Skip to main content
Top
Published in: International Journal of Hematology 3/2018

01-09-2018 | Original Article

Copy number abnormality of acute lymphoblastic leukemia cell lines based on their genetic subtypes

Authors: Chihiro Tomoyasu, Toshihiko Imamura, Toshihiro Tomii, Mio Yano, Daisuke Asai, Hiroaki Goto, Akira Shimada, Masashi Sanada, Shotaro Iwamoto, Junko Takita, Masayoshi Minegishi, Takeshi Inukai, Kanji Sugita, Hajime Hosoi

Published in: International Journal of Hematology | Issue 3/2018

Login to get access

Abstract

In this study, we performed genetic analysis of 83 B cell precursor acute lymphoblastic leukemia (B-ALL) cell lines. First, we performed multiplex ligation-dependent probe amplification analysis to identify copy number abnormalities (CNAs) in eight genes associated with B-ALL according to genetic subtype. In Ph+ B-ALL cell lines, the frequencies of IKZF1, CDKN2A/2B, BTG1, and PAX5 deletion were significantly higher than those in Ph B-ALL cell lines. The frequency of CDKN2A/2B deletion in KMT2A rearranged cell lines was significantly lower than that in non-KMT2A rearranged cell lines. These findings suggest that CNAs are correlated with genetic subtype in B-ALL cell lines. In addition, we determined that three B-other ALL cell lines had IKZF1 deletions (YCUB-5, KOPN49, and KOPN75); we therefore performed comprehensive genetic analysis of these cell lines. YCUB-5, KOPN49, and KOPN75 had P2RY8-CRLF2, IgH-CRLF2, and PAX5-ETV6 fusions, respectively. Moreover, targeted capture sequencing revealed that YCUB-5 had JAK2 R683I and KRAS G12D, and KOPN49 had JAK2 R683G and KRAS G13D mutations. These data may contribute to progress in the field of leukemia research.
Appendix
Available only for authorised users
Literature
1.
go back to reference Liem NL, Papa RA, Milross CG, Schmid MA, Tajbakhsh M, Choi S, et al. Characterization of childhood acute lymphoblastic leukemia xenograft models for the preclinical evaluation of new therapies. Blood. 2004;103(10):3905–14.CrossRefPubMed Liem NL, Papa RA, Milross CG, Schmid MA, Tajbakhsh M, Choi S, et al. Characterization of childhood acute lymphoblastic leukemia xenograft models for the preclinical evaluation of new therapies. Blood. 2004;103(10):3905–14.CrossRefPubMed
2.
go back to reference McCormack E, Bruserud O, Gjertsen BT. Animal models of acute myelogenous leukaemia—development, application and future perspectives. Leukemia. 2005;19(5):687–706.CrossRefPubMed McCormack E, Bruserud O, Gjertsen BT. Animal models of acute myelogenous leukaemia—development, application and future perspectives. Leukemia. 2005;19(5):687–706.CrossRefPubMed
3.
go back to reference Maude SL, Tasian SK, Vincent T, Hall JW, Sheen C, Roberts KG, et al. Targeting JAK1/2 and mTOR in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood. 2012;120(17):3510–8.CrossRefPubMedPubMedCentral Maude SL, Tasian SK, Vincent T, Hall JW, Sheen C, Roberts KG, et al. Targeting JAK1/2 and mTOR in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood. 2012;120(17):3510–8.CrossRefPubMedPubMedCentral
4.
go back to reference Den Boer ML, van Slegtenhorst M, De Menezes RX, Cheok MH, Buijs-Gladdines JG, Peters ST, et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 2009;10(2):125–34.CrossRef Den Boer ML, van Slegtenhorst M, De Menezes RX, Cheok MH, Buijs-Gladdines JG, Peters ST, et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 2009;10(2):125–34.CrossRef
