Skip to main content
Top
Published in: Pathology & Oncology Research 2/2020

01-04-2020 | Retinoblastoma | Original Article

Silencing UHRF1 Inhibits Cell Proliferation and Promotes Cell Apoptosis in Retinoblastoma Via the PI3K/Akt Signalling Pathway

Authors: Yang Liu, Guodong Liang, Tingting Zhou, Zengshan Liu

Published in: Pathology & Oncology Research | Issue 2/2020

Login to get access

Abstract

This study aimed to investigate the effect of silencing ubiquitin-like with PHD and RING finger domains 1 (UHRF1) on the proliferation and apoptosis of retinoblastoma (RB) cells and to clarify the molecular mechanism of the UHRF1 gene in the development of RB. Human RB WERI-Rb-1 cells were selected and assigned into a blank group (WERI-Rb-1 cells with no transfection), NC-shRNA group (WERI-Rb-1 cells infected with NC-shRNA virus) and UHRF1-shRNA group (WERI-Rb-1 cells infected with pGC-UHRF1-shRNA-LV-GFP# (39–1) virus). The mRNA and protein expression of UHRF1 was detected by RT-qPCR and Western blot analysis. The effect of silencing UHRF1 on the proliferation and apoptosis of WERI-Rb-1 cells was assessed by MTT assay, EdU assay, flow cytometry, and Hoechst staining. Furthermore, the expression of cell cycle-related factor (cyclin D1), apoptosis-related factors (caspase-9, Bcl-2 and Bax), and PI3K/Akt signalling pathway-related factors (p-PI3K, PI3K, p-Akt and Akt) were measured via Western blot analysis. The RNA interference plasmid UHRF1-shRNA was successfully constructed. After WERI-Rb-1 cells were infected with UHRF1-shRNA, decreased mRNA and protein expression of UHRF1 was found. WERI-Rb-1 cells infected with UHRF1-shRNA showed inhibited proliferative ability and increased apoptosis. In the UHRF1-shRNA group, more cells arrested at the G0/G1 phase and less cells at the S and G2/M phases. WERI-Rb-1 cells infected with UHRF1-shRNA had increased expression of caspase-9 and Bax and decreased expression of Bcl-2 expression and decreased levels of p-PI3K and p-Akt. In conclusion, our study demonstrated that silencing UHRF1 could inhibit the proliferation of RB cells and promote apoptosis. The mechanism may be caused by the downregulation of the proportion of Bcl-2/Bax expression and the promotion of the expression of caspase-9 through the PI3K/Akt signalling pathway.
Literature
1.
go back to reference Zhang J, Benavente CA, McEvoy J, Flores-Otero J, Ding L, Chen X, Ulyanov A, Wu G, Wilson M, Wang J, Brennan R, Rusch M, Manning AL, Ma J, Easton J, Shurtleff S, Mullighan C, Pounds S, Mukatira S, Gupta P, Neale G, Zhao D, Lu C, Fulton RS, Fulton LL, Hong X, Dooling DJ, Ochoa K, Naeve C, Dyson NJ, Mardis ER, Bahrami A, Ellison D, Wilson RK, Downing JR, Dyer MA (2012) A novel retinoblastoma therapy from genomic and epigenetic analyses. Nature 481(7381):329–334. https://doi.org/10.1038/nature10733 CrossRefPubMedPubMedCentral Zhang J, Benavente CA, McEvoy J, Flores-Otero J, Ding L, Chen X, Ulyanov A, Wu G, Wilson M, Wang J, Brennan R, Rusch M, Manning AL, Ma J, Easton J, Shurtleff S, Mullighan C, Pounds S, Mukatira S, Gupta P, Neale G, Zhao D, Lu C, Fulton RS, Fulton LL, Hong X, Dooling DJ, Ochoa K, Naeve C, Dyson NJ, Mardis ER, Bahrami A, Ellison D, Wilson RK, Downing JR, Dyer MA (2012) A novel retinoblastoma therapy from genomic and epigenetic analyses. Nature 481(7381):329–334. https://​doi.​org/​10.​1038/​nature10733 CrossRefPubMedPubMedCentral
3.
go back to reference Busch M, Grosse-Kreul J, Wirtz JJ, Beier M, Stephan H, Royer-Pokora B, Metz K, Dunker N (2017) Reduction of the tumorigenic potential of human retinoblastoma cell lines by TFF1 overexpression involves p53/caspase signaling and miR-18a regulation. Int J Cancer 141(3):549–560. https://doi.org/10.1002/ijc.30768 CrossRefPubMed Busch M, Grosse-Kreul J, Wirtz JJ, Beier M, Stephan H, Royer-Pokora B, Metz K, Dunker N (2017) Reduction of the tumorigenic potential of human retinoblastoma cell lines by TFF1 overexpression involves p53/caspase signaling and miR-18a regulation. Int J Cancer 141(3):549–560. https://​doi.​org/​10.​1002/​ijc.​30768 CrossRefPubMed
4.
go back to reference Rushlow DE, Mol BM, Kennett JY, Yee S, Pajovic S, Theriault BL, Prigoda-Lee NL, Spencer C, Dimaras H, Corson TW, Pang R, Massey C, Godbout R, Jiang Z, Zacksenhaus E, Paton K, Moll AC, Houdayer C, Raizis A, Halliday W, Lam WL, Boutros PC, Lohmann D, Dorsman JC, Gallie BL (2013) Characterisation of retinoblastomas without RB1 mutations: genomic, gene expression, and clinical studies. Lancet Oncol 14(4):327–334. https://doi.org/10.1016/S1470-2045(13)70045-7 CrossRefPubMed Rushlow DE, Mol BM, Kennett JY, Yee S, Pajovic S, Theriault BL, Prigoda-Lee NL, Spencer C, Dimaras H, Corson TW, Pang R, Massey C, Godbout R, Jiang Z, Zacksenhaus E, Paton K, Moll AC, Houdayer C, Raizis A, Halliday W, Lam WL, Boutros PC, Lohmann D, Dorsman JC, Gallie BL (2013) Characterisation of retinoblastomas without RB1 mutations: genomic, gene expression, and clinical studies. Lancet Oncol 14(4):327–334. https://​doi.​org/​10.​1016/​S1470-2045(13)70045-7 CrossRefPubMed
11.
go back to reference Sharif J, Muto M, Takebayashi S, Suetake I, Iwamatsu A, Endo TA, Shinga J, Mizutani-Koseki Y, Toyoda T, Okamura K, Tajima S, Mitsuya K, Okano M, Koseki H (2007) The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450(7171):908–912. https://doi.org/10.1038/nature06397 CrossRefPubMed Sharif J, Muto M, Takebayashi S, Suetake I, Iwamatsu A, Endo TA, Shinga J, Mizutani-Koseki Y, Toyoda T, Okamura K, Tajima S, Mitsuya K, Okano M, Koseki H (2007) The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450(7171):908–912. https://​doi.​org/​10.​1038/​nature06397 CrossRefPubMed
22.
go back to reference Fang L, Shanqu L, Ping G, Ting H, Xi W, Ke D, Min L, Junxia W, Huizhong Z (2012) Gene therapy with RNAi targeting UHRF1 driven by tumor-specific promoter inhibits tumor growth and enhances the sensitivity of chemotherapeutic drug in breast cancer in vitro and in vivo. Cancer Chemother Pharmacol 69(4):1079–1087. https://doi.org/10.1007/s00280-011-1801-y CrossRefPubMed Fang L, Shanqu L, Ping G, Ting H, Xi W, Ke D, Min L, Junxia W, Huizhong Z (2012) Gene therapy with RNAi targeting UHRF1 driven by tumor-specific promoter inhibits tumor growth and enhances the sensitivity of chemotherapeutic drug in breast cancer in vitro and in vivo. Cancer Chemother Pharmacol 69(4):1079–1087. https://​doi.​org/​10.​1007/​s00280-011-1801-y CrossRefPubMed
23.
go back to reference Mori T, Li Y, Hata H, Ono K, Kochi H (2002) NIRF, a novel RING finger protein, is involved in cell-cycle regulation. Biochem Biophys Res Commun 296(3):530–536CrossRef Mori T, Li Y, Hata H, Ono K, Kochi H (2002) NIRF, a novel RING finger protein, is involved in cell-cycle regulation. Biochem Biophys Res Commun 296(3):530–536CrossRef
24.
go back to reference Mori T, Li Y, Hata H, Kochi H (2004) NIRF is a ubiquitin ligase that is capable of ubiquitinating PCNP, a PEST-containing nuclear protein. FEBS Lett 557(1–3):209–214CrossRef Mori T, Li Y, Hata H, Kochi H (2004) NIRF is a ubiquitin ligase that is capable of ubiquitinating PCNP, a PEST-containing nuclear protein. FEBS Lett 557(1–3):209–214CrossRef
Metadata
Title
Silencing UHRF1 Inhibits Cell Proliferation and Promotes Cell Apoptosis in Retinoblastoma Via the PI3K/Akt Signalling Pathway
Authors
Yang Liu
Guodong Liang
Tingting Zhou
Zengshan Liu
Publication date
01-04-2020
Publisher
Springer Netherlands
Published in
Pathology & Oncology Research / Issue 2/2020
Print ISSN: 1219-4956
Electronic ISSN: 1532-2807
DOI
https://doi.org/10.1007/s12253-019-00656-7

Other articles of this Issue 2/2020

Pathology & Oncology Research 2/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine