Skip to main content
Top
Published in: International Journal of Hematology 2/2016

01-08-2016 | Original Article

Epoetin beta pegol, but not recombinant erythropoietin, retains its hematopoietic effect in vivo in the presence of the sialic acid-metabolizing enzyme sialidase

Authors: Ken Aizawa, Ryohei Kawasaki, Yoshihito Tashiro, Michinori Hirata, Koichi Endo, Yasushi Shimonaka

Published in: International Journal of Hematology | Issue 2/2016

Login to get access

Abstract

Erythropoiesis-stimulating agents (ESAs) are widely used for treating chronic kidney disease (CKD)-associated anemia. The biological activity of ESAs is mainly regulated by the number of sialic acid-containing carbohydrates on the erythropoietin (EPO) peptide. Sialidase, a sialic acid-metabolizing enzyme that accumulates in CKD patients, is suspected of contributing to shortening the circulation half-life of ESAs. Epoetin beta pegol (continuous erythropoietin receptor activator; C.E.R.A.), is an EPO integrated with methoxypolyethylene glycol (PEG). It has been suggested that C.E.R.A. may exert a favorable therapeutic effect, even under conditions of elevated sialidase; however, no detailed investigation of the pharmacological profile of C.E.R.A. in the presence of sialidase has been reported. In the present study, we injected C.E.R.A. or EPO pre-incubated with sialidase into rats, and assessed the hematopoietic effect by reticulocyte count. The hematopoietic effect of C.E.R.A., but not EPO, was preserved after sialidase treatment, despite the removal of sialic acid. Proliferation of EPO-dependent leukemia cells (AS-E2) was significantly increased by desialylated C.E.R.A. and EPO compared to non-treated C.E.R.A. or EPO. In conclusion, we show that C.E.R.A. exerts a favorable hematopoietic effect even under conditions of elevated sialidase. Our findings may contribute to a better understanding of CKD and more effective therapeutic approaches based on a patient’s profile of anemia.
Literature
1.
go back to reference Lin FK, Suggs S, Lin CH, Browne JK, Smalling R, Egrie JC, et al. Cloning and expression of the human erythropoietin gene. Proc Natl Acad Sci U S A. 1985;82:7580–4.CrossRefPubMedPubMedCentral Lin FK, Suggs S, Lin CH, Browne JK, Smalling R, Egrie JC, et al. Cloning and expression of the human erythropoietin gene. Proc Natl Acad Sci U S A. 1985;82:7580–4.CrossRefPubMedPubMedCentral
2.
go back to reference Jacobs K, Shoemaker C, Rudersdorf R, Neill SD, Kaufman RJ, Mufson A, et al. Isolation and characterization of genomic and cDNA clones of human erythropoietin. Nature. 1985;313:806–10.CrossRefPubMed Jacobs K, Shoemaker C, Rudersdorf R, Neill SD, Kaufman RJ, Mufson A, et al. Isolation and characterization of genomic and cDNA clones of human erythropoietin. Nature. 1985;313:806–10.CrossRefPubMed
3.
go back to reference Sasaki H, Bothner B, Dell A, Fukuda M. Carbohydrate structure of erythropoietin expressed in Chinese hamster ovary cells by a human erythropoietin cDNA. J Biol Chem. 1987;262:12059–76.PubMed Sasaki H, Bothner B, Dell A, Fukuda M. Carbohydrate structure of erythropoietin expressed in Chinese hamster ovary cells by a human erythropoietin cDNA. J Biol Chem. 1987;262:12059–76.PubMed
4.
