Skip to main content
Top
Published in: Radiological Physics and Technology 2/2019

01-06-2019 | Computed Tomography

Automated segmentation of 2D low-dose CT images of the psoas-major muscle using deep convolutional neural networks

Authors: Fumio Hashimoto, Akihiro Kakimoto, Nozomi Ota, Shigeru Ito, Sadahiko Nishizawa

Published in: Radiological Physics and Technology | Issue 2/2019

Login to get access

Abstract

The psoas-major muscle has been reported as a predictive factor of sarcopenia. The cross-sectional area (CSA) of the psoas-major muscle in axial images has been indicated to correlate well with the whole-body skeletal muscle mass. In this study, we evaluated the segmentation accuracy of low-dose X-ray computed tomography (CT) images of the psoas-major muscle using the U-Net convolutional neural network, which is a deep-learning technique. Deep learning has been recently known to outperform conventional image-segmentation techniques. We used fivefold cross validation to validate the segmentation performance (n = 100) of the psoas-major muscle. For the intersection over union and CSA ratio, segmentation accuracies of 86.0 and 103.1%, respectively, were achieved. These results suggest that the U-Net network is competitive compared with the previous methods. Therefore, the proposed technique is useful for segmenting the psoas-major muscle even in low-dose CT images.
Literature
2.
go back to reference Yaguchi Y, Kumata Y, Horikawa M, et al. Clinical significance of area of psoas major muscle on computed tomography after gastrectomy in gastric cancer patients. Ann Nutr Metab. 2017;71(3–4):145–9.CrossRefPubMed Yaguchi Y, Kumata Y, Horikawa M, et al. Clinical significance of area of psoas major muscle on computed tomography after gastrectomy in gastric cancer patients. Ann Nutr Metab. 2017;71(3–4):145–9.CrossRefPubMed
3.
go back to reference Fearon K, Strasser F, Anker SD, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011;12(5):489–95.CrossRefPubMed Fearon K, Strasser F, Anker SD, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011;12(5):489–95.CrossRefPubMed
4.
go back to reference Shen W, Punyanitya M, Wang Z, et al. Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image. J Appl Physiol. 2004;97(6):2333–8.CrossRefPubMed Shen W, Punyanitya M, Wang Z, et al. Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image. J Appl Physiol. 2004;97(6):2333–8.CrossRefPubMed
5.
go back to reference Baracos VE, Reiman T, Mourtzakis M, Gioulbasanis I, Antoun S. Body composition in patients with non-small cell lung cancer: a contemporary view of cancer cachexia with the use of computed tomography image analysis. Am J Clin Nutr. 2010;91(4):1133–7.CrossRef Baracos VE, Reiman T, Mourtzakis M, Gioulbasanis I, Antoun S. Body composition in patients with non-small cell lung cancer: a contemporary view of cancer cachexia with the use of computed tomography image analysis. Am J Clin Nutr. 2010;91(4):1133–7.CrossRef
6.
go back to reference Martin L, Birdsell L, MacDonald N, et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol. 2013;31(12):1539–47.CrossRefPubMed Martin L, Birdsell L, MacDonald N, et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol. 2013;31(12):1539–47.CrossRefPubMed
7.
go back to reference Meesters SPL, Yokota F, Okada T, et al. Multi atlas-based muscle segmentation in abdominal CT images with varying field of view. Paper presented at the International Forum on Medical Imaging in Asia (IFMIA), November 16–17, 2012, Daejon Korea. Meesters SPL, Yokota F, Okada T, et al. Multi atlas-based muscle segmentation in abdominal CT images with varying field of view. Paper presented at the International Forum on Medical Imaging in Asia (IFMIA), November 16–17, 2012, Daejon Korea.
8.
go back to reference Kamiya N, Zhou X, Chen H, et al. Automated segmentation of psoas major muscle in X-ray CT images by use of a shape model: preliminary study. Radiol Phys Technol. 2012;5(1):5–14.CrossRefPubMed Kamiya N, Zhou X, Chen H, et al. Automated segmentation of psoas major muscle in X-ray CT images by use of a shape model: preliminary study. Radiol Phys Technol. 2012;5(1):5–14.CrossRefPubMed
10.
go back to reference Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell. 2016;39(4):640–51.PubMed Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell. 2016;39(4):640–51.PubMed
11.
go back to reference Badrinarayanan V, Kendall A, Cipolla R. Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–95.CrossRef Badrinarayanan V, Kendall A, Cipolla R. Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–95.CrossRef
14.
go back to reference Greenspan H, van Ginneken B, Summers RM. Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans Med Imaging. 2016;35(5):1153–9.CrossRef Greenspan H, van Ginneken B, Summers RM. Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans Med Imaging. 2016;35(5):1153–9.CrossRef
15.
go back to reference Suzuki K. Overview of deep learning in medical imaging. Radiol Phys Technol. 2017;10(3):257–73.CrossRef Suzuki K. Overview of deep learning in medical imaging. Radiol Phys Technol. 2017;10(3):257–73.CrossRef
16.
go back to reference Teramoto A, Tsukamoto T, Kiriyama Y, Fujita H. Automated classification of lung cancer types from cytological images using deep convolutional neural networks. Biomed Res Int. 2017;4067832:1–6.CrossRef Teramoto A, Tsukamoto T, Kiriyama Y, Fujita H. Automated classification of lung cancer types from cytological images using deep convolutional neural networks. Biomed Res Int. 2017;4067832:1–6.CrossRef
17.
go back to reference Zhou X, Takayama R, Wang S, Hara T, Fujita H. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method. Med Phys. 2017;44(10):5221–33.CrossRef Zhou X, Takayama R, Wang S, Hara T, Fujita H. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method. Med Phys. 2017;44(10):5221–33.CrossRef
18.
go back to reference Lee H, Troschel FM, Tajmir S, et al. Pixel-level deep segmentation: artificial intelligence quantifies muscle on computed tomography for body morphometric analysis. J Digit Imaging. 2017;30(4):487–98.CrossRefPubMedPubMedCentral Lee H, Troschel FM, Tajmir S, et al. Pixel-level deep segmentation: artificial intelligence quantifies muscle on computed tomography for body morphometric analysis. J Digit Imaging. 2017;30(4):487–98.CrossRefPubMedPubMedCentral
20.
go back to reference Kamiya N, Kume M, Zheng G, et al. Automated recognition of erector spinae muscles and their skeletal attachment region via deep learning in torso CT images. In: International workshop on computational methods and clinical applications in musculoskeletal imaging. 2018. https://doi.org/10.1007/978-3-030-11166-3_1. Kamiya N, Kume M, Zheng G, et al. Automated recognition of erector spinae muscles and their skeletal attachment region via deep learning in torso CT images. In: International workshop on computational methods and clinical applications in musculoskeletal imaging. 2018. https://​doi.​org/​10.​1007/​978-3-030-11166-3_​1.
21.
go back to reference Abadi M, Barham P, Chen J, et al. TensorFlow: a system for large-scale machine learning. In: Proc 12th USENIX conf operating syst design implement. 2016;16:265–83. Abadi M, Barham P, Chen J, et al. TensorFlow: a system for large-scale machine learning. In: Proc 12th USENIX conf operating syst design implement. 2016;16:265–83.
25.
Metadata
Title
Automated segmentation of 2D low-dose CT images of the psoas-major muscle using deep convolutional neural networks
Authors
Fumio Hashimoto
Akihiro Kakimoto
Nozomi Ota
Shigeru Ito
Sadahiko Nishizawa
Publication date
01-06-2019
Publisher
Springer Singapore
Published in
Radiological Physics and Technology / Issue 2/2019
Print ISSN: 1865-0333
Electronic ISSN: 1865-0341
DOI
https://doi.org/10.1007/s12194-019-00512-y

Other articles of this Issue 2/2019

Radiological Physics and Technology 2/2019 Go to the issue