5.
go back to reference Roberts KG, Li Y, Payne-Turner D, Harvey RC, Yang YL, Pei D, McCastlain K, et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. New Engl J of Med. 2014;371:1005–15.CrossRef Roberts KG, Li Y, Payne-Turner D, Harvey RC, Yang YL, Pei D, McCastlain K, et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. New Engl J of Med. 2014;371:1005–15.CrossRef
6.
go back to reference Hirose M, Minato K, Tobinai K, Ohira M, Ise T, Watanabe S, Shimoyama M, Taniwaki M, Abe T. A novel pre-T cell line derived from acute lymphoblastic leukemia. Gan. 1982;73(4):600–5.PubMed Hirose M, Minato K, Tobinai K, Ohira M, Ise T, Watanabe S, Shimoyama M, Taniwaki M, Abe T. A novel pre-T cell line derived from acute lymphoblastic leukemia. Gan. 1982;73(4):600–5.PubMed
7.
go back to reference Minegishi M, Tsuchiya S, Minegishi N, Konno T. Establishment of five human malignant non-T lymphoid cell lines and mixed lymphocyte-tumor reaction. Tohoku J Exp Med. 1987;151:283–92.CrossRefPubMed Minegishi M, Tsuchiya S, Minegishi N, Konno T. Establishment of five human malignant non-T lymphoid cell lines and mixed lymphocyte-tumor reaction. Tohoku J Exp Med. 1987;151:283–92.CrossRefPubMed
8.
go back to reference Kawamura M, Kikuchi A, Kobayashi S, Hanada R, Yamamoto K, Horibe K, et al. Mutations of the p53 and ras genes in childhood t(1;19)-acute lymphoblastic leukemia. Blood. 1995;85(9):2546–52.PubMed Kawamura M, Kikuchi A, Kobayashi S, Hanada R, Yamamoto K, Horibe K, et al. Mutations of the p53 and ras genes in childhood t(1;19)-acute lymphoblastic leukemia. Blood. 1995;85(9):2546–52.PubMed
9.
go back to reference Ariyasu T, Matsuo Y, Harashima A, Nakamura S, Takaba S, Tsubota T, et al. Establishment and characterization of “biphenotypic” acute leukemia cell lines with a variant Ph translocation t(9;22;10) (q34;q11;q22). Hum Cell. 1998;11(1):43–50.PubMed Ariyasu T, Matsuo Y, Harashima A, Nakamura S, Takaba S, Tsubota T, et al. Establishment and characterization of “biphenotypic” acute leukemia cell lines with a variant Ph translocation t(9;22;10) (q34;q11;q22). Hum Cell. 1998;11(1):43–50.PubMed
10.
go back to reference Kang J, Kisenge RR, Toyoda H, Tanaka S, Bu J, Azuma E, et al. Chemical sensitization and regulation of TRAIL-induced apoptosis in a panel of B-lymphocytic leukaemia cell lines. Br J Haematol. 2003;123:921–32.CrossRefPubMed Kang J, Kisenge RR, Toyoda H, Tanaka S, Bu J, Azuma E, et al. Chemical sensitization and regulation of TRAIL-induced apoptosis in a panel of B-lymphocytic leukaemia cell lines. Br J Haematol. 2003;123:921–32.CrossRefPubMed
11.
go back to reference Goto H, Naruto T, Tanoshima R, Kato H, Yokosuka T, Yanagimachi M, et al. Chemo-sensitivity in a panel of B-cell precursor acute lymphoblastic leukemia cell lines, YCUB series, derived from children. Leu Res. 2009;33:1386–91.CrossRef Goto H, Naruto T, Tanoshima R, Kato H, Yokosuka T, Yanagimachi M, et al. Chemo-sensitivity in a panel of B-cell precursor acute lymphoblastic leukemia cell lines, YCUB series, derived from children. Leu Res. 2009;33:1386–91.CrossRef
12.