go back to reference Fukuda MN, Sasaki H, Lopez L, Fukuda M. Survival of recombinant erythropoietin in the circulation: the role of carbohydrates. Blood. 1989;73:84–9.PubMed Fukuda MN, Sasaki H, Lopez L, Fukuda M. Survival of recombinant erythropoietin in the circulation: the role of carbohydrates. Blood. 1989;73:84–9.PubMed
5.
go back to reference Spivak JL, Hogans BB. The in vivo metabolism of recombinant human erythropoietin in the rat. Blood. 1989;73:90–9.PubMed Spivak JL, Hogans BB. The in vivo metabolism of recombinant human erythropoietin in the rat. Blood. 1989;73:90–9.PubMed
6.
go back to reference Jelkmann W. The enigma of the metabolic fate of circulating erythropoietin (Epo) in view of the pharmacokinetics of the recombinant drugs rhEpo and NESP. Eur J Haematol. 2002;69:265–74.CrossRefPubMed Jelkmann W. The enigma of the metabolic fate of circulating erythropoietin (Epo) in view of the pharmacokinetics of the recombinant drugs rhEpo and NESP. Eur J Haematol. 2002;69:265–74.CrossRefPubMed
7.
go back to reference Egrie JC, Browne JK. Development and characterization of darbepoetin alfa. Oncology. 2002;16:13–22.PubMed Egrie JC, Browne JK. Development and characterization of darbepoetin alfa. Oncology. 2002;16:13–22.PubMed
8.
go back to reference Egrie JC, Dwyer E, Browne JK, Hitz A, Lykos MA. Darbepoetin alfa has a longer circulating half-life and greater in vivo potency than recombinant human erythropoietin. Exp Hematol. 2003;31:290–9.CrossRefPubMed Egrie JC, Dwyer E, Browne JK, Hitz A, Lykos MA. Darbepoetin alfa has a longer circulating half-life and greater in vivo potency than recombinant human erythropoietin. Exp Hematol. 2003;31:290–9.CrossRefPubMed
9.
go back to reference Elliott S, Egrie J, Browne J, Lorenzini T, Busse L, Rogers N, et al. Control of rHuEPO biological activity: the role of carbohydrate. Exp Hematol. 2004;32:1146–55.CrossRefPubMed Elliott S, Egrie J, Browne J, Lorenzini T, Busse L, Rogers N, et al. Control of rHuEPO biological activity: the role of carbohydrate. Exp Hematol. 2004;32:1146–55.CrossRefPubMed
10.
go back to reference Locatelli F, Reigner B. C.E.R.A.: pharmacodynamics, pharmacokinetics and efficacy in patients with chronic kidney disease. Expert Opin Investig Drugs. 2007;16:1649–61.CrossRefPubMed Locatelli F, Reigner B. C.E.R.A.: pharmacodynamics, pharmacokinetics and efficacy in patients with chronic kidney disease. Expert Opin Investig Drugs. 2007;16:1649–61.CrossRefPubMed
11.
go back to reference Topf JM. CERA: third-generation erythropoiesis-stimulating agent. Expert Opin Pharmacother. 2008;9:839–49.CrossRefPubMed Topf JM. CERA: third-generation erythropoiesis-stimulating agent. Expert Opin Pharmacother. 2008;9:839–49.CrossRefPubMed
12.
go back to reference Turecek PL, Bossard MJ, Schoetens F, Ivens IA. PEGylation of biopharmaceuticals: a review of chemistry and nonclinical safety information of approved drugs. J Pharm Sci. 2016;105:460–75.CrossRefPubMed Turecek PL, Bossard MJ, Schoetens F, Ivens IA. PEGylation of biopharmaceuticals: a review of chemistry and nonclinical safety information of approved drugs. J Pharm Sci. 2016;105:460–75.CrossRefPubMed
13.
14.
go back to reference Wong BC, Ravani P, Manns BJ, Lewin A, Zhang X, Chin R, et al. Association of a change in erythropoiesis-stimulating agent dose during hospitalization and subsequent hemoglobin levels and transfusions in hemodialysis patients. Am J Kidney Dis. 2013;62:947–52.CrossRefPubMed Wong BC, Ravani P, Manns BJ, Lewin A, Zhang X, Chin R, et al. Association of a change in erythropoiesis-stimulating agent dose during hospitalization and subsequent hemoglobin levels and transfusions in hemodialysis patients. Am J Kidney Dis. 2013;62:947–52.CrossRefPubMed
15.
go back to reference Kalantar-Zadeh K, Lee GH, Miller JE, Streja E, Jing J, Robertson JA, et al. Predictors of hyporesponsiveness to erythropoiesis-stimulating agents in hemodialysis patients. Am J Kidney Dis. 2009;53:823–34.CrossRefPubMedPubMedCentral Kalantar-Zadeh K, Lee GH, Miller JE, Streja E, Jing J, Robertson JA, et al. Predictors of hyporesponsiveness to erythropoiesis-stimulating agents in hemodialysis patients. Am J Kidney Dis. 2009;53:823–34.CrossRefPubMedPubMedCentral
16.
go back to reference Wu IW, Hsu KH, Sun CY, Tsai CJ, Wu MS, Lee CC. Oral adsorbent AST-120 potentiates the effect of erythropoietin-stimulating agents on Stage 5 chronic kidney disease patients: a randomized crossover study. Nephrol Dial Transplant. 2014;29:1719–27.CrossRefPubMed Wu IW, Hsu KH, Sun CY, Tsai CJ, Wu MS, Lee CC. Oral adsorbent AST-120 potentiates the effect of erythropoietin-stimulating agents on Stage 5 chronic kidney disease patients: a randomized crossover study. Nephrol Dial Transplant. 2014;29:1719–27.CrossRefPubMed
17.
go back to reference Bamgbola OF. Pattern of resistance to erythropoietin-stimulating agents in chronic kidney disease. Kidney Int. 2011;80:464–74.CrossRefPubMed Bamgbola OF. Pattern of resistance to erythropoietin-stimulating agents in chronic kidney disease. Kidney Int. 2011;80:464–74.CrossRefPubMed
18.
go back to reference Macdougall IC. Role of uremic toxins in exacerbating anemia in renal failure. Kidney Int Suppl. 2001;78:S67–72.CrossRefPubMed Macdougall IC. Role of uremic toxins in exacerbating anemia in renal failure. Kidney Int Suppl. 2001;78:S67–72.CrossRefPubMed
19.
go back to reference Shannon JS, Lappin TR, Elder GE, Roberts GM, McGeown MG, Bridges JM. Increased plasma glycosidase and protease activity in uraemia: possible role in the aetiology of the anaemia of chronic renal failure. Clin Chim Acta. 1985;153:203–7.CrossRefPubMed Shannon JS, Lappin TR, Elder GE, Roberts GM, McGeown MG, Bridges JM. Increased plasma glycosidase and protease activity in uraemia: possible role in the aetiology of the anaemia of chronic renal failure. Clin Chim Acta. 1985;153:203–7.CrossRefPubMed
20.
go back to reference Roozbeh J, Merat A, Bodagkhan F, Afshariani R, Yarmohammadi H. Significance of serum and urine neuraminidase activity and serum and urine level of sialic acid in diabetic nephropathy. Int Urol Nephrol. 2011;43:1143–8.CrossRefPubMed Roozbeh J, Merat A, Bodagkhan F, Afshariani R, Yarmohammadi H. Significance of serum and urine neuraminidase activity and serum and urine level of sialic acid in diabetic nephropathy. Int Urol Nephrol. 2011;43:1143–8.CrossRefPubMed
21.
go back to reference Lowy PH, Keighley G, Borsook H. Inactivation of erythropoietin by neuraminidase and by mild substitution reactions. Nature. 1960;185:102–3.CrossRefPubMed Lowy PH, Keighley G, Borsook H. Inactivation of erythropoietin by neuraminidase and by mild substitution reactions. Nature. 1960;185:102–3.CrossRefPubMed
22.
go back to reference Shimizu K, Haruyama W, Ogawsawara Y, Kanda T. [Comparison of erythropoiesis-stimulating activity between darbepoetin alfa (DA) and epoetin beta pegol (C.E.R.A.) in normal rats.]. Jin to Toseki (Kidney and Dialysis) [Japanese]. 2013;75:437-42. Shimizu K, Haruyama W, Ogawsawara Y, Kanda T. [Comparison of erythropoiesis-stimulating activity between darbepoetin alfa (DA) and epoetin beta pegol (C.E.R.A.) in normal rats.]. Jin to Toseki (Kidney and Dialysis) [Japanese]. 2013;75:437-42.
23.
go back to reference Miyazaki Y, Kuriyama K, Higuchi M, Tsushima H, Sohda H, Imai N, et al. Establishment and characterization of a new erythropoietin-dependent acute myeloid leukemia cell line, AS-E2. Leukemia. 1997;11:1941–9.CrossRefPubMed Miyazaki Y, Kuriyama K, Higuchi M, Tsushima H, Sohda H, Imai N, et al. Establishment and characterization of a new erythropoietin-dependent acute myeloid leukemia cell line, AS-E2. Leukemia. 1997;11:1941–9.CrossRefPubMed
24.
go back to reference Goldwasser E, Kung CK, Eliason J. On the mechanism of erythropoietin-induced differentiation. 13. The role of sialic acid in erythropoietin action. J Biol Chem. 1974;249:4202–6.PubMed Goldwasser E, Kung CK, Eliason J. On the mechanism of erythropoietin-induced differentiation. 13. The role of sialic acid in erythropoietin action. J Biol Chem. 1974;249:4202–6.PubMed
25.
go back to reference Dordal MS, Wang FF, Goldwasser E. The role of carbohydrate in erythropoietin action. Endocrinology. 1985;116:2293–9.CrossRefPubMed Dordal MS, Wang FF, Goldwasser E. The role of carbohydrate in erythropoietin action. Endocrinology. 1985;116:2293–9.CrossRefPubMed
26.
go back to reference Cohan RA, Madadkar-Sobhani A, Khanahmad H, Roohvand F, Aghasadeghi MR, Hedayati MH, et al. Design, modeling, expression, and chemoselective PEGylation of a new nanosize cysteine analog of erythropoietin. Int J Nanomedicine. 2011;6:1217–27.PubMedPubMedCentral Cohan RA, Madadkar-Sobhani A, Khanahmad H, Roohvand F, Aghasadeghi MR, Hedayati MH, et al. Design, modeling, expression, and chemoselective PEGylation of a new nanosize cysteine analog of erythropoietin. Int J Nanomedicine. 2011;6:1217–27.PubMedPubMedCentral
27.
go back to reference Adachi Y, Nakagawa Y, Nishio A. In patients treated with peritoneal dialysis, icodextrin improves erythropoietin-resistant anemia through blockade of asialo receptors on hepatocytes. Adv Perit Dial. 2006;22:41–4.PubMed Adachi Y, Nakagawa Y, Nishio A. In patients treated with peritoneal dialysis, icodextrin improves erythropoietin-resistant anemia through blockade of asialo receptors on hepatocytes. Adv Perit Dial. 2006;22:41–4.PubMed
28.
go back to reference Agoram B, Aoki K, Doshi S, Gegg C, Jang G, Molineux G, et al. Investigation of the effects of altered receptor binding activity on the clearance of erythropoiesis-stimulating proteins: nonerythropoietin receptor-mediated pathways may play a major role. J Pharm Sci. 2009;98:2198–211.CrossRefPubMed Agoram B, Aoki K, Doshi S, Gegg C, Jang G, Molineux G, et al. Investigation of the effects of altered receptor binding activity on the clearance of erythropoiesis-stimulating proteins: nonerythropoietin receptor-mediated pathways may play a major role. J Pharm Sci. 2009;98:2198–211.CrossRefPubMed
29.
go back to reference Wang YJ, Hao SJ, Liu YD, Hu T, Zhang GF, Zhang X, et al. PEGylation markedly enhances the in vivo potency of recombinant human non-glycosylated erythropoietin: a comparison with glycosylated erythropoietin. J Control Release. 2010;145:306–13.CrossRefPubMed Wang YJ, Hao SJ, Liu YD, Hu T, Zhang GF, Zhang X, et al. PEGylation markedly enhances the in vivo potency of recombinant human non-glycosylated erythropoietin: a comparison with glycosylated erythropoietin. J Control Release. 2010;145:306–13.CrossRefPubMed
30.
go back to reference Uchida E, Morimoto K, Kawasaki N, Izaki Y, Abdu Said A, Hayakawa T. Effect of active oxygen radicals on protein and carbohydrate moieties of recombinant human erythropoietin. Free Radic Res. 1997;27:311–23.CrossRefPubMed Uchida E, Morimoto K, Kawasaki N, Izaki Y, Abdu Said A, Hayakawa T. Effect of active oxygen radicals on protein and carbohydrate moieties of recombinant human erythropoietin. Free Radic Res. 1997;27:311–23.CrossRefPubMed
31.
go back to reference Bartnicki P, Fijalkowski P, Majczyk M, Blaszczyk J, Banach M, Rysz J. Effect of methoxy polyethylene glycol-epoetin beta on oxidative stress in predialysis patients with chronic kidney disease. Med Sci Monit. 2013;19:954–9.CrossRefPubMedPubMedCentral Bartnicki P, Fijalkowski P, Majczyk M, Blaszczyk J, Banach M, Rysz J. Effect of methoxy polyethylene glycol-epoetin beta on oxidative stress in predialysis patients with chronic kidney disease. Med Sci Monit. 2013;19:954–9.CrossRefPubMedPubMedCentral
32.
go back to reference Kato A, Odamaki M, Hishida A. Blood 8-hydroxy-2′-deoxyguanosine is associated with erythropoietin resistance in haemodialysis patients. Nephrol Dial Transpl. 2003;18:931–6.CrossRef Kato A, Odamaki M, Hishida A. Blood 8-hydroxy-2′-deoxyguanosine is associated with erythropoietin resistance in haemodialysis patients. Nephrol Dial Transpl. 2003;18:931–6.CrossRef
33.
go back to reference Kun S, Mikolas E, Molnar GA, Selley E, Laczy B, Csiky B, et al. Association of plasma ortho-tyrosine/para-tyrosine ratio with responsiveness of erythropoiesis-stimulating agent in dialyzed patients. Redox Rep. 2014;19:190–8.CrossRefPubMed Kun S, Mikolas E, Molnar GA, Selley E, Laczy B, Csiky B, et al. Association of plasma ortho-tyrosine/para-tyrosine ratio with responsiveness of erythropoiesis-stimulating agent in dialyzed patients. Redox Rep. 2014;19:190–8.CrossRefPubMed
34.
go back to reference Levinsky H, Gafter U, Levi J, Allalouf D. Neuraminidase-like activity in sera of uremic anemic patients. Nephron. 1984;37:35–8.CrossRefPubMed Levinsky H, Gafter U, Levi J, Allalouf D. Neuraminidase-like activity in sera of uremic anemic patients. Nephron. 1984;37:35–8.CrossRefPubMed
Metadata
Title
Epoetin beta pegol, but not recombinant erythropoietin, retains its hematopoietic effect in vivo in the presence of the sialic acid-metabolizing enzyme sialidase
Authors
Ken Aizawa
Ryohei Kawasaki
Yoshihito Tashiro
Michinori Hirata
Koichi Endo
Yasushi Shimonaka
Publication date
01-08-2016
Publisher
Springer Japan
Published in
International Journal of Hematology / Issue 2/2016
Print ISSN: 0925-5710
Electronic ISSN: 1865-3774
DOI
https://doi.org/10.1007/s12185-016-2000-8

Other articles of this Issue 2/2016

International Journal of Hematology 2/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine