-pleural fibrinolytic therapy vs. conservative management in the treatment of parapneumonic effusions and empyema. Cochrane Database Syst Rev 3:CD002312
27.
go back to reference Oyetunji TA, Dorman RM, Svetanoff WJ, Depala K, Jain S, Dekonenko C et al (2020) Declining frequency of thoracoscopic decortication for empyema - redefining failure after fibrinolysis. J Pediatr Surg Oyetunji TA, Dorman RM, Svetanoff WJ, Depala K, Jain S, Dekonenko C et al (2020) Declining frequency of thoracoscopic decortication for empyema - redefining failure after fibrinolysis. J Pediatr Surg
28.
go back to reference Hajjar WM, Ahmed I, Al-Nassar SA, Alsultan RK, Alwgait WA, Alkhalaf HH et al (2016) Video-assisted thoracoscopic decortication for the management of late stage pleural empyema, is it feasible? Ann Thorac Med 11:71–78CrossRef Hajjar WM, Ahmed I, Al-Nassar SA, Alsultan RK, Alwgait WA, Alkhalaf HH et al (2016) Video-assisted thoracoscopic decortication for the management of late stage pleural empyema, is it feasible? Ann Thorac Med 11:71–78CrossRef
29.
go back to reference Godfrey MS, Bramley KT, Detterbeck F (2019) Medical and surgical management of empyema. Semin Respir Crit Care Med 40:361–374CrossRef Godfrey MS, Bramley KT, Detterbeck F (2019) Medical and surgical management of empyema. Semin Respir Crit Care Med 40:361–374CrossRef
30.
go back to reference Parelkar SV, Patil SH, Sanghvi BV, Gupta RK, Satej S, Mhaskar SS et al (2017) Video-assisted thoracoscopic surgery for pediatric empyema by two-port technique: a single-center experience with 167 consecutive cases. J Indian Assoc Pediatr Surg 22:150–154CrossRef Parelkar SV, Patil SH, Sanghvi BV, Gupta RK, Satej S, Mhaskar SS et al (2017) Video-assisted thoracoscopic surgery for pediatric empyema by two-port technique: a single-center experience with 167 consecutive cases. J Indian Assoc Pediatr Surg 22:150–154CrossRef
Metadata
Title
Pediatric Empyema Thoracis: Jabalpur Image-Based Staging and Stage-Directed Decision-Making Algorithm
Authors
Vikesh Agrawal
Hemant Namdeo
Santosh Singh
Rekha Agrawal
Himanshu Acharya
Dhananjaya Sharma
Publication date
01-08-2021
Publisher
Springer India
Published in
Indian Journal of Surgery / Issue 4/2021
Print ISSN: 0972-2068
Electronic ISSN: 0973-9793
DOI
https://doi.org/10.1007/s12262-020-02560-w

Other articles of this Issue 4/2021

Indian Journal of Surgery 4/2021 Go to the issue