go back to reference Hirase C, Maeda Y, Takai S, Kanamaru A. Hypersensitivity of Ph-positive lymphoid cell lines to rapamycin: possible clinical application of mTOR inhibitor. Leuk Res. 2009;33:450–9.CrossRefPubMed Hirase C, Maeda Y, Takai S, Kanamaru A. Hypersensitivity of Ph-positive lymphoid cell lines to rapamycin: possible clinical application of mTOR inhibitor. Leuk Res. 2009;33:450–9.CrossRefPubMed
13.
go back to reference Shiotsu Y, Kiyoi H, Ishikawa Y, Tanizaki R, Shimizu M, Umehara H, et al. KW-2449, a novel multikinase inhibitor, suppresses the growth of leukemia cells with FLT3 mutations or T315I-mutated BCR/ABL translocation. Blood. 2009;114:1607–17.CrossRefPubMed Shiotsu Y, Kiyoi H, Ishikawa Y, Tanizaki R, Shimizu M, Umehara H, et al. KW-2449, a novel multikinase inhibitor, suppresses the growth of leukemia cells with FLT3 mutations or T315I-mutated BCR/ABL translocation. Blood. 2009;114:1607–17.CrossRefPubMed
14.
go back to reference Hirose K, Inukai T, Kikuchi J, Furukawa Y, Ikawa T, Kawamoto H, et al. Aberrant induction of LMO2 by the E2A-HLF chimeric transcription factor and its implication in leukemogenesis of B-precursor ALL with t(17;19). Blood 2010;116:962–70.CrossRef Hirose K, Inukai T, Kikuchi J, Furukawa Y, Ikawa T, Kawamoto H, et al. Aberrant induction of LMO2 by the E2A-HLF chimeric transcription factor and its implication in leukemogenesis of B-precursor ALL with t(17;19). Blood 2010;116:962–70.CrossRef
15.
go back to reference Okabe S, Tauchi T, Ohyashiki K. Establishment of a new Philadelphia chromosome-positive acute lymphoblastic leukemia cell line (SK-9) with T315I mutation. Exp Hematol. 2010;38:765–72.CrossRefPubMed Okabe S, Tauchi T, Ohyashiki K. Establishment of a new Philadelphia chromosome-positive acute lymphoblastic leukemia cell line (SK-9) with T315I mutation. Exp Hematol. 2010;38:765–72.CrossRefPubMed
16.
go back to reference Akbari Moqadam F, Boer JM, Lange-Turenhout EA, Pieters R, den Boer ML. Altered expression of miR-24, miR-126 and miR-365 does not affect viability of childhood TCF3-rearranged leukemia cells. Leukemia. 2014;28(5):1008–14.CrossRefPubMed Akbari Moqadam F, Boer JM, Lange-Turenhout EA, Pieters R, den Boer ML. Altered expression of miR-24, miR-126 and miR-365 does not affect viability of childhood TCF3-rearranged leukemia cells. Leukemia. 2014;28(5):1008–14.CrossRefPubMed
17.
go back to reference Asai D, Imamura T, Suenobu S, Saito A, Hasegawa D, Deguchi T, et al. IKZF1 deletion is associated with a poor outcome in pediatric B-cell precursor acute lymphoblastic leukemia in Japan. Cancer Med. 2013;2:412–9.CrossRefPubMedPubMedCentral Asai D, Imamura T, Suenobu S, Saito A, Hasegawa D, Deguchi T, et al. IKZF1 deletion is associated with a poor outcome in pediatric B-cell precursor acute lymphoblastic leukemia in Japan. Cancer Med. 2013;2:412–9.CrossRefPubMedPubMedCentral
18.
go back to reference Roberts KG, Morin RD, Zhang J, Hirst M, Zhao Y, Su X, et al. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell. 2012;22(2):153–66.CrossRefPubMedPubMedCentral Roberts KG, Morin RD, Zhang J, Hirst M, Zhao Y, Su X, et al. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell. 2012;22(2):153–66.CrossRefPubMedPubMedCentral
19.
go back to reference Ishida H, Kanamitsu K, Washio K, Muraoka M, Sakakibara K, Matsubara T, et al. Relapsed infant MLL-rearranged acute lymphoblastic leukemia with additional genetic alterations. Pediatr Blood Cancer. 2016;63(11):2059–60.CrossRefPubMed Ishida H, Kanamitsu K, Washio K, Muraoka M, Sakakibara K, Matsubara T, et al. Relapsed infant MLL-rearranged acute lymphoblastic leukemia with additional genetic alterations. Pediatr Blood Cancer. 2016;63(11):2059–60.CrossRefPubMed
20.
go back to reference Schwab CJ, Chilton L, Morrison H, Jones L, Al-Shehhi H, Erhorn A, et al. Genes commonly deleted in childhood B-cell precursor acute lymphoblastic leukemia: association with cytogenetics and clinical features. Haematologica. 2013;98(7):1081–8.CrossRefPubMedPubMedCentral Schwab CJ, Chilton L, Morrison H, Jones L, Al-Shehhi H, Erhorn A, et al. Genes commonly deleted in childhood B-cell precursor acute lymphoblastic leukemia: association with cytogenetics and clinical features. Haematologica. 2013;98(7):1081–8.CrossRefPubMedPubMedCentral
21.
go back to reference Imamura T, Kiyokawa N, Kato M, Imai C, Okamoto Y, Yano M, et al. Characterization of pediatric Philadelphia-negative B-cell precursor acute lymphoblastic leukemia with kinase fusions in Japan. Blood Cancer J. 2016;6:e419.CrossRefPubMedPubMedCentral Imamura T, Kiyokawa N, Kato M, Imai C, Okamoto Y, Yano M, et al. Characterization of pediatric Philadelphia-negative B-cell precursor acute lymphoblastic leukemia with kinase fusions in Japan. Blood Cancer J. 2016;6:e419.CrossRefPubMedPubMedCentral
22.
go back to reference Reshmi SC, Harvey RC, Roberts KG, Stonerock E, Smith A, Jenkins H, et al. Targetable kinase gene fusions in high-risk B-ALL: a study from the Children’s Oncology Group. Blood. 2017;129(25):3352–61.PubMedPubMedCentral Reshmi SC, Harvey RC, Roberts KG, Stonerock E, Smith A, Jenkins H, et al. Targetable kinase gene fusions in high-risk B-ALL: a study from the Children’s Oncology Group. Blood. 2017;129(25):3352–61.PubMedPubMedCentral
23.
24.
go back to reference van Zutven LJ, van Drunen E, de Bont JM, Wattel MM, Den Boer ML, Pieters R, et al. CDKN2 deletions have no prognostic value in childhood precursor-B acute lymphoblastic leukaemia. Leukemia. 2005;19(7):1281–4.CrossRefPubMed van Zutven LJ, van Drunen E, de Bont JM, Wattel MM, Den Boer ML, Pieters R, et al. CDKN2 deletions have no prognostic value in childhood precursor-B acute lymphoblastic leukaemia. Leukemia. 2005;19(7):1281–4.CrossRefPubMed
25.
go back to reference Braun M, Pastorczak A, Fendler W, Madzio J, Tomasik B, Taha J, et al. Biallelic loss of CDKN2A is associated with poor response to treatment in pediatric acute lymphoblastic leukemia. Leuk Lymphoma. 2017;58(5):1162–71.CrossRefPubMed Braun M, Pastorczak A, Fendler W, Madzio J, Tomasik B, Taha J, et al. Biallelic loss of CDKN2A is associated with poor response to treatment in pediatric acute lymphoblastic leukemia. Leuk Lymphoma. 2017;58(5):1162–71.CrossRefPubMed
26.
go back to reference Churchman ML, Low J, Qu C, Paietta EM, Kasper LH, Chang Y, et al. Efficacy of retinoids in IKZF1-mutated BCR-ABL1 acute lymphoblastic leukemia. Cancer Cell. 2015;28(3):343–56.CrossRefPubMedPubMedCentral Churchman ML, Low J, Qu C, Paietta EM, Kasper LH, Chang Y, et al. Efficacy of retinoids in IKZF1-mutated BCR-ABL1 acute lymphoblastic leukemia. Cancer Cell. 2015;28(3):343–56.CrossRefPubMedPubMedCentral
27.
go back to reference Rouault JP, Rimokh R, Tessa C, Paranhos G, Ffrench M, Duret L, et al. BTG1, a member of a new family of antiproliferative genes. EMBO J. 1992;11(4):1663–70.PubMedPubMedCentralCrossRef Rouault JP, Rimokh R, Tessa C, Paranhos G, Ffrench M, Duret L, et al. BTG1, a member of a new family of antiproliferative genes. EMBO J. 1992;11(4):1663–70.PubMedPubMedCentralCrossRef
28.
go back to reference Scheijen B, Boer JM, Marke R, Tijchon E, van Ingen Schenau D, Waanders E, et al. Tumor suppressors BTG1 and IKZF1 cooperate during mouse leukemia development and increase relapse risk in B-cell precursor acute lymphoblastic leukemia patients. Haematologica. 2017;102(3):541–51.CrossRefPubMedPubMedCentral Scheijen B, Boer JM, Marke R, Tijchon E, van Ingen Schenau D, Waanders E, et al. Tumor suppressors BTG1 and IKZF1 cooperate during mouse leukemia development and increase relapse risk in B-cell precursor acute lymphoblastic leukemia patients. Haematologica. 2017;102(3):541–51.CrossRefPubMedPubMedCentral
29.
go back to reference Cazzaniga G, Daniotti M, Tosi S, Giudici G, Aloisi A, Pogliani E, et al. The paired box domain gene PAX5 is fused to ETV6/TEL in an acute lymphoblastic leukemia case. Cancer Res. 2001;61(12):4666–70.PubMed Cazzaniga G, Daniotti M, Tosi S, Giudici G, Aloisi A, Pogliani E, et al. The paired box domain gene PAX5 is fused to ETV6/TEL in an acute lymphoblastic leukemia case. Cancer Res. 2001;61(12):4666–70.PubMed
30.
go back to reference Strehl S, König M, Dworzak MN, Kalwak K, Haas OA. PAX5/ETV6 fusion defines cytogenetic entity dic(9;12)(p13;p13). Leukemia. 2003;17(6):1121–3.CrossRefPubMed Strehl S, König M, Dworzak MN, Kalwak K, Haas OA. PAX5/ETV6 fusion defines cytogenetic entity dic(9;12)(p13;p13). Leukemia. 2003;17(6):1121–3.CrossRefPubMed
31.
go back to reference Fazio G, Cazzaniga V, Palmi C, Galbiati M, Giordan M, te Kronnie G, et al. PAX5/ETV6 alters the gene expression profile of precursor B cells with opposite dominant effect on endogenous PAX5. Leukemia. 2013;27(4):992–5.CrossRefPubMed Fazio G, Cazzaniga V, Palmi C, Galbiati M, Giordan M, te Kronnie G, et al. PAX5/ETV6 alters the gene expression profile of precursor B cells with opposite dominant effect on endogenous PAX5. Leukemia. 2013;27(4):992–5.CrossRefPubMed
32.
go back to reference Chen IM, Harvey RC, Mullighan CG, Gastier-Foster J, Wharton W, Kang H, et al. Outcome modeling with CRLF2, IKZF1, JAK, and minimal residual disease in pediatric acute lymphoblastic leukemia: a Children’s Oncology Group study. Blood. 2012;119(15):3512–22.CrossRefPubMedPubMedCentral Chen IM, Harvey RC, Mullighan CG, Gastier-Foster J, Wharton W, Kang H, et al. Outcome modeling with CRLF2, IKZF1, JAK, and minimal residual disease in pediatric acute lymphoblastic leukemia: a Children’s Oncology Group study. Blood. 2012;119(15):3512–22.CrossRefPubMedPubMedCentral
Metadata
Title
Copy number abnormality of acute lymphoblastic leukemia cell lines based on their genetic subtypes
Authors
Chihiro Tomoyasu
Toshihiko Imamura
Toshihiro Tomii
Mio Yano
Daisuke Asai
Hiroaki Goto
Akira Shimada
Masashi Sanada
Shotaro Iwamoto
Junko Takita
Masayoshi Minegishi
Takeshi Inukai
Kanji Sugita
Hajime Hosoi
Publication date
01-09-2018
Publisher
Springer Japan
Published in
International Journal of Hematology / Issue 3/2018
Print ISSN: 0925-5710
Electronic ISSN: 1865-3774
DOI
https://doi.org/10.1007/s12185-018-2474-7

Other articles of this Issue 3/2018

International Journal of Hematology 3/